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Abstract. We show that given some natural conditions on a 3 x 3 hyperbolic matrix
of integers A(detA = l) there exists a Markov partition for the induced map
A(x + Z3) = A(x) + Z3 on T3 whose transition matrix is (A"1)'. For expanding
endomorphisms of T2 we construct a Markov partition so that there is a semicon-
jugacy from a full (one-sided) shift.

Introduction
A highly flexible method for generating fractals is provided in [6]. We use the
method here to construct Markov partition boundaries for hyperbolic automorph-
isms of T3 and expanding endomorphisms of T2. (Results of Urbanski [10] and
Marie [8] show that such boundaries must be fractal.) We start with a good initial
tiling of the torus and are able to specify exactly and follow, via Dekking's fractal
generation method, all the boundary perturbations needed to obtain a Markov
partition. This makes it possible to calculate the transition matrix and to draw the
partitions. For a definition of a Markov partition we refer the reader to Bowen [4],
[5] (Bowen does not consider the case of expanding endomorphisms, but definitions
similar to those he gives for the hyperbolic situation work if one deletes the conditions
relating to stable manifolds). Bowen's definition requires that the sets in our partition
be small. We shall relax this condition. The effect of this is that if A: T3-» T3 is our
hyperbolic automorphism and /?,, Rj are two elements of our Markov partition £%
then A(int /?,) n int Rj may have more than one connected component. The transition
matrix for 91 will be the |S?| x |9?| matrix B = (by) where by equals the number of
connected components of A(int .R,)n int /?,. The usual type of construction of a
semiconjugacy from the subshift of finite type can still be done (Adler and Marcus
[1, p. 15] talk about transition matrices over Z+ instead of the usual {0,1}).

Dekking's construction of fractals ([6], [7]) is a nice geometric method in which
various directed line segments have symbols associated with them. A rule by which
one directed line segment is transformed into a directed polygonal line is then
written as an endomorphism d of the free semigroup 5* generated by the set of
symbols. K[V] is the directed polygonal line corresponding to a word VeS*. A
map / : S* -> Rm gives the coordinates of the endpoint of K[ V]. The polygonal line
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K[Os] is bigger than the line K[s] and so we normalize by a linear map L so that
the endpoints of L~lK[ds] are the same as those of K[s]. Dekking [6] proves that
as n ->oo, lim L~"K[d"s] exists (where convergence is in the Hausdorff metric). We
denote this limit by Ke{s). Ke(s) is typically a fractal and has the useful property
that it is connected. Furthermore, it has an invariance property that we shall often
use,

The proofs given here are fairly detailed sketches - detailed proofs can be found
in [2]. I would like to thank Caroline Series, who supervised this work, Michel
Dekking, Colin Rourke, and the referee for their advice.

Constructing partitions

THEOREM 1. Let A be a 2x2 matrix of integers inducing an expanding endomorphism
on T2 by A(x +I2) = A(x) + Z2. Then there is a Markov partition for A: T2-> T2 so
that there is a semiconjugacy to A from the (one sided) full shift on |det A\ symbols.

Proof. Let e, = (l,0), e2 = (0,1) in R2. We make our construction in the covering
plane. Let S = {st, s2, s^1, sj1}, / U ) = e,, f(s~1) = -ei and W=\,s2sr15^1. This
makes ^[W^] the boundary of the unit square. Choose 0 so that the 'sides' of
X [ W ] do not cross over. For instance one way would be to make K[dSj] the
nearest polygonal line with vertices in Z2 in the anticlockwise direction from AK[s,]
(we call this choice the anticlockwise perturbation). There can be many different
choices for 0 in general. There is a natural orientation of line segments in K[d"W]
given by symbol order in 8"W. Thus we can define the inside of K[6"W\ as all
points to the left of line segments having a single orientation defined (K[0"W~\
might have multiple self intersections). Let V" be the closure of the set of points
inside K[d"W] (in particular V° is the unit square). A~"V" is our nth level
approximation to the Markov partition.

The idea now is to use 6 to transform the tiling of the plane by copies of V" into
a tiling by copies of V"+1. Notice that V1 is the union of |det A\ copies of V° that
have mutually disjoint interiors and which tile the plane. An induction now shows
that for each n, V"+i tiles the plane and is the union of |det A\ copies of V" having
mutually disjoint interiors. The idea here is that if two V"s intersect in their interior
then the intersection must be a copy of V"+l, contradicting the fact that the V tile.
By construction each of the tilings of U2 by copies of A""'1 V" and hence also the
limiting tiling 01' is invariant under translation by elements of A~'Z2=>Z2. In order
to obtain the required Markov partition, project 91' onto the torus to give a partition
&. Since V is tiled by |det A\ copies of V"1, A(A~"~l V") is tiled by |det A\ copies
of A~"V'1 and this implies that SP satisfies the Markov property and its transition
matrix has every entry 1. •

Remark A quantity which provides a measurement of the amount of crinklyness
of a curve C is capacity. Let N(e) be the minimum number of balls of size e required
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to cover C. Then

cap (C) = lim sup (log N(e) ) / ( - log e)
e-«0

and

cap (C) = lim inf (log JV(e))/(-log e).
£-»0

If cap = cap we call this the capacity of C. A result of Urbanski [10] implies that
the capacity of d9 is not less than 2-(( log |A2|)/(log |A,|)), where 1 < | A 2 | < | A , | are
the eigenvalues of A. It is not difficult to show [3] that if B(9) = (by) is defined by
letting by be the total number of times s, and s~* appear in 0(s,), and A is the
maximal eigenvalue of B then

cap d0>< l + (log A-log |A2|)/log |A,)-

In particular there are Sf with this minimal capacity. In the case where A has
complex eigenvalues there are Markov partitions whose boundaries have capacity
arbitrarily close to the value 1. Figures 1 and 2 show two Markov partitions for the
same map. The boundary of the partition shown in figure 2 has capacity greater
than that for figure 1.

A similar construction to that used above can be used in the T3 hyperbolic setting.
We shall prove a generalisation of the following result of Manning [9].

THEOREM 2. Let A be a hyperbolic 2 x 2 matrix of positive integers and determinant
+ 1. Then there is a semiconjugacy from the subshift of finite type associated with the
matrix A' to the hyperbolic automorphism (T2, A) (where t denotes transposition).

FIGURE 1. Markov partition boundary generated by the endomorphism 8st = s1s2sls1s2slsl and
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FIGURE 2. Markov partition boundary generated by the endomorphism 0s, = sls2sls2sls2
 ljis2si an<*

N.B. In both cases the mapping of the torus is induced by the matrix (§ J). The figures show a fundamental
region for the torus and 18 1-cylinders.

T H E O R E M 3. Let A be a hyperbolic 3 x 3 matrix of integers such that:

(i) de tA=l ;
(ii) A~x is a non-negative matrix;
(iii) A has a single real contracting eigenvalue A3 and A3 > 0;
(iv) condition (*) (defined below) is satisfied.

Then the induced map A: Tl -* T3 has a Markov partition with transition matrix (A'})'.

Note. It will often help the reader to draw a two dimensional picture corresponding
to the three dimensional situation described below.

Proof. Let E" be the linear subspace of U3 spanned by eigenvectors for expanding
eigenvalues, and Es the subspace spanned by an eigenvector for the contracting
eigenvalue. Define C as the positive cone {(xi,x2,x3): x,>0}. By assumptions (ii)
and (iii) of the theorem, £" is a two dimensional space and intersects C only at
the origin. Similarly Es is one dimensional and intersects the interior of C.

(a) We now show how to approximate the claimed partition arbitrarily well.
Here we define the first approximation. Let ps:U

3^ E" be projection down stable
manifolds and {e,: i = 1, 2, 3} be the standard basis for R3. We write F, for the face
of the unit cube with edges e,, ek (where i,j, k are all different) and Ht=ps(Fi).
Condition (*) is:

H = {jHi satisfies AH => H. (*)
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Three prisms, P, for i = 1, 2, 3, are defined by

p. = [a,, 0] x H, cEsxEu = U3, where a, = Es n (-e, + £").

Writing P = U*^, we claim that 2P = {q +P: q<=Z3} tiles K3. This is proved by
considering how the different faces of P meet translates of P. We call a face of q + P
an 5-face if it is a union of line segments parallel to Es, or a u-face if it is parallel
to E".

Note first that the bottom («-) face of PM a, + //, satisfies at + Ht<^ -et + H where
-e, + H is a w-face of -e, + P. Hence the w-faces of any q + P are either subsets of,
or contain, w-faces of translates of q + P.

In order to show that s-faces of q + P meet s-faces of translates of q + P it is
enough to show (since p(E") is dense in T3) that the intersection of E" with 9 is
made up of non-overlapping copies of Hit i = 1, 2, 3, outside H. This is done by the
following construction which is also used later.

Corresponding to E" define a 'stepped' surface U in the following way. U is a
union of faces q + Ff, in other words,

(*!, x2, x3) E U implies some x, e Z3,

and is the unique lowest such surface sitting above E". Because E" intersects the
positive cone only at the origin, if we write "7, = ( — e,-, 0] then U has the following
special property:

£ u n in t (q + " / J ) ^ 0 if and only if q + Fj^U.

The special property implies that faces q + Ft of U correspond under ps to intersec-
tions of E" with q+ Pt. (Figure 3 shows the analogous picture in two dimensions.)
Thus the intersection of E" with 3° is made up of non-overlapping copies of Ht

FIGURE 3
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(we now call this the pattern of Sf in E"). We have now proved that 9 gives a tiling
of R3. Figure 4 shows how various translates of the Pf's fit together in R3.

[o , t,]

translate of tk + [0, f.

translate of (; + [0, tt] .

• where tr = p,(er)

FIGURE 4

(b) The s-faces of the P, now have to be altered so that they satisfy the Markov
conditions. We choose a way to alter inductively the faces (as in theorem 1) by
taking the anticlockwise perturbation of A([0,ps(e,)]) in the pattern for each i.
However we have to check first that A(/?s(e,) + [0, ps(e,)]) (an edge of A(Hk)) can
be perturbed in the same way as A([0, ps(et)]) whilst staying inside the pattern,
and secondly that the same choice can be made for the corresponding lines in
(x + E")nA(Pi) for any xeR3, i.e. for the whole s-face. Up to integer translation
[0,ps(e,)], ps(eJ) + [O)ps(ei)] and ps(ek) + [0, ps{et)] lie in the same s-face of either
Pj or Pk. Thus we have only to prove that the choice of perturbation for the
intersection of x + E" with an s-face of Pk can be made independently of xe Pk.
This is true if for all q e Z3,

(q + Hj)nint(APk) = 0.

That follows because otherwise, if r = A~xq, since A~XH <= H we have A~\q + Hj) <=•
r+H and in particular there is a Pm such that int A(r + Pm)nint APk ^0 which
contradicts the fact that 0> tiles.

It is easy to check that the perturbed Pt give a new tiling &1 of R3. Furthermore,
writing Wu(x, N) = (x + £" )n JV we have by construction that W"{Ax, AP))^>
W(Ax, p + Pj), some p £ Z3, x € int P) e <3>x and Ax e int p + Pj.

(c) We now introduce recurrent sets. Choose a symbol s, corresponding to ps{et),
an endomorphism 0 corresponding to the anticlockwise perturbation and words
Wj = SjSksJlsk

}. As in theorem 1 let V" be the region inside K[6"Wj]. Our closer
approximations to the required Markov partition are 9" ={q + P"} where
PI = [a,, 0] x (A'nV"). An induction shows that

A(Wu(x, A"P^+1))^ Wu(Ax,
and (**)
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where xeint (AnP"+l) and Axeint (q + A"P"). As n^oo the tiles 0>" converge to
a tiling 01'. Projecting 91' onto T3 gives a partition which satisfies the Markov
conditions by (**).

(d) To calculate the transition matrix B - (by) for 9i note that for all n,

hj = card {q + PJ: int (q + P") n int AP"+' * 0},

and that this equals the number of copies of Hj in the patterns tiling of V\. Lift the
lines K[dSj]ci E" into the stepped surface U to give polygonal lines L,. Denoting
by Uj the lift to U of V\ notice that Ut is bounded by L,, Lk, Lj + A{ek), Lk

JrA(ej)
and that bir equals the number of q + Fr in Ut. We can easily calculate the number
of such faces by projecting Ut onto the {em, en)-plane where r^m,n. Then we see
that

which implies that B = (adj A)' = (A'1)'. •

Coding between Markov partitions
The proof of theorem 1 gave us lots of Markov partitions with different boundary
capacities for the same map of T2. Let D = |det A\, and suppose if, 31 are two
Markov partitions for A constructed as in theorem 1. We denote the measure of
maximal entropy for the full shift cr:2D-»£D (which projects to Haar measure on
the torus) by fx. There is an induced isomorphism </>:2D^SD defined /x-a.e. so that
the following diagram commutes

(T2,A).

The anticipating function a4,:2D-»f^u{oo} is denned by

ad>{x) = min{n:ye'LD,yi = xi for iss n implies (4>(y))0 = (4>(x))0}.

We say that <j> has finite expected code length if J a^, d/j. < oo. An argument of Adler
and Marcus [1] shows that our <p does indeed have finite expected code length.
However a better estimate of the expected code length can be obtained in terms of
the matrices £(50, B(5?) (defined in the remark after theorem 1). Hence the expected
code length depends on how crinkly the Markov partition boundaries are. Write

PROPOSITION 3. j a^d/j.=YX nt/D', where ",+i is the number of elements of &'i+x

covering d0i.

Proof. Write C,(x) = {ye1D:(x0,..., x,_i) = (y0,..., j,-i)}. We have to calculate
n{xe1D: a<t,(x) = i}. Now, i = atf,(x) means that 77>(Cj(x)) does not intersect two
distinct elements of 91 in a set of positive measure, but that TT^C^^X)) does. This
implies that fl>(C,(x)) does not contain in its interior any part of the boundary
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between elements of 91, but that TTS^CJ- IM) does. Thus

card{SeS?i+1: 5 = TT>(C,+ 1(X))C: irm(C0{y)), some y)

= card {5 e ^,+1} - card {S e <fi+l: (int S) n <9$! * 0 }
— r>1 + 1 n- L > - n , + i .

Hence

card {Se Sf,+l: (int S)nd9t=0, S^ S'e #",-, (int S') n 3 ^ * 0}

= D i + 1 - n,+1 - D(D ' - «,) = Dn, - n(+1.

We now have iu.{xe1.D: a^x) = i} = «,-/D' — ni+1/D'+1. Notice that we cannot have
fl^(x) = 0 because this would imply that 9? = Sf. Hence if 3? # y we have a^(x) > 0
for all x and nt = D. We now have

It is clearly possible to estimate the n, by geometric means. The main problem in
doing this is to obtain an estimate of how distorted the sets in 91 and if can be. A
straightforward induction shows that (using the notation of theorem 1)

where |-|, is the length in the eigendirection corresponding to A/; b =
max {by-. (&„•) = B(2k)} and w is a bound on the norms of components of the unit
basis vectors in the A, eigenspaces. This proves

LEMMA 5. There is a constant r^>0 depending only on B(0l) such that an element
R of$k is contained in a square of side rm, where R and §1 are lifts ofR and 91 to R2.

Let 6 be the endomorphism used to generate 91, and A the maximal eigenvalue of
B{91). Then there exist a, b>0 such that

a- \"<\0"W\<b- A".

Lifting to the covering plane and letting k be a bound on the number of S e if
covering Ke(Sj) for i = l,2, we have n;</cbA'. The lemma implies that /c<
(rgj +2rcf)2/D. A similar bound can be made on the n, from below with the extra
assumption that 6 has no essential symbol duplication (essential symbol duplication
occurs if there exist n, s, t, U, U' and U", where t is an essential symbol, such that
6"(s) = UtU'tU" and K[tU'] = 0), for this implies that distinct occurrences of t in
8"W correspond to distinct copies of Ke(t) in Kg(d"W). This shows

PROPOSITION 6. There are constants C\, C2> 0 computable from A, B(9t) and B(^)
such that J a^dfx^ Cx and if there is no essential symbol duplication C 2 s J a^ dfi.
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