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SYSTEMS THAT ARE PURELY SIMPLE AND 
PURE INJEGTIVE 

FRANK OKOH 

In t roduc t ion . There has been a lot of progress made on the finite-dimen­
sional representations of species. In [3] and [11] the finite-dimensional repre­
sentations of tame species are classified and in [13] it is shown that if S is a 
species of finite type, then every representation of 5 is a direct sum of finite-
dimensional ones. However, comparatively little is known about infinite-
dimensional representations. This is, perhaps, in the nature of things; see [11, 
p. 302]. The study of infinite-dimensional representations of particular species 
is, therefore, not without interest. We remark that long before the above 
developments, Aronszajn and Fixman had studied in [1] the representations 
of the species 

where K is an algebraically closed field, in particular the field of complex 
numbers. They called the representations "systems". Arongszajn was led to 
this study by his investigations of finite-dimensional perturbations of spectral 
problems. In such a context, infinite-dimensional representations beg for con­
sideration. 

All the facts known for infinite-dimensional representations of general K-
species do not give us any extra information for systems. For instance, the 
locally indecomposable representations defined in [11, p. 302] give precisely 
the indecomposable systems of rank less than or equal to one. A similar remark 
applies to the infinite-dimensional representations studied in [12]. A perusal of 
[1], [4], or [10] shows that a lot is known about some classes of infinite-dimen­
sional systems. 

In this paper, we determine the purely simple and pure injective systems. 
The terminology for systems is as in [6]. Let (5, T), (V, W) be systems. In 
the case when (S, T) is purely simple and pure injective, it is shown in [4] 
that there is an invariant of (V, W) corresponding to its isomorphism type. 
If (S, T) is also finite-dimensional, this invariant corresponds to the dimension 
of a vector space described in [1, Theorem 6.7]. We became interested, there­
fore, in finding the systems that are purely simple and pure injective. It turns 
out that the class of such systems is quite sparse. It consists of systems of type 
Im, IIe

m, IIeœ, IHm or ^ , all of which are already accounted for in [1]. This is 
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surprising in view of the fact that there exist purely simple systems of any 
finite rank, [9]. 

It is possible that the results on systems are prototypes of results that can 
be proved for a larger class of tame species. We have not been able to determine 
this. However, in Section 1, the necessary definitions have been formulated 
for general i£-species. For concreteness, we have stuck to the field of complex 
numbers C, but this can be replaced by any algebraically-closed field. 

1. Preliminaries. Let 5 = (Fi, j l j i ^ , ^ be a connected i£-species with­
out oriented cycles, see [3] for a definition. It is convenient to identify some 
representations of S. For example if Ft = Fj = C, tMj = cC2c a n d (^i> J<Ê*)a 
representation, then the linear mapping 

4>: Vt ® G C 2 - > Vj 

can be considered as a pair of linear mappings 0i, </>2 from Vt to Vj. For any 
pair («i, a2) in C2 we get another linear map aifa + ai2</>2 from Vt to Vj. For a 
given </> all such representations are identified, yielding the following: 

Definition 1.1. A system is a pair of complex vector spaces (V, W) to­
gether with a system operation which is a C-bilinear map (e,v) •—> ev of C2 X V 
into W. 

Our terminology for species and systems will be as in [5] and [11] respectively. 
For any species S, let L(S) be the category of all representations of 5 and let 
l(S) be the category of finite-dimensional representations of S. 

Definition 1.2. A subobject A of B in L(S) is said to be pure in B provided 
that for every intermediate subobject, C, A C C C B such that C/A is in 
l(S), A is a direct summand of C. 

This definition already in [1] for systems has all the desirable properties. 
For details, we refer to [14]. In the language of that paper, 1.2 defines l(S)-
purity in L(S). We have the following. 

PROPOSITION 1.3. ([7, p. 129] or [14]) (i) A direct summand of an object is a 
pure subobject in the object. 

(ii) / / A is pure in B then it is pure in every subobject between A and B. 
(iii) / / A is pure in B and B is pure in D then A is pure in D. 

Definition 1.4 (a) An object in L(S) is said to be purely simple if it has no 
proper pure subobjects. 

(b) An object in L(S) is said to be pure injective if it is a direct summand 
of any object containing it as a pure subobject. 

It is natural to ask for the purely simple objects in L(S)—these being even 
more basic than the indecomposable objects, (1.3(i)). In the category of K[t\-
modules, where K[t] is the polynomial ring over a field K, the purely simple 
modules are easily determined (see [7, p. 119]). However, in the category of 
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systems, the purely simple objects are a lot more complex. If the category of 
A -modules, where A is any tame algebra, contains a pure-closed full sub­
category which is representation equivalent to the category of K[t\-modules, 
then the purely simple i£[/]-modules yield purely simple A -modules. (Every 
known tame algebra has the above property minus the pure-closed. See [2]. 
11 Pure-closed" means that any pure subobject of an object in the subcategory 
is again in the subcategory). 

Definition 1.5. Let (V, W) be a system. (F, W) is said to be torsion-free if 
for every 0 ^ e £ C2, the map v i—> ev is injective. 

Let \wi\ic.! C W. There is a smallest subsystem (X} Y) of (F, W) such that 
{w,}<€/ C Y and (V, W)/(X, Y) is torsion-free. (X, Y) is said to be the 
subsystem of (F, W) generated by the set {Wi}iei. (X, Y) is also called the 
torsion-closure of (0, {Wi}iel) in (F, W) denoted by tc (FtTF)(0, {w*}i6/). 

Definition 1.6 [4]. A system (F, W) is said to be of rank n, not necessarily 
finite, if (F, W) = tc(VtW)(0, {wt)iei) and card (I) = n but (V, W) ^ 
tc(VtW)(0, [Wi}i£I) for a n y / £ / . 

It is shown in [4] that the rank of a system is well-defined. The torsion-free 
systems of rank one are also completely classified there, using so-called height 
functions. Let V = W = C(J) —the complex rational functions. (V, W) is 
made into a system in the following way: 

<*/(£) = /(«), &/(£) = f/(ê), a, b a fixed basis of C2. 

The isomorphism type of (V, W) is denoted by 3$ and it is of rank 1. For this 
and a description of systems of type Im, IIem, IIIm, we refer to [1] and [4]. 

The next proposition is crucial to the proof of the main result. 

PROPOSITION 1.7 (a) [5]. If (F, W) is of rank 1 and not of type 3% then Ext 
(^, (F, W)) * 0. 

(b) [10]. / / (F, W) is of type IIIm then Ext ( ^ , IIIm) is of dimension 2e as a 
right vector space over C (£). 

2. 

THEOREM 2.1. A system (F, TF) is purely simple and pure injective if and only 
if it is of one of the following types: Im, IIem, He00, IHm or S%. 

Proof. The fact that a system of any of the above types is both purely 
simple and pure injective is readily deduced from [1, Propositions 2.2, 5.5, 8.4 
and 9.15] and [4, p. 433]. 

Suppose (F, IF) is both purely simple and pure injective. Since a direct 
summand of a system is a pure subsystem, by 1.3(i), (F, IF) must be inde­
composable. So by [1, Corollary 9.16(b)] it is either torsion or torsion-free, 
and in the former case, it is of one of the types Im, IIem, or IIe° again by [1, 

https://doi.org/10.4153/CJM-1977-073-4 Published online by Cambridge University Press

file:///wi/ic
https://doi.org/10.4153/CJM-1977-073-4


SYSTEMS 699 

9.16(b)]. So we may assume that (V, W) is torsion-free. If it is finite-dimen­
sional, then it must be of type IIIm by [1, Theorem 4.3] and the assumption 
that (V, W) is torsion-free and indecomposable. If (V, W) is infinite-dimen­
sional of rank 1, then it must be of type !% because otherwise Ext (^?, (V, W)) 
^ 0 by 1.7(a). But (V, W) purely simple and pure injective implies that 
Ext C^\ (F, W)) = 0 by [6, Theorem 1], contradiction. 

We are left with the case in which (V, W) is infinite-dimensional, torsion-
free and of rank larger than 1. Let {w*} tel be a basis of (V, W) with respect to 
generation and (V1, Wl) a subsystem of (V, W) generated by all but one ele­
ment of {iVi} iel. (V, W)/(V1

1 W1) is a torsion-free rank 1 system and we have 
the following exact sequence 

0-> (F1, Wl) -> (F, W) -> (V, W)/{V\ Wl) ->0 . 

Since (V, W) is purely simple, (V1, W1) must have a direct summand, (V2, W2) 
of type IIIm by [6, Theorem 1]. Let (X, Y) be a system of type S%. We have 
the long exact sequence (see [8]) 

(*) Horn ((X, F), (7 , W)) -> Horn ((X, F), (F, W)/(V\ IF1)) 

-> Ext ((X, F), (F2, PF2) + (F3, IF3)) -> Ext ((X, F), (F, T7)) 

- • Ext ((X, F), (F, IF)/(F! , IF1)) -> 0 

Suppose that (F, ^ / ( F 1 , IF1) is not of type 0t\ then Horn ((X, F), 
(F, I F ) / ( F \ IF1)) = 0 by [4, Lemma 3.1]. As above, since (V,W) is infinite-
dimensional, purely simple and pure injective, we have Ext ((X, F), (F, IF)) 
= 0. Substituting these values in (*) gives Ext ((X, F), (F2, IF2) + (F3, IF3)) 
= 0. However, Ext ((X, F), (F2, IF2) + (F3, IF3)) is isomorphic to Ext((X, F), 
(F2, IF2)) 0 Ext (X, F), (F3, IF3)). (F2, W2) is of type 7/ / m and so by 
1.7(a), Ext ((X, F), (F2, IF2)) 9e 0, a contradiction. Hence, we must suppose 
that (F, I F ) / ( F \ IF1) is of type ai. From (*) we get 

Horn ((X, F), (F, W0/C71, IF1)) -> Ext ((X, F), (F1, IF1)) - ^ 0 

The first entry in this sequence is isomorphic to C(£), the complex rational 
functions by [4, Corollary 3.7], so it is a one-dimensional vector space over 
End (^?) = C(£). But by Proposition 1.7(b), the second entry is infinite-
dimensional over C(£). Therefore it cannot be a homomorphic image of a 
one-dimensional vector space over C(£). So if (F, IF) is of rank greater than 
or equal to two, it cannot be both purely simple and pure injective. We are 
done with the proof of Theorem 2.1. 

Remarks. Theorem 2.1 generalizes [4, Theorem 5.8] which states that a 
torsion-free system of rank 1 which is not of type IIIm or St is not pure-
injective. The proof there exhibits a short exact sequence which is claimed to 
be non-splitting. 

However, there is an error which can be corrected as follows: Instead of 
bvk = wk+i + 1, for k = 0, 1, 2, . . . Let bvk = wk+1 + ak where J^jLi OLJ-\/& is 

https://doi.org/10.4153/CJM-1977-073-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-073-4


700 FRANK OKOH 

not the expansion of a rational function in C(£). The proof then proceeds as 
in [4]. 

For a given species, the main problem in finding the purely simple and pure 
injective representations lies in finding the infinite-dimensional ones. 
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written at Queen's University, Kingston, Ontario under the helpful supervision 
of Professor Uri Fixman. 
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