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Abstract
Lax extensions of set functors play a key role in various areas, including topology, concurrent systems, and
modal logic, while predicate liftings provide a generic semantics of modal operators.We take a fresh look at
the connection between lax extensions and predicate liftings from the point of view of quantale-enriched
relations. Using this perspective, we show in particular that various fundamental concepts and results
arise naturally and their proofs become very elementary. Ultimately, we prove that every lax extension is
induced by a class of predicate liftings; we discuss several implications of this result.
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1. Introduction
A lax extension of a given Set-functor F acts on relations in a way that is (laxly) compatible on the
one hand with the action of F on sets and maps and on the other hand with the algebraic structure
on relations, in particular composition. Lax extensions are a well-established tool in mathematics
and computer science. For example, they are essential in the theory ofmonoidal topology to encode
the type of a space (Hofmann et al. 2014); and in the theory of coalgebras, they encode the type of
a simulation (Hughes and Jacobs 2004) as well as the type of a cover modality, in the semantics of
Moss-type coalgebraic logics (Marti and Venema 2015).

A more expressive form of coalgebraic modal logic is based on the notion of predicate lift-
ing, which allows capturing the standard syntax and semantics of many forms of modal logic
found in the literature in a uniform fashion (Cîrstea et al. 2011). The connection between the two
approaches to coalgebraic modal logic is governed by the connection between lax extensions and
predicate liftings. Special predicate liftings, the so-called Moss liftings, can be extracted from the
Barr extension (Kurz and Leal 2009; Leal 2008). This principle has been extended to a large class of
lax extensions (Marti and Venema 2015) and further to the quantative setting (Wild and Schröder
2020). Conversely, lax extensions can be constructed from predicate liftings using the so-called
Kantorovich extension (Wild and Schröder 2020), even in quantalic generality (Wild and Schröder
2021). Finally, Moss liftings and the Kantorovich extension lead to a representation theorem (see
Theorem 1 below) for specific “fuzzy” (i.e., [0, 1]-valued) lax extensions (Wild and Schröder 2020),
which is instrumental in deriving a quantitative Hennessy–Milner-type theorem stating essen-
tially that behavioral distance on coalgebraic systems coincides with logical distance under suitable
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bounding assumptions on the functor (Forster et al. 2023; König and Mika-Michalski 2018; Wild
and Schröder 2022).

Although lax extensions apply to relations, the connection between lax extensions and predi-
cate liftings has previously been expressed primarily in the language of functions. In contrast, the
cornerstone of the present work is the principle that the connection between lax extensions and
predicate liftings is best expressed in the language of relations. More specifically, we work in the
language of quantale-enriched relations as a way of unifying the work developed in the classical
setting and the emerging work in quantitative settings.

1.1 Main contributions
Themain contribution of this paper is to show that every quantale-valued lax extension of an arbi-
trary Set-functor is induced by its class of Moss liftings. This generalizes results in the literature
that rely on specific properties of the unit interval and on cardinality constraints on Set-functors
(Marti and Venema 2015;Wild and Schröder 2020, 2021). By tackling this problem from the point
of view of relations instead of functions, we obtain elegant proofs and new insights. For instance,
we introduce the notion of predicate lifting for a lax extension which leads to a simple descrip-
tion ofMoss lifting that goes beyond the realm of accessible functors and is independent of functor
presentations, which feature centrally in previous approaches (Leal 2008;Marti and Venema 2015;
Wild and Schröder 2020).

The representation result obtained here explains the importance of the canonical extensions of
generalized monotone neighborhood functors in the process of constructing quantale-valued lax
extensions (in analogy to the two-valued case Marti and Venema 2015); it is a stepping stone to
connecting the coalgebraic approaches to behavioral distance via quantale-valued lax extensions
and via liftings to categories of quantale-enriched categories, respectively (Goncharov et al. 2023),
and similarly to connecting – in quantalic generality – the approaches to coalgebraic logics via lax
extensions and via predicate liftings; and it helps pave the way to obtaining expressive (monotone)
quantale-valued coalgebraic modal logics (Forster et al. 2023; Goncharov et al. 2023).

1.2 Roadmap
After briefly reviewing the necessary background in Section 2, we show in Section 3 how to extract
predicate liftings from a lax extension in a canonical way. This leads to the notion of predicate lift-
ing of a lax extension, which generalizes the notion of Moss lifting. We characterize the predicate
liftings of a lax extension as the ones that obey a Yoneda-type formula involving the lax extension
and conclude that the Moss liftings correspond to special representable V -functors.

In Sections 4 and 5, we revisit the Kantorovich extension (Wild and Schröder 2020, 2021). The
main technical contributions of these sections are connected with one of the main results of Wild
and Schröder (2020):

Theorem 1. Every finitarily separable fuzzy lax extension of a Set-functor is induced by its set of
Moss liftings.

A simpler version of this result states that every fuzzy lax extension of a finitary Set-functor is
induced by its set of Moss liftings. Intuitively, a finitarily separable lax extension is a lax extension
under which the functor can be approximated by its finitary part.

In this regard, we show in Section 4 that every lax extension is induced by its class of infinitary
Moss liftings, and in Section 5 that the role of λ-accessibility is to ensure that it is sufficient to
consider a set of Moss liftings of arity less than λ. Consequently, we obtain that every lax exten-
sion of an arbitrary functor is an initial lift of canonical extensions of generalized monotone
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neighborhood functors (Corollary 62), a generalization of Theorem 1 above – whose proof was
tied to the unit interval – to arbitrary (commutative) quantales (Corollary 79), as well as a general-
ization of the following key result (Marti and Venema 2015) to arbitrary (commutative) quantales
and functors (Corollary 64):

Theorem 2. A finitary Set-functor admits a lax extension to Rel that preserves identities if and only
if it admits a separating set of monotone predicate liftings.

2. Preliminaries
We briefly review the theory of quantale-enriched categories from the point of view of quantale-
enriched relations, as well as lax extensions and predicate liftings, and establish some notation and
basic results. We warn the reader that there are several approaches to these topics in the literature,
often with particular notations and nomenclature; we follow the conventions of Hofmann et al.
(2014).

2.1 Quantale-enriched relations and categories
A quantale, more precisely a commutative unital quantale, is a complete lattice V that carries the
structure of a commutative monoid (V ,⊗, k) such that for every u ∈ V the map u⊗ −: V →
V preserves suprema. Therefore, in a quantale, every map u⊗ −: V → V has a right adjoint
hom (u,−) : V → V , which is characterized by:

u⊗ v≤w ⇐⇒ v≤ hom (u,w),
for all v,w ∈ V . A quantale is nontrivial if the least element ⊥ of V does not coincide with the
greatest element 	. Moreover, a quantale is integral if 	 is the unit of the monoid operation ⊗ of
V , which we refer to as tensor or multiplication.

Remark 3. In categorical parlance, a quantale is a commutative monoid in the monoidal category
of complete lattices and suprema-preserving maps.

Examples 4. Quantales are common in mathematics and computer science.

(1) Every frame becomes a quantale with ⊗ = ∧ and k= 	.
(2) Every left continuous t-norm (Alsina et al. 2006) defines a quantale on the unit interval

equipped with its natural order. The following are some typical examples.
a. The product t-norm has tensor given by multiplication and

hom (u, v)=
{
min ( vu , 1) if u �= 0,
1 otherwise.

Via the map [0,∞]→ [0, 1], u → e−u, this quantale is isomorphic to the quantale
[0,∞] of extended nonnegative real numbers used by Lawvere (1973) to define (gen-
eralized) metric spaces.

b. The infimum t-norm has tensor given by infimum and

hom (u, v)=
{
1 if u≤ v,
v otherwise.

c. The Łukasiewicz t-norm has tensor given by u⊗ v=max (0, u+ v− 1) and
hom (u, v)=min (1, 1− u+ v). This quantale is isomorphic to the quantale that is used
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implicitly in the usual treatment of 1-bounded metric spaces. More concretly, this quan-
tale is isomorphic to the quantale based on the unit interval equipped with the dual of
the natural order and with tensor given by truncated addition, u⊕ v=min (u+ v, 1);
the map [0, 1]→ [0, 1] : u → 1− u provides an isomorphism.

(3) Every commutative monoid (M, ·, e) generates a quantale structure on (PM,
⋃

), the free
quantale on M. The tensor ⊗ on PM is defined by:

A⊗ B= {a · b | a ∈A and b ∈ B},
for all A, B⊆M. The unit of this multiplication is the set {e}.

For a quantale V and sets X, Y , a V -relation – an enriched relation – from X to Y is a map
X × Y → V ; we let X −−→ Y denote the space of such maps, and in particular write r : X −−→ Y to
indicate that r is a V -relation fromX to Y . As for ordinary relations, V -relations can be composed
via “matrix multiplication.” That is, for r : X −−→ Y and s : Y −−→ Z, the composite s · r : X −−→ Z is
calculated pointwise by:

(s · r)(x, z)=
∨
y∈Y

r(x, y)⊗ s(y, z),

for x ∈ X and z ∈ Z. The collection of all sets and V -relations between them forms the category
V -Rel. For each set X, the identity morphism on X is the V -relation 1X : X −−→ X that sends every
diagonal element to k and all the others to ⊥.

Examples 5. The category of relations enriched in the two-element frame is the usual category
Rel of sets and relations. Relations enriched in left continuous t-norms are often called fuzzy or
quantitative relations.

We can compare V -relations of type X −−→ Y using the pointwise order:

r ≤ s ⇐⇒ ∀(x, y) ∈ X × Y , r(x, y)≤ s(x, y).

Every hom-set of V -Rel becomes a complete lattice when equipped with this order, and an easy
calculation shows that V -relational composition preserves suprema in each variable. Therefore,
V -Rel is a quantaloid and enjoys pleasant properties inherited from V . In particular, precom-
position and poscomposition with a V -relation r : X −−→ Y define maps with right adjoints that
compute Kan lifts and extensions, respectively. The lift of a V -relation s : Z −−→ Y along r : X −−→ Y
is the V -relation r� s : Z −−→ X defined by the property:

r · t ≤ s ⇐⇒ t ≤ r� s,

for every t : Z −−→ X,

Z

X Y .

r�st ≤ s

r

≤

We can compute lifts explicitly as:

(r� s)(z, x)=
∧
y∈Y

hom (r(x, y), s(z, y)).
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Dually, the extension of a V -relation s : Y −−→ Z along r : Y −−→ X is the V -relation s� r : Y −−→ Z
defined by the property:

t · r ≤ s ⇐⇒ t ≤ s� r,

for every t : Y −−→ Z,

Z

X Y .

s�rt ≤ s

r

≤

Elementwise, we obtain

(s� r)(x, z)=
∧
y∈Y

hom (r(y, x), s(y, z)).

Being a quantaloid, V -Rel is a 2-category and, therefore, it makes sense to talk about adjoint
V -relations; as usual, l : X −−→ Y is left adjoint to r : Y −−→ X, written l � r, if l · r ≤ 1Y and 1X ≤ r · l.

Proposition 6. Consider V -relations p : W −−→ Y, q : V −−→ Y, r, r′ : X −−→ Y and s : Y −−→ Z.

(1) r ≤ r′ =⇒ q� r ≤ q� r′.
(2) r ≤ r′ =⇒ r′� q≤ r� q.
(3) (p� q) · (q� r)≤ p� r
(4) q� r ≤ (s · q)� (s · r).

Proof. All claims follow straightforwardly from the universal properties of lifts and
extensions.

If V is nontrivial, we can see V -Rel as an extension of Set through the faithful functor
(− )◦ : Set→ V -Rel that acts as identity on objects and interprets a function f : X → Y as the
V -relation f◦ : X −−→ Y that sends every element of the graph of f to k and all the others to ⊥. To
avoid unnecessary use of subscripts usually, we write f instead of f◦.

The canonical isomorphism X × Y � Y × X in Set induces a contravariant involution in
V -Rel:

(− )◦ : V -Relop −→ V -Rel

that maps objects identically and sends a V -relation r : X −−→ Y to the V -relation r◦ : Y −−→ X
defined by r◦(y, x)= r(x, y), the converse of r.

Remark 7. The converse of a function f : X → Y yields an adjunction f � f ◦ in V -Rel (and this
property of functions distinguishes them among V -relations precisely when the quantale V is
integral and lean Hofmann et al. 2014, Proposition III.1.2.1). For every set Z, this adjunction
extends to the following ones:

(1) f · (− )� f ◦ · (− ) : V -Rel(Z, X)→ V -Rel(Z, Y);
(2) (− ) · f ◦ � (− ) · f : V -Rel(X, Z)→ V -Rel(Y , Z).

The next results collect some useful facts about the interplay between extensions, functions,
relations, and involution.
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Proposition 8. Let r : X −−→ Z and s : Y −−→ Z be V -relations, and let f : A→ X and g : B→ Y be
functions. Then the following holds.

(1) (s� r)◦ = r◦� s◦;
(2) g◦ · (s� r)= (s · g)� r;
(3) (s� r) · f = s� (r · f ).

Proof. All claims are consequences of the uniqueness of adjoints. For example, to show 2 it is
sufficient to observe that from Remark 7, it follows that both (s · g)�− and g◦ · (s�−) are right
adjoint to (s · g) · −.

Proposition 9. Let r : X −−→A and s : Y −−→A be V -relations. Then,

s� r =
∧
a∈A

(a◦ · s)� (a◦ · r),

where a◦ denotes the converse of the map a : 1→A that selects the element a.

Corollary 10. Let r : X −−→ Y, s : Y −−→ Y be V -relations, and y : 1→ Y a function. Then,

y◦ · (s� r)= y◦ · (y◦ · s)� (y◦ · r).

Proposition 11. Let r : X −−→ Y and s : A−−→ B be V -relations, and let f : X →A and g : Y → B be
functions such that g · r ≤ s · f . Then, r · f ◦ ≤ g◦ · s.

Proof. r · f ◦ ≤ g◦ · g · r · f ◦ ≤ g◦ · s · f · f ◦ ≤ g◦ · s.
Category theory underlines preordered sets as the fundamental ordered structures. For an arbi-

trary quantale V , the same role is taken by V -categories. Analogously to the classical case, we
say that a V -relation r : X −−→ X is reflexive if 1X ≤ r, and transitive if r · r ≤ r. A V -category is a
pair (X, a) consisting of a set X of objects and a reflexive and transitive V -relation a : X −−→ X;
a V -functor (X, a)→ (Y , b) is map f : X → Y such that f · a≤ b · f . Clearly, V -categories and
V -functors define a category, denoted as V -Cat.

Remark 12. As the nomenclature suggests, the notions of V -category and V -functor come from
enriched category theory (Kelly 1982; Lawvere 1973; Stubbe 2014). In fact, unravelling the def-
inition of reflexive and transitive V -relation yields the typical definition of quantale-enriched
category: a pair (X, a) consisting of a set X and a map a : X × X → V that satisfies the inequalities:

k≤ a(x, x) and a(x, y)⊗ a(y, z)≤ a(x, z)

for all x, y, z ∈ X. Similarly, a V -functor f : (X, a)→ (Y , b) is a map f : X → Y such that, for all
x, y ∈ X,

a(x, y)≤ b(f (x), f (y)).

Examples 13. The following are some familiar examples of quantale-enriched categories.

(1) The category 2-Cat is equivalent to the category Ord of preordered sets and monotone maps.
(2) Metric, ultrametric, and bounded metric spaces à la Lawvere (1973) can be seen as categories

enriched in left continuous t-norms:
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a. With multiplication ∗, [0, 1]∗-Cat is equivalent to the category Met of (generalized)
metric spaces and non-expansive maps.

b. With infimum ∧, [0, 1]∧-Cat is equivalent to the category UMet of (generalized)
ultrametric spaces and non-expansive maps.

c. With the Łukasiewicz tensor �, [0, 1]�-Cat is equivalent to the category BMet of
(generalized) bounded-by-1 metric spaces and non-expansive maps.

(3) Categories enriched in a free quantale PM on a monoid M (such as M =�∗ for some alpha-
bet �) can be interpreted as labeled transition systems with labels in M: in a PM-category
(X, a), the objects represent the states of the system, and we can read m ∈ a(x, y) as an
m-labeled transition from x to y.

Definition 14. The dual of a V -category (X, a) is the V -category (X, a)op = (X, a◦).

Remark 15. The quantale V becomes a V -category under the canonical structure hom : V ×
V → V . In fact, for every set S, we can form the S-power V S of V which has as underlying set all
functions h : S→ V and V -category structure [−,−] given by:

[h, l]=
∧
s∈S

hom (h(s), l(s)),

for all h, l : S→ V . For instance, for the quantale ([0, 1],⊕, 0), where [0, 1] is equipped with the
dual of the natural ordering (Example 4(2c)), this distance on [0, 1]-Rel(X, Y)= [0, 1]X×Y is given
in terms of the natural order on [0, 1] by:

[r, s]= sup
{
max (s(x, y)− r(x, y), 0) | (x, y) ∈ X × Y

}
.

Every V -category (X, a) carries a natural order defined by:

x≤ y if k≤ a(x, y),

which induces a faithful functor V -Cat→Ord. A V -category (X, a) is separated if

(k≤ a(x, y) & k≤ a(y, x)) =⇒ x= y

for all x, y ∈ X. That is, (X, a) is separated if the natural order defined above is anti-symmetric.

Remark 16. The natural order of the V -category V is just the order of the quantale V . The natu-
ral order of V S is calculated pointwise, and as such is complete. Furthermore, the V -category V S

is complete in the sense of enriched category theory; in particular, V S has tensors, which are
given by (u⊗ h)(s)= u⊗ h(s), for u ∈ V and h ∈ V S. Tensors are compatible with composition,
that is, (u⊗ f ) · g = u⊗ (f · g) for all u ∈ V , f : S→ V , and g : S′ → S. Here, we recall that a V -
category (X, a) is tensored if, for every x ∈ X, the V -functor a(x,−) : X → V has a left adjoint
− ⊗ x : V → X in V -Cat. We also note that V -functors between tensored V -categories are char-
acterized by a pleasant property: a map f : X → Y between tensored V -categories X and Y is a
V -functor if and only if f is monotone and, for all u ∈ V and x ∈ X, u⊗ f (x)≤ f (u⊗ x) (Stubbe
2006).

2.2 Lax extensions
A lax extension of a functor F : Set→ Set to V -Rel consists of a map:

(r, r′ : X −−→ Y) −→ (Lr : FX −−→ FY)

such that
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(L1) r ≤ r′ =⇒ Lr ≤ Lr′,
(L2) Ls · Lr ≤ L(s · r),
(L3) Ff ≤ Lf and (Ff )◦ ≤ L(f ◦)

for all r : X −−→ Y , s : Y −−→ Z, and f : X → Y . The first condition means precisely that L induces a
monotone map:

LX,Y : V -Rel(X, Y)−→ V -Rel(FX, FY), (1)
for all sets X and Y . We say that a lax extension is V -enriched if this map satisfies the stronger
condition of being a V -functor, for all sets X and Y (see Remark 15):

(L1’) [r, r′]≤ [Lr, Lr′]

for all r, r′ : X −−→ Y . A lax extension L is identity-preserving if L1X = 1FX for every set X.

Remark 17. It is common to refer to various forms of extensions of Set-functors to Rel as relators,
relational liftings, or lax relational liftings.

Example 18. The prototypical example of a lax extension is the Barr extension to Rel of a functor
F : Set→ Set that preserves weak pullbacks. Taking advantage of the fact that every relation r : X −−→
Y can be described as a span:

X R Y ,
p1 p2

the Barr extension of F sends r to the relation Fp2 · Fp1◦.
Kurz and Velebil (2016) provide a concise survey-oriented toward applications of lax extensions
in coalgebra and logic that deals mostly with lax extensions to Rel. Regarding lax extensions
to V -Rel, work within the framework of monoidal topology (Clementino and Hofmann 2004;
Schubert and Seal 2008; Seal 2005) encompasses a substantial amount of results.

Our mainmotivation to study lax extensions stems from the fact that they provide a framework
for the coalgebraic treatment of various notions of quantale-valued (bi)simulation (Gavazzo 2018;
Goncharov et al. 2023; Hughes and Jacobs 2004; Marti and Venema 2015; Rutten 1998; Wild and
Schröder 2020, 2021). Recall that an F-coalgebra for a functor F : Set→ Set is a pair (X, α) consist-
ing of a set X of states and a transition map α : X → FX; such coalgebras are viewed as transition
systems, with F determining the transition type (e.g., if F is just powerset, then F-coalgebras are
relational transition systems in the usual sense). Now given a lax extension L : V -Rel→ V -Rel
of F, an L-simulation between F-coalgebras (X, α) and (Y , β) is a V -relation s : X −−→ Y such that

β · s≤ Ls · α.
If the lax extension L preserves converse, then L-simulations are more suitably called L-
bisimulations. Since V -Rel is a quantaloid, there is the largest L-(bi)simulation between two
given coalgebras, which is termed L-(bi)similarity. In the two-valued case, it has been shown by
Marti and Venema (2015) that the notion of L-bisimilarity arising from an identity-preserving lax
extension that preserves converse coincides with the standard coalgebraic notion of behavioral
equivalence. On the other hand, the notion of V -enriched lax extension has been instrumental in
establishing quantitative Hennessy-Milner and van Benthem-type theorems (Wild and Schröder
2020, 2021). It has been introduced with V -enrichment replaced with (L1) together with the
condition:

(L4) For every set X and every u ∈ V , u⊗ 1FX ≤ L(u⊗ 1X),
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where u⊗ 1A denotes the tensor of u and 1A as defined in Remark 16 (and this condition is
shown to be equivalent to a variant of V -enrichment where V is equipped with the symmetrized
distance). The next result records the equivalence of these and other conditions.

Theorem 19. For a lax extension L : V -Rel→ V -Rel, the following assertions are equivalent.

(i) L is V -enriched.
(ii) For every set X and every u ∈ V , u≤ [1FX , L(u⊗ 1X)].
(iii) For every set X and every u ∈ V , u⊗ 1FX ≤ L(u⊗ 1X).
(iv) For every V -relation r : X −−→ Y and every u ∈ V , u⊗ Lr ≤ L(u⊗ r).

Proof. Note that a lax extension satisfies the monotonicity condition (L1); therefore, the state-
ments (i) and (iv) are equivalent by general results about tensored V -categories recalled in
Remark 16. Now assume (i). Then, for every u ∈ V ,

u≤ [1X , u⊗ 1X]≤ [L1X , L(u⊗ 1X)]≤ [1FX , L(u⊗ 1X)].
The implication (ii)⇒(iii) follows from the adjunction − ⊗ 1FX � [1FX ,−]. Finally, assume (iii).
Then, for every u ∈ V and r : X −−→ Y ,

L(u⊗ r)= L(u⊗ (r · 1X))= L(r · (u⊗ 1X))≥ Lr · L(u⊗ 1X)≥ Lr · (u⊗ 1FX)= u⊗ Lr.

Remark 20. If k= 	 in V , then u⊗ 1X ≤ 1X and therefore [u⊗ 1X , 1X]= k= 	. Hence,
[1X , u⊗ 1X]= [1X , u⊗ 1X]∧ [u⊗ 1X , 1X],

and V -enrichment of a lax extension can be equivalently expressed using the symmetrization of
the canonical structure on V .

Remark 21. For the quantale [0, 1] of Example 4(2c), Wild and Schröder (2020) prove the equiv-
alence (i)⇔(iii) of Theorem 19, but with non-expansiveness of (1) defined with respect to the
symmetric Euclidean metric on [0, 1] and with �ε,X denoting ε⊗ 1X . Since this quantale is
integral, Remark 20 ensures that this is equivalent to considering the asymmetric distance.

In the remainder of this subsection, we collect some useful properties of lax extensions. First,
we note that they preserve certain composites of V -relations and functions strictly.

Proposition 22. Let L : V -Rel→ V -Rel be a lax extension, and let f : X → Y, g : W → Z be
functions and s : Y −−→ Z a V -relation. Then,

(1) L(s · f )= Ls · Lf = Ls · Ff ,
(2) L(g◦ · s)= L(g◦) · Ls= (Fg)◦ · Ls.

Proof. See, for example, Hofmann et al. (2014, Proposition III.1.4.4).

Proposition 23. Let L : V -Rel→ V -Rel be a lax functor. Then, items 1 and 2 of Proposition 22 are
equivalent as conditions on L. If L satisfies them, then L is a lax extension of F.

Proof. See, for example, Hofmann et al. (2014, Proposition III.1.4.3).

A morphism of lax extensions α : (G, L)→ (F, LF) is a natural transformation α : G→ F that is
oplax as a transformation α : LG → LF; that is, for every r : X −−→ Y ,
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αY · LGr ≤ LFr · αX .
When no ambiguities arise, we simply write α : LG → LF.

Disregarding size constraints, we have that lax extensions and their morphisms form a cat-
egory which is topological over the category of endofunctors on Set (Schubert and Seal 2008,
Remark 3.5). Given a family α = (αi : F→ Fi)i∈I of natural transformations where each Fi carries
a lax extension Li to V -Rel, the initial extension Lα is defined by:

Lαr =
∧
i∈I
α◦
Y · Lir · αX ,

for r : X −−→ Y . In particular, the supremum and infimum over a class of lax extensions of a functor
F : Set→ Set is a lax extension of F.

Every lax extension has a dual as introduced by Seal (2005). The dual lax extension
L◦ : V -Rel→ V -Rel of a lax extension L : V -Rel→ V -Rel is the lax extension of F : Set→ Set
that is defined by the assignment:

r −→ L(r◦)◦.

Notably, this means that we can symmetrize lax extensions. The symmetrization F̂s : V -Rel→
V -Rel of a lax extension L : V -Rel→ V -Rel is the lax extension obtained as the meet of L and L◦.

Finally, an important application of lax extensions of a functor F : Set→ Set to V -Rel is to
construct liftings of F to V -Cat; that is, endofunctors on V -Cat that make the following diagram
commute, where the vertical arrows represent the forgetful functor:

V -Cat V -Cat

Set Set

L

F

The lifting L : V -Cat→ V -Cat induced by a lax extension L : V -Rel→ V -Rel sends a V -category
(X, a) to the V -category (FX, La).

2.3 Predicate liftings
Given a cardinal κ , a κ-ary predicate lifting for a functor F : Set→ Set is a natural transformation:

μ : QV κ −→QV F,

where, for a set Y , QY : Setop → Set denotes the functor:

Set(−, Y) : Setop → Set;

that is, we can think of elements of QV κX as κ-indexed families of V -valued predicates on X. We
say that μ : QV κ →QV F ismonotone if for every set X the map:

μX : Set(X, V κ )→ Set(FX, V )

is monotone w.r.t the pointwise orders induced by the corresponding powers of the complete lat-
tice V , and V -enriched if this map is actually a V -functor w.r.t to the V -categorical structures
induced by the corresponding powers of the V -category V (see Remark 15). Note that when talk-
ing about monotone or V -enriched predicate liftings, instead of QV κ : Setop → Set we actually
consider the functors QV κ : Setop → Pos and QV κ : Setop → V -Cat, respectively. In any case, the
functors QV κ are part of an adjunction: in general, for a category A and an object A with powers
in A, we have
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Setop A
QA

A(−,A)

⊥ .

Moreover, for all functors G : Setop → A and F : Set→ Set, the adjunction above induces a bijec-
tion between natural transformations G→QAF and natural transformations F→ A(G,A). In
particular, a κ-ary predicate lifting μ : QV κ →QV F corresponds to a natural transformation:

μ : F−→ A(QV κ , V ). (2)
For A= Set (respectively A= Pos) and V = 2, the codomain of μ is the generalized (monotone)
neighborhood functor (Marti and Venema 2015; Schröder and Pattinson 2010). A collectionM of
predicate liftings is separating if the cone

(μX : FX −→ Set(QV κX, V ))μ∈M
(with μ as per (2)) is mono (i.e., jointy injective) for every set X.

Remark 24. Predicate liftings are instrumental in coalgebraic logic (Cîrstea et al. 2011; Pattinson
2004; Schröder 2008). As a basic example, consider the Kripke semantics of modal logic.
Coalgebras for the covariant powerset functor P : Set→ Set correspond precisely to Kripke
frames. In coalgebraic modal logic, the Kripke semantics of the modal logic K is recovered by
interpreting the modal operator ♦ as the predicate lifting ♦ : Q2 →Q2P whose X-component is
defined by:

♦X(A)= {B⊆ X |A∩ B �=∅},
or by interpreting the modal operator � as the predicate lifting � : Q2 →Q2P whose X-
component is defined by:

�X(A)= {B⊆ X | B⊆A}.
Both ♦ and � are monotone (=2-enriched) predicate liftings, and both {♦} and {�} are sepa-
rating for P. Similarly, V -valued predicate liftings provide the semantical framework for modal
operators in V -valued coalgebraic modal logic (Forster et al. 2023; Goncharov et al. 2023; Wild
and Schröder 2020, 2021). In inductive definitions of the semantics of (coalgebraic) modal logics
over a coalgebra (X, α), formulae are typically interpreted as subsets of the state set X. If ♥ is the
predicate lifting interpreting a modality ♥, and Y ⊆ X is the interpretation of a formula φ, then
the formula ♥φ is interpreted by the set α−1[♥X(Y)]. For instance, the interpretation of ♦φ in
a P-coalgebra (X, α), again with Y ⊆ X being the interpretation of φ, consists of all x ∈ X such
that α(x)∩ Y �= ∅, that is, of all states that have some successor satisfying φ.

Remark 25. Generalizing a corresponding observation for the 2-valued case (Schröder 2008),
we note that by the Yoneda lemma, a predicate lifting μ : QV κ →QV F is equivalently given by
a morphism of type FV κ → V , the image of the identity map on V κ under μV κ . In particular,
for given κ , the collection of all κ-ary predicate liftings is small. The X-component μX : QV κX →
QV FX of the predicate lifting induced by a morphism g : FV κ → V is defined by:

μX(f )= g · Ff .

In the two-valued case, it has been shown that separating sets of finitary predicate liftings for
a finitary Set-functor give rise to expressive coalgebraic modal logics (Schröder 2008), and that a
finitary Set-functor admits a separating set of finitarymonotone predicate liftings if and only if the
functor admits an identity-preserving lax extension to Rel (Marti and Venema 2015). On the other
hand, sets of V -enriched predicate liftings satisfying a quantitative analogue of separation feature
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in expressiveness results for quantitative coalgebraic modal logics for behavioral distances (Forster
et al. 2023; König and Mika-Michalski 2018; Wild and Schröder 2020, 2021, 2022). We conclude
this subsection with a characterization of V -enriched predicate liftings, which corresponds to
Theorem 19 and can be shown similarly.

Theorem 26. For a predicate lifting μ : QV κ →QV F, the following are equivalent.

(i) μ is V -enriched.
(ii) μ is monotone and for every u ∈ V , u≤ [μ(1V κ ),μ(u⊗ 1V κ )].
(iii) μ is monotone and for every u ∈ V , u⊗μ(1V κ )≤μ(u⊗ 1V κ ).
(iv) μ is monotone and for every function f : X → V κ and every u ∈ V , u⊗μ(f )≤μ(u⊗ f ).

Remark 27. Analogously to Remark 20, if k= 	, then V -enrichment of predicate liftings can be
equivalently expressed using the symmetrization of the canonical structure on V .

3. From Lax Extensions to Predicate Liftings
We proceed to investigate the relationship between lax extensions and predicate liftings, using
V -relations as a natural language to express their interaction. We begin by expressing predicate
liftings in terms of V -relations, with an view to constructing predicate liftings from lax extensions.

We recall that the category Set is Cartesian-closed. In particular, this means that for every set I,
the evaluation map evI : V I × I → V , which we think of as a V -relation evI : V I −−→ I defined by
evI(f , i)= f (i), exhibits the function space V I as an exponential object. Therefore, for every set X,
currying/uncurrying defines an isomorphism:

V -Rel(X, I)� Set(X, V I).
We denote the right adjunct of a V -relation r : X −−→ I by r
 : X → V I and the left adjunct of a
function f : X → V I by f � : X −−→ I.

Remark 28. For every V -relation r : X −−→ I, the universal property of evI : V I × I → V inter-
preted in V -Rel implies r = evI · r
.

Lemma 29. Let V be a quantale and I a set. For all functions f : X → Y and g : Y → V I ,

(g · f )� = g� · f◦.

Proof. Let x ∈ X and i ∈ I. Then, by definition,

(g · f )�(x, i)= (g · f )(x)(i)= g(f (x))(i)= g�(f (x), i)= (g� · f◦)(x, i).
In the sequel, given a functor F : Set→ Set and a cardinal κ , let V -Rel◦(F−, κ) : Setop → Set

denote the composite functor:

Setop Setop V -Relop Set.

V -Rel◦(F−,κ)

F (−)◦ V -Rel(−,κ)

The above lemma says essentially that the uncurrying bijection (− )� is natural, so we immediately
obtain the following:
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Proposition 30. For every set I and every functor F : Set→ Set, the functor QV IF : Setop → Set is
isomorphic to the functor V -Rel◦(F−, I) : Setop → Set.

Therefore, we mainly view predicate liftings as natural transformations V -Rel◦(−, κ)→
V -Rel◦(F−, 1) from now on, although to keep the notation simple we still write QV κ →QV F.
Explicitly, naturality of a transformation μ : V -Rel◦(−, κ)→ V -Rel◦(F−, 1) means that for
f : X → Y and r : Y −−→ κ , we have

μX(r · f )=μY (r) · Ff .
Now, it is easy to see that every lax extension induces natural transformations with the desired
domain:

Proposition 31. Let L : V -Rel→ V -Rel be a lax functor and F : Set→ Set a functor. Then, L is a
lax extension of F if and only if L agrees with F on objects, and for every set I, L induces a natural
transformation L−,I : V -Rel◦(−, I)→ V -Rel◦(F−, FI).

Proof. By Propositions 22(1) and 23.

This description suggests that to construct κ-ary predicate liftings from a lax extension, we should
construct natural transformations V -Rel◦(F−, Fκ)→ V -Rel◦(F−, 1). The easiest way to do so
is to select a V -relation r : Fκ −−→ 1. Then, each component of the resulting predicate lifting
V -Rel◦(−, κ)→ V -Rel◦(F−, 1) is computed as:

f −→ r · Lf .
This motivates our notion of predicate lifting induced by a lax extension, which, as we shall explain
at the end of this section, generalizes the notion of Moss lifting (Kurz and Leal 2009; Leal 2008;
Marti and Venema 2015; Wild and Schröder 2021).

Definition 32. A predicate lifting μ : QV κ →QV F is induced by a lax extension L : V -Rel→
V -Rel, or just a predicate lifting for L, if there exists a V -relation r : Fκ −−→ 1 such thatμ(f )= r · Lf ,
for every V -relation f : X −−→ κ . If r is the converse of an element k : 1→ Fκ , then we say that μ is a
Moss lifting of L and emphasize this by using the notation μk : QV κ →QV F.

Immediately from the definition, we have:

Proposition 33. Let L : V -Rel→ V -Rel be a lax extension. Every predicate lifting induced by L is
monotone. If L is V -enriched, then every predicate lifting induced by L is V -enriched.

Example 34. Consider the lax extension of the covariant powerset functor P : Set→ Set to Rel
given by:

B(̂Pr)C ⇐⇒ ∀c ∈ C, ∃b ∈ B, b r c.

The unaryMoss lifting for P̂ determined by the element 1 ∈ P1 is the predicate lifting♦ : QV →QV P
whose X-component is defined by:

A −→ {B⊆ X |A∩ B �=∅}.
The Moss lifting for the dual extension of P̂ determined by the element 1 ∈ P1 is the predicate lifting
� : QV →QV P whose X-component is computed as:

A −→ {B⊆ X | B⊆A}.
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On the other hand, the unary Moss lifting for the Barr extension P̄ of P (the symmetrization of P̂)
determined by the element 1 ∈ P1 is the predicate lifting ∇ : QV →QV P whose X-component is
defined by:

A −→ {B⊆ X | B �=∅∧ B⊆A}.
As mentioned in Remark 25, by the Yoneda Lemma, κ-ary predicate liftings for a functor

are completely determined by their action on the identity function on V κ and the action of the
functor. In the relational point of view, this means that κ-ary predicate liftings are completely
determined by the image of the evaluation relation evκ : V κ −−→ κ . In the following, we will see
that κ-ary predicate liftings induced by a lax extension are completely determined by their action
on the identity V -relation 1κ : κ → κ and the action of the lax extension. This characterization
makes it easy to construct, detect, and manipulate predicate liftings induced by lax extensions (see
Corollary 37, Lemma 77, and Proposition 39).

Lemma 35. Let μ : QV κ →QV F be a predicate lifting and L : V -Rel→ V -Rel a lax extension.
Then the following are equivalent:

(i) μ is induced by L;
(ii) μ(evκ )= r · L evκ , for some r : Fκ −−→ 1;
(iii) μ(evκ )=μ(1κ ) · L evκ ;
(iv) μ(evκ )= (μ(evκ )� L evκ ) · L evκ .

Proof. Let f : X −−→ κ be a V -relation.

(i) ⇒ (ii) By definition.
(ii) ⇒ (iii) μ(evκ )= r · L evκ = r · L1κ · L evκ =μ(1κ ) · L evκ .
(iii) ⇒ (iv) By adjointness, the assumption implies that μ(1κ )≤μ(evκ )� L evκ , so we obtain

μ(evκ )=μ(1κ ) · L evκ ≤ (μ(evκ )� L evκ ) · L evκ ≤μ(evκ ).
(iv) ⇒ (i) Put r=μ(evκ )� L evκ . Then, since μ is a natural transformation,

μ(f )=μ(evκ · f 
)=μ(evκ ) · Ff 

= r · L evκ · Ff 
 = r · Lf

where the last equality is by Proposition 22.

We crystallize the above into a Yoneda-style characterization of predicate liftings that is analo-
gous to the one mentioned in Remark 25 but uses the lax extension instead of the underlying set
functor:

Theorem 36. A predicate liftingμ : QV κ →QV F is induced by a lax extension L : V -Rel→ V -Rel
if and only if it is defined from μ(1κ ) (in the V -relational view) by:

μ(f )=μ(1κ ) · L(f ).

Proof. “If ” is immediate by Condition (iii) in Lemma 35; we prove “only if.” Varying the cal-
culation in the proof of (iv)=⇒ (i) in Lemma 35 and using condition (iii) of the lemma, we
have

μ(f )=μ(evκ · f 
)=μ(evκ ) · Ff 
 (iii)= μ(1κ ) · L evκ · Ff 
 =μ(1κ ) · Lf .
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Corollary 37. A predicate liftingμ : QV κ →QV F is induced by a lax extension L : V -Rel→ V -Rel
if and only if for every relation r : X −−→ Y and every function g : κ → Y,

μ(g◦ · r)=μ(g◦) · Lr.

Proof. For “if,” just apply the assumption to g = idκ and use Theorem 36. For “only if,” apply
Theorem 36 to g◦ · r, obtaining

μ(g◦ · r)=μ(1κ ) · L(g◦ · r)=μ(1κ ) · L(g◦) · Lr =μ(g◦) · Lr
where the second equality is by Proposition 22.

Remark 38. Given a κ-ary predicate lifting μ : QV κ →QV F induced by a lax extension
L : V -Rel→ V -Rel of F, it follows from Theorem 36 that μ(1κ ) : Fκ −−→ 1 is the largest V -relation
that induces μ, but it may not be the only V -relation with this property if L does not preserve
identities. For instance, in Example 34, we have seen that � : Q2 →Q2P is the Moss lifting given
by 1 ∈ P1 for the dual lax exntesion of P̂ but�(11)= 	2,1.

In Section 4, we will see that every lax extension is induced by its class of Moss liftings and turn
now to the question of characterizing the Moss liftings induced by a lax extension in the usual
point of view.

Lemma 39. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, and μ : QV κ →
QV F a predicate lifting induced by L. Let h : V κ −−→ V κ denote the structure of the V -category
(V κ )op. Then,

μ(evκ )=μ(1κ ) · (F1
κ )◦ · Lh.

Proof. Observe that evκ = (1
κ )
◦ · h. Thus, we have

μ(evκ )=μ((1
κ )
◦ · h)=μ((1
κ )

◦) · L(h)=μ(1κ ) · L((1
κ )◦) · Lh=μ(1κ ) · (F1
κ )◦ · Lh,
using Corollary 37, Theorem 36, and Proposition 22, in that order.

Theorem 40. Let κ be a cardinal and h : V κ −−→ V κ be the structure of the V -category (V κ )op (see
Remark 15). Furthermore, let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set. The
κ-ary Moss liftings induced by L correspond precisely to the representable V -functors (FV κ , Lh)→
V op with representing objects in the image of the map F1
κ : Fκ → FV κ .

Proof. Let μk : QV κ →QV F be a Moss lifting induced by L. Note that μ(1κ ) · (F1
κ )◦ · Lh=
k◦ · (F1
κ )◦ · Lh. Hence, from Lemma 39, we conclude that under the isomorphism between κ-
ary predicate liftings for F and maps of type FV κ → V (see Remark 25), the predicate lifting μk

corresponds to the map FV κ → V defined by:

v −→ Lh(v, F1
κ (k)).

That is, μk corresponds to the representable V -functor (FV κ , Lh)→ V op with representing
object F1
κ (k). On the other hand, this also makes it clear that every representable V -functor
(FV κ , Lh)→ V op with representing object in the image of the map F1
κ : Fκ → FV κ corresponds
to a Moss lifting.

https://doi.org/10.1017/S096012952300035X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300035X


Mathematical Structures in Computer Science 113

By Lemma 35, the predicate liftings induced by a lax extension L : V -Rel→ V -Rel are
determined by the fixed points of the monotone map:

(−� L evκ ) · L evκ : V -Rel(FV κ , 1)−→ V -Rel(FV κ , 1),

which are precisely the V -relations that can be factorized as r · L evκ for some V -relation r : Fκ −−→
1. Therefore, the least fixed point is obtained by composing the V -relation L evκ : FV κ −−→ Fκ with
the V -relation ⊥Fκ ,1 : Fκ −−→ 1, the constant function into ⊥. The corresponding κ-ary predicate
lifting sends a V -relation f : X −−→ κ to the V -relation ⊥FX,1 : FX −−→ 1, the constant function into
⊥. This is the smallest predicate lifting with respect to the pointwise order of κ-ary predicate liftings,
which is defined by:

μ≤μ′ ⇐⇒ ∀f : X −−→ κ , μ(f )≤μ′(f ).

Similarly, the greatest fixed point is obtained by composing the V -relation L evκ : FV κ −−→ Fκ with
the V -relation	Fκ ,1, the constant function into	. However, the greatest predicate lifting induced
by a lax extension is not necessarily the greatest predicate lifting.

Example 41. Consider the identity functor 1Rel : Rel→ Rel which is a lax extension to Rel of the
identity functor 1Set : Set→ Set. Then, the greatest unary predicate lifting of 1Set induced by 1Rel is
the identity natural transformationQ2 →Q2, while the greatest unary predicate lifting for 1Set sends
a relation X −−→ 1 to the greatest relation X −−→ 1.

The definition of Moss lifting of a lax extension used in the literature is seemingly different
from the one presented here (Kurz and Leal 2009; Leal 2008; Marti and Venema 2015; Wild and
Schröder 2020). To conclude this section, we show that both definitions are computed in the same
way.

We recall that every accessible Set-functor admits a presentation (e.g., Adámek et al. 2010,
Proposition 3.9 and Theorem 68) as follows. A λ-ary presentation of a λ-accessible functor
F : Set→ Set consists of a λ-ary signature �, that is, a set of operations of arity less than λ, and
for each operation σ ∈� of arity κ , a natural transformation σ : (− )κ → F such that, for every
X ∈ Set, the cocone (σX : Xκ → FX)σ∈� is epi. Every functor F : Set→ Set has a λ-accessible
subfunctor Fλ : Set→ Set (Adámek et al. 2010) that maps a set X to the set:

FλX =
⋃

{Fi[FY] | i : Y → X is a subset inclusion and |Y|<λ}.
The notion of Moss lifting of a lax extension L : V -Rel→ V -Rel was introduced by Marti

and Venema (2015). They think of predicate liftings for a functor F : Set→ Set as natural
transformations:

(QV )n −→QV F,

where n is a natural number and (QV )n denotes the n-fold product of QV . Then, given a lax
extension L : V -Rel→ V -Rel and a finitary presentation of Fω with signature�, each n-ary σ ∈�
induces a n-ary predicate lifting for F— a Moss lifting — whose X-component is defined by the
assignment:

(f1, . . . , fn) −→ (x → L(evX◦)(x, σQV X(f1, . . . , fn)).

Of course, the functors QV κ and (QV )κ are isomorphic, and the next proposition shows that both
definitions of Moss lifting agree.

Proposition 42. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, � the sig-
nature of a λ-ary presentation of Fλ, and κ a cardinal. Let σ : (− )κ → Fλ → F be the natural
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transformation induced by a κ-ary operation symbol σ ∈�. Then, for every V -relation f : X −−→ κ ,

μσκ (1κ )(f )= σPV X( �f �)
◦ · L(ev◦),

where �f � represents the V -relation f as a function of type κ →QV X.

Proof. Note that by definition of evX◦, f = �f �◦ · evX◦. Hence, Lf = F �f �◦ · L(ev◦). Moreover,
�f �κ (1κ )= �f � by definition of the functor (− )κ : Set→ Set; or with idκ : 1→ κκ denoting the
function that selects the identity morphism on κ , �f �κ · idκ = �f �. Therefore, since σ : (− )κ → F
is a natural transformation,

μσκ (1κ )(f )= idκ◦ · σ ◦
κ · Lf

= idκ◦ · σ ◦
κ · F �f �◦ · L(evX◦)

= idκ◦ · �f �κ
◦ · σ ◦

QV X · L(evX◦)

= σQV X( �f �)
◦ · L(evX◦).

Therefore, κ-ary Moss liftings are constructed in a very simple way. From the usual point of
view, a Moss lifting μk : QV κ →QV F of a lax extension L : V -Rel→ V -Rel, for k : 1→ Fκ , is
just the map that sends a function f : X → V κ (with left adjunct f � : X −−→ κ) to the function
Lf �(−, k) : FX → V .

Remark 43. Marti and Venema (2015) consider lax extensions of Set-functors that are not nec-
essarily finitary; however, to construct Moss liftings, they restrict the functor to its finitary part.
That is, the element k inducing a Moss lifting μk belongs to Fωκ ⊆ Fκ .

In terms of maps of type FV κ → V , Proposition 39 tells us that μk is determined by the map
μ(1V κ ) : FV κ → V defined by:

x −→ Lh(x, F1
κ (k)),

where h : V κ −−→ V κ is the structure of the V -category (V κ )op (see Remark 15). In other words,
κ-ary Moss liftings correspond precisely to the representable V -functors (FV κ , Lh)→ V op with
representing objects in the image of the map F1
κ : Fκ → FV κ .

4. From Predicate Liftings to Lax Extensions
The main goal of this section is to provide a way to construct lax extensions to V -Rel from pred-
icate liftings and to understand which lax extensions arise in such way. The first task has already
been discharged in earlier work (Wild and Schröder 2020, 2021). In the following, we describe the
Kantorovich extension of a collection of monotone predicate liftings (Wild and Schröder 2020,
2021), but completely from the point of view of V -relations. In Theorem 49, we show that every
Kantorovich extension arises as an initial extension w.r.t to canonical extensions of generalized
monotone neighborhood functors.

Given a functor F : Set→ Set and a predicate lifting μ : QV κ →QV F, this perspective makes
it intuitive to construct a V -relation FX −−→ FY from a V -relation r : X −−→ Y :
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X FX

Y κ FY 1.

|
g·r|r �

|
g

|
µ(g·r)|µ(g) µ(g·r)

|
µ(g)

Theorem 44. Let μ : QV κ →QV F be a κ-ary predicate lifting. For every V -relation r : X −−→ Y,
consider the V -relation Lμr : FX −−→ FY given by:

Lμr =
∧

g : Y−−→κ

μ(g)�μ(g · r). (3)

If μ is monotone, then the assignment r → Lμr defines a lax extension Lμ : V -Rel→ V -Rel, which
is V -enriched whenever μ is V -enriched.

Proof. (L1)/(L1’) Monotonicity is immediate from the fact that
Lμ(− ) : V -Rel(X, Y)−→ V -Rel(FX, FY)

is a composite of monotone maps; similarly for V -enrichment.
(L2) Let r : X −−→ Y and s : Y −−→ Z be V -relations. We have to show that Ls · Lr ≤ L(s · r). Let

h : Z → κ . By definition, we have
Lμs≤μ(h)�μ(h · s),
Lμr ≤μ(h · s)�μ(h · s · r).

Therefore, by Proposition 6(3)
Lμs · Lμr ≤μ(h)�μ(h · s · r),

which implies the claim.
(L3) Let f : X → Y . First, observe that since μ is a natural transformation, we have μ(g) · Ff =

μ(g · f ), and therefore
Ff ≤μ(g)�μ(g · f ),

for all g : Y −−→ κ . Hence, Ff ≤ Lμf . Second, note that because μ is monotone and natural,
we have

μ(i)≤μ(i · f ◦ · f )=μ(i · f ◦) · Ff
for all i : X −−→ κ . Therefore, by Proposition 11, μ(i) · (Ff )◦ ≤μ(i · f ◦), and hence

(Ff )◦ ≤μ(i)�μ(i · f ◦).
Thus, (Ff ◦)≤ Lμ(f ◦).

The formula (3) of Theorem 44 is entailed by the view of predicate liftings as natural trans-
formations of type V -Rel◦(−, κ)→ V -Rel◦(F−, 1). By applying the involution on V -Rel, we
could also think of predicate liftings as natural transformations V -Rel◦(κ ,−)→ V -Rel◦(1, F− )
between functors defined according to the schema:

Setop Setop V -Rel Set.

V -Rel◦(I,G−)

G (−)◦ V -Rel(I,−)

This point of view would lead us to the dual extension of (3).
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Proposition 45. Let μ : V -Rel◦(−, κ)→ V -Rel◦(F−, 1) be a predicate lifting and
μ̄ : V -Rel◦(κ ,−)→ V -Rel◦(1, F− ) be the natural transformation defined by:

r −→μ(r◦)◦.
Then,

(Lμr◦)◦ =
∧

f : κ−−→X

μ̄(r · f )� μ̄(f ).

Proof. Taking into account Proposition 6(1) and the fact that (− )◦ preserves infima, we have

(Lμr◦)◦ =
∧

g : X−−→κ

(μ(g)�μ(g · r◦))◦

=
∧

g : X−−→κ

μ(g · r◦)◦�μ(g)◦

=
∧

g : X−−→κ

μ̄(r · g◦)� μ̄(g◦)

=
∧

f : κ−−→X

μ̄(r · f )� μ̄(f ).

Definition 46. Let F : Set→ Set be a functor and M a class of monotone predicate liftings. The
Kantorovich lax extension of F with respect to M is the lax extension:

LM =
∧
μ∈M

Lμ.

Examples 47. Let V be a quantale.

(1) The identity functor on V -Rel is the Kantorovich extension of the identity functor on Set with
respect to the identity natural transformation QV →QV .

(2) The largest extension of a functor F : Set→ Set to V -Rel arises as the Kantorovich exten-
sion of F with respect to the natural transformation 	: QV →QV F that sends every map
to the constant map 	 and also as the Kantorovich extension with respect to the natural
transformation ⊥: QV →QV F that sends every map to the constant map ⊥.

(3) For a subquantale W of V (i.e., W is a submonoid of V closed under suprema), it is easy to
construct a unary predicate lifting of the covariant W -powerset functor P : Set→ Set, which,
in terms of V -relations, is defined by:

PX = W -Rel(X, 1)⊆ V -Rel(X, 1),
Pf = (− ) · f ◦.

A straightforward calculation shows that “evaluating” induces a predicate lifting ♦ : QV →
QV P whose X-component is defined by:

♦X : V -Rel(X, 1)−→ V -Rel(PX, 1).
φ −→ φ · evW ,X

Then, by Proposition 6(4) and Corollary 9,

P̂♦(r)= evW ,Y � r · evW ,X ,
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for every V -relation r : X −−→ Y. Therefore, for W -relations φ : X −−→ 1 and ψ : Y −−→ 1,

P̂♦r(φ,ψ)=
∧
y∈Y

hom (ψ(y),
∨
x∈X

r(x, y)⊗ φ(x)).

Furthermore, for W = 2 this formula simplifies to

P̂♦r(A, B)=
∧
b∈B

∨
a∈A

r(a, b).

a. For W = V = 2 we obtain a generalization of the upper half of the Egli–Milner order:
for every r : X −−→ Y, and all A ∈ PX and B ∈ PY,

A(̂P♦r)B ⇐⇒ ∀b ∈ B, ∃a ∈A, a r b.

b. For W = 2 and V a left continuous t-norm, we obtain a generalization of the upper half
of the Hausdorff metric: for every r : X −−→ Y, and all A ∈ PX and B ∈ PY,

P̂♦r(A, B)=
∧
b∈B

∨
a∈A

r(a, b).

(4) The dual lax extensions of the extensions 47(3a) and 47(3b) are generalizations of the lower
half of the Egli–Milner order and of the lower half of the Hausdorff metric, respectively.
Therefore, the symmetrization of these lax extensions are generalizations of the Egli–Milner
order and the Hausdorff metric.

(5) Let us now consider a faithful functor |−| : A→ Pos with some A-object V over the partially
ordered set V and the functor κU= A(QV κ , V ) : Set→ Set. Some typical examples are A=
Pos and A= V -Cat; for instance, for A= Pos andV = 2, we obtain the generalizedmonotone
neighborhood functor κU : Set→ Set. There is a canonical predicate lifting corresponding to
the identity transformation 1 : κU→ κU, and we denote the induced extension as κ̂U. Then,
for a V -relation r : X −−→ Y and for� : QV κX → V and� : QV κY → V ,

(κ̂Ur)(�,�)=
∧

g : Y−−→κ

�(g)��(g · r)

=
∧

g : Y−−→κ

hom (�(g),�(g · r)).

This extension coincides with the one considered by Schubert and Seal (2008) for the classical
monotone neighborhood functor. In particular, it follows that, for the identity 1X : X −−→ X, the
V -category (κUX, κ̂U1X) is separated.

Remark 48. To see that the Kantorovich extension defined byWild and Schröder (2020) coincides
with the one presented here, note that Theorem 44 requires μ to be monotone; hence, we can
define Fμ with respect to V -relations of type X −−→ κ with the same result, that is,

Lμr =
∧

f : X−−→κ

μ(f � r)�μ(f ).

Moreover, in the language of Wild and Schröder (2020), a pair (f , g) of κ-indexed families of
maps of type X → V is r-non-expansive precisely when g ≤ f � r, when interpreting f and g as
V -relations.
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The following result explains the distinguished role of the canonical extensions of generalized
monotone neighborhood functors in the process of constructing lax extensions.

Theorem 49. LetM be a collection of predicate liftings for a functor F : Set→ Set. The Kantorovich
extension LM is the initial extension of F with respect to the cone:

(μ : F−→ κU)μ∈M
(with μ as per (2)) and the lax extensions κ̂U of κU described in Examples 47(5). Also, note that if
all predicate liftings in M are even V -enriched, then so is LM.

Proof. Letμ : QV κ →QV F be a κ-ary predicate lifting inM. Then, for a V -relation r : X −−→ Y and
x ∈ FX and y ∈ FY ,

(Lμ)(x, y)=
∧

g : Y−−→κ

μ(g)(y)�μ(g · r)(x)

=
∧

g : Y−−→κ

μ(y)(g)�μ(x)(g · r)

= (κ̂Ur)(μ(x),μ(y)).

That is, Lμ is the initial extension with respect to μ : F→ κU and the lax extension κ̂U of κU.

We proceed to collect some properties of Kantorovich extensions. We begin by observing that
Kantorovich extensions are compatible with initial extensions along a natural transformation.
This property will be particularly useful in Section 5 to generalize Theorem 1.

Proposition 50. Let LF : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, and let
i : G→ F be a natural transformation. Consider the initial lax extension Li : V -Rel→ V -Rel of G
with respect to i : G→ F. If LF is Kantorovich w.r.t a class M of monotone predicate liftings, then Li
is Kantorovich w.r.t to the class of monotone predicate liftings:

Mi = {(QV i) ·μ |μ ∈M}.

Proof. Clearly, every predicate lifting in Mi is monotone. Now, let r : X −−→ Y be a V -relation.
Then,

Lir = i◦Y · LMr · iX
=

∧
μ∈M

( ∧
g : Y−−→ar(μ)

i◦Y · (μ(g)�μ(g · r)) · iX
)
.

Therefore, by Corollary 8,

Lir =
∧
μ∈M

( ∧
g : Y−−→ar(μ)

(μ(g) · iY )� (μ(g · r) · iX)
)

=
∧
μ∈M

( ∧
g : Y−−→ar(μ)

((QV i) ·μ(g))� ((QV i) ·μ(g · r))
)

=
∧
μ∈Mi

Lμr.
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Example 51. We recall that an endofunctor on Set is called taut if it preserves inverse images
(Manes 2002). Every taut functor F : Set→ Set admits a natural transformation:

supp : F−→ U

into the monotone neighborhood functor with X-component:
suppX : FX −→ UX, x −→ {A⊆ X | x ∈ FA}.

We note that every suppX(x) is actually a filter (Gumm 2005; Manes 2002). As observed by Schubert
and Seal (2008), the op-canonical extension (Seal 2005) of a taut functor is the initial lift with respect
to supp of the extension Û of the monotone neighborhood functor U : Set→ Set of Example 47(5),
that is, the extension induced by the predicate lifting μ corresponding to the identity transformation
1 : U→ U. Hence, by Proposition 50, the op-canonical extension of a taut functor F is induced by
the predicate lifting:

QV supp ·μ,
which, by adjunction, corresponds to the natural transformation:

supp : F−→ U.

The next result entails that we can use the Kantorovich extension to major a lax extension
by extracting all predicate liftings induced by the lax extension. This is the first step toward
representing lax extensions by collections of predicate liftings.

Proposition 52. Let L : V -Rel→ V -Rel be a lax extension and μ : QV κ →QV F a predicate lifting
induced by L. Then, L≤ Lμ.

Proof. Let r : X −−→ Y be a V -relation. Then, by (L2),

Lμ(r)=
∧

g : Y−−→κ

(μ(1κ ) · L(g))� (μ(1κ ) · L(g · r))

≥
∧

g : Y−−→κ

(μ(1κ ) · L(g))� (μ(1κ ) · L(g) · L(r))

≥ L(r).

Corollary 53. Let L : V -Rel→ V -Rel be a lax extension and μk : QV κ →QV F a Moss lifting of L.
Then, L≤ Lμ

k .

Notably, as a consequence of the previous results, we can use the Kantorovich extension to detect
predicate liftings induced by lax extensions.

Proposition 54. Let L : V -Rel→ V -Rel be a lax extension and μ : QV κ →QV F a predicate lifting
induced by L. Then, the predicate lifting μ is induced by Lμ.

Proof. According to Lemma 35, it suffices to show μ(evκ )=μ(1κ ) · Lμevκ . First, observe that by
Proposition 52 and Lemma 35((iii)) we have

μ(evκ )=μ(1κ ) · L(evκ )≤μ(1κ ) · Lμ(evκ ).
Second, note that by definition of Lμ, we obtain

μ(1κ ) · Lμ(evκ )≤μ(1κ ) · (μ(1κ )�μ(evκ ))≤μ(evκ ).
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Example 55. The predicate lifting ♦ : QV →QV P of Example 47(3) is induced by the lax extension
P̂♦ : V -Rel→ V -Rel. With k : 1→ W denoting the function that selects the element k ∈ W , we
have

♦(f )= k◦ · P̂♦f
for every V -relation f : X −−→ 1.

We already know from Proposition 33 that every predicate lifting induced by a lax extension is
monotone. The next example shows that the converse statement does not hold.

Example 56. Let [0, 1] denote the quantale consisting of the unit interval equipped with the usual
order and multiplication. Consider the unary monotone predicate lifting for the identity functor
μ : P[0,1] → P[0,1] determined by the map μ(ev1) : [0, 1]→ [0, 1] defined by:

μ(ev1)(v)=
{
0 if v≤ 1

2 ;
1 otherwise.

Given that [0, 1] is an integral quantale and μ is a unary predicate lifting in order to be induced by
Lμ, μ would need to satisfy the condition:

μ(ev1)≤ Lμ(ev1);

that is, for every g : 1−−→ 1,

μ(ev1)≤μ(g)�μ(g · ev1).
However, with g = 2

3 and v= 3
4 ,

μ(ev1)
(
3
4

)
= 1 �≤μ(ev1)

(
2
3

)
�μ(ev1)

(
1
2

)
= 0.

Finally, we tackle the problem of recovering a lax extension to V -Rel as the Kantorovich
extension w.r.t. some class of predicate liftings.

Definition 57. A lax extension L : V -Rel→ V -Rel of a functor F : Set→ Set is induced by a class
of monotone predicate liftings� for F if L is the Kantorovich extension w.r.t.�.

Lemma 58. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, κ a cardinal, and
i : Y → κ a function. For every y ∈ FY and k= Fi(y), and all V -relations r : X −−→ Y and s : Z −−→ κ ,

(1) μk(s)= y◦ · L(i◦ · s);
(2) if i is a monomorphism, then

a. μk(i · r)= y◦ · Lr;
b. μk(i)�μk(i · r)≤ y◦� (y◦ · Lr).

Proof. Note that k= Fi(y) means k= Fi · y, when considering elements as functions.

(1) μk(s)= k◦ · Ls= y◦ · Fi◦ · Ls= y◦ · L(i◦ · s).
(2) a. Since i is a monomorphism, i◦ · i= 1Y . Therefore, the claim follows by applying 1 with

s= i · r.
b. Applying 2a, and recalling Proposition 6(2) and Condition (L3), yields

μk(i)�μk(i · r)= (y◦ · L1Y )� (y◦ · Lr)
≤ y◦� (y◦ · Lr).
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Corollary 59. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, i : λ→ κ a
function between cardinals, l an element of Fλ, and k= Fi(l).

(1) Lμl ≤ Lμ
k .

(2) If i is mono, then Lμl = Lμ
k .

Lemma 58 allows approximating a lax extension with respect to the cardinality of the codomain
of V -relations.

Corollary 60. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set, κ a cardi-
nal, and Y a set such that |Y| ≤ κ . Consider the set M = {μk | k ∈ Fκ}. Then, for every V -relation
r : X −−→ Y, Lr = LMr.

Therefore, as the collection of all Moss liftings of a lax extension is not larger than the class of all
sets,

Theorem 61. Every lax extension of a Set-functor to V -Rel is induced by its class of Moss liftings.

From Theorem 49, we obtain

Corollary 62. Every lax extension of a Set-functor to V -Rel is an initial extension with respect to
the lax extensions of the functors κU : Set→ Set (see Theorem 49).

From Proposition 33, we obtain

Corollary 63. Every V -enriched lax extension of a Set-functor to V -Rel is induced by a class of
V -enriched predicate liftings.

The next result is a generalization of Theorem 2 mentioned in the introduction. Note that, for
V = 2 and a lax extension L : V -Rel→ V -Rel that preserves converses, L1X is an equivalence
relation on X. Hence, L is identity-preserving if and only if the ordered set (FX, L1X) is anti-
symmetric.

Corollary 64. A functor F : Set→ Set has a separating class of V -valued monotone predicate lift-
ings if and only if there is a lax extension L : V -Rel→ V -Rel such that, for all sets X, the V -category
(FX, L1X) is separated.

Proof. Suppose that there is such a lax extension L : V -Rel→ V -Rel. Let X be a set and x, y ∈ FX
with x �= y. By assumption, then have w.l.o.g. that k� L1X(x, y). Hence, by Theorem 61, there is a
predicate lifting μ : QV κ →QV F such that

k� κU(μ(x),μ(y)),

and therefore μ(x) �=μ(y) (see Example 47(5)). On the other hand, if F has a separating class of
monotone predicate liftings, then the Kantorovich extension of F with respect to this class has the
desired property by Example 47(5).

To conclude this section, we note that quantale-valued lax extensions that preserve converses
and satisfy the condition of Corollary 64 lead to quantale-valued notions of bisimilarity that
extend the canonical coalgebraic notion of behavioral equivalence.
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Proposition 65. Let V be a nontrivial quantale, and let L : V -Rel→ V -Rel be a lax extension
of a functor F : Set→ Set that preserves converses and such that, for all sets X, the V -category
(FX, L1X) is separated. Then two states in an F-coalgebra are behaviorally equivalent if and only if
their L-bisimilarity is greater or equal than k.

Proof. Consider the lax homomorphisms of quantales φ : 2→ V defined by φ(0)= ⊥ and φ(1)=
k, and ψ : V → 2 defined by ψ(v)= 1 if k≤ v and ψ(v)= 0, otherwise. It is well known that lax
homomorphisms of quantales give rive to lax functors between the corresponding categories of
V -relations (Hofmann et al. 2014). Hence, we obtain lax functors:

φ : Rel→ V -Rel and ψ : V -Rel→ Rel

that act identically on sets and postcompose the lax homomorphisms of quantales with relations
(interpreted as maps into the quantales). It is easy to see that if we start with a lax extension
L : V -Rel→ V -Rel of F that satisfies the conditions of the proposition, then, as V is nontrivial,
we obtain an identity-preserving lax extension L2 : Rel→ Rel of F that preserves converses as the
composite:

V -Rel V -Rel

Rel Rel.

L

ψφ

L2

Therefore, by Marti and Venema (2015, Theorem 14), L2-bisimilarity coincides with behavioural
equivalence. Moreover, as L-bisimilarity is itself an L-bisimulation, it follows that two states in an
F-coalgebra are L2-bisimilar if and only if their L-bisimilarity is greater or equal than k.

5. Small Lax Extensions
We next discuss the possibility of recovering a lax extension from a set of predicate liftings.

Definition 66. Let λ be a regular cardinal. A lax extension L : V -Rel→ V -Rel of a functor
F : Set→ Set is λ-small if it can be obtained as the Kantorovich extension of a set of κ-ary predicate
liftings with κ < λ. We call L small if it is λ-small for some regular cardinal λ.

We will see next that every lax extension of an accessible functor is small. We recall that, for
a regular cardinal λ, a functor F : Set→ Set is called λ-accessible if F preserves λ-directed colim-
its. Furthermore, a functor F : Set→ Set is called accessible if F is λ-accessible for some regular
cardinal λ.

Clearly, every λ-accessible functor F : Set→ Set is λ-bounded, that is, for every set X and every
x ∈ FX, there exists a subset m : A→ X with |A|<λ and x is in the image of Fm. This property is
in fact equivalent to accessibility:

Theorem 67. (Adámek et al. 2019) A functor F : Set→ Set is λ-accessible if and only if F is λ-
bounded.

An immediate consequence of the result above is an algebraic presentation of accessible functors.

Theorem 68. (Adámek et al. 2015) Let λ be a regular cardinal and F : Set→ Set be a functor. The
following assertions are equivalent.

(i) F is λ-bounded
(ii) F is a colimit of representable functors hom (X,−) where |X|<λ.
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(iii) There exists a small epi-cocone:

(hom (Xi,−)−→ F)i∈I
where, for each i ∈ I, |Xi|<λ.

Remark 69. The implication (i)=⇒ (ii) above can be justified as follows. First, recall (MacLane
1998) that F : Set→ Set is a colimit of the (large) diagram

(elements (X, x) of F)op −→ [Set, Set].

By (i),

(elements (X, x) of F where |X|<λ)op −→ (elements (X, x) of F)op

is cofinal.

Proposition 70. Every lax extension of an λ-accessible functor is λ-small. In fact, L= LMλ for

Mλ = {all α-ary Moss-liftings, α < λ}.

Proof. Let L : V -Rel→ V -Rel be a lax extension of an accessible functor F : Set→ Set. By
Theorem 61, L= LM for the classM of all Moss liftings. Let κ ≥ λ be a cardinal and k ∈ Fκ . Since
F is λ-accessible, there is some cardinal α < λ with inclusion i : α→ κ and some a ∈ Fα with
Fi(a)= k. By Corollary 59, Lμa = Lμ

k . Therefore, L= LMλ .

Example 71. Every lax extension of the finite powerset functor can be recovered from a countable
set of predicate liftings.

Corollary 72. Let F : Set→ Set be a λ-accessible functor with a lax extension L : V -Rel→ V -Rel
such that, for all sets X with |X|<λ, the V -category (FX, L1X) is separated. Then the set

Mλ = {all α-ary Moss liftings, α < λ}
is separating.

Proof. Same as for Corollary 64, using Proposition 70.

Proposition 73. Let LF : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set and i : G→
F be a natural transformation. Furthermore, let Li : V -Rel→ V -Rel be the initial lax extension with
respect to i : G→ F. If LF is λ-small, then Li is λ-small.

Proof. Follows from Proposition 50.

We can relax slightly the condition of Proposition 70 by taking advantage of the structure of
V -category.

Definition 74. Let (X, a) be a V -category. A map i : A→ X is dense in (X, a) if a= a · i · i◦ · a.

Remark 75. Amap i : A→ X is dense in (X, a) if and only if the image of A is dense in (X, a) with
respect to the closure operator (− ) on V -Cat introduced by Hofmann and Tholen (2010). We
recall that for every x ∈ X andM ⊆ X,

x ∈M ⇐⇒ k≤
∨
z∈M

a(x, z)⊗ a(z, x).
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This closure operator generalizes the one induced by the usual topology associated with a metric
space. In fact, one can show that for categories enriched in a value quantale, such as metric spaces,
this closure operator coincides with the one induced by the symmetric topology considered by
Flagg (1992).

Definition 76. A natural transformation i : G→ F between functors G, F : Set→ Set is called
dense with respect to a lax extension L : V -Rel→ V -Rel of F if, for each set X, iX : GX → FX is
dense in the V -category (FX, L1X).

The following lemma records that dense maps are compatible with Moss liftings (see
Theorem 36); in the sense that to determine the action of a κ-ary Moss lifting, it suffices to focus
on a dense subset of (Fκ , L1κ ).

Lemma 77. Let L : V -Rel→ V -Rel be a lax extension of a functor F : Set→ Set. Furthermore,
let ϕ : Y −−→ κ be a V -relation, k be an element of Fκ , and i : A→ Fκ be a dense map in (Fκ , L1κ ).
Then,

μk(ϕ)=μk(1κ ) · i · i◦ · L(ϕ).

Theorem 78. Let i : G→ F be a natural transformation between functors G, F : Set→ Set, and let
L : V -Rel→ V -Rel be a lax extension of F such that i is dense with respect to L. If G is λ-accessible,
then L is λ-small.

Proof. Let r : X −−→ κ be a V -relation, k ∈ Fκ , and consider iκ : Gκ → Fκ . Then, by Lemma 77, for
all r : X −−→ Y ,

Lμ
k
(r)=

∧
g : Y−−→κ

μy(g)�μy(g · r)

=
∧

g : Y−−→κ

(
μy(1κ ) · iκ · i◦κ · L(g))� (

μy(1κ ) · iκ · i◦κ · L(g · r)) .
Hence, by Propositions 6(4) and 9,

Lμ
k
(r)≥

∧
g : Y−−→κ

(
i◦κ · L(g))� (

i◦κ · L(g · r))
=

∧
l∈Gκ

∧
g : Y−−→κ

μi(l)(g)�μi(l)(g · r)

=
∧
l∈Gκ

Lμ
i(l)
(r).

Now, the claim follows from the fact that G is λ-accessible.

Finally, we obtain a generalization of Theorem 1 mentioned in the introduction.

Corollary 79. Let L : V -Rel→ V -Rel be a lax extension. If there is a regular cardinal λ such that
the natural transformation Fλ ↪→ F is dense, then L is λ-small.
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6. Conclusions
We have argued that the language of relations is a natural system to express the connection
between predicate liftings and lax extensions by showing that it provides a point-free perspective
in which many fundamental notions and results arise naturally and proofs become very elemen-
tary. Using this perspective, we were able to remove several technical restrictions that feature
centrally in previous approaches which were confined to classical or [0, 1]-valued relations and
accessible Set-functors (Leal 2008; Marti and Venema 2015; Wild and Schröder 2020). Indeed,
our constructions and results are valid for arbitrary Set-functors and lax extensions to categories
of quantale-enriched relations. In particular, we have introduced a new way of extracting pred-
icate liftings from a lax extension that is independent of functor presentations, and indeed we
provide an intrinsic characterization of predicate liftings that are induced in this sense by a given
lax extension. This leads to a very simple description of Moss liftings, which has made it straight-
forward to show – in quantalic generality – that every lax extension is induced by its class of
Moss liftings, and that the role of accessibility is to ensure that it suffices to consider a set of
Moss liftings. Consequently, we have obtained the fact that every lax extension of a Set-functor
is an initial extension of canonical extensions of generalized monotone neighborhood functors,
as well as a generalization of the fact that the finitary functors that admit an identity-preserving
lax extension are precisely the ones that admit a separating set of monotone predicate liftings.
Furthermore, we have lifted the result that every finitarily separable [0, 1]-valued lax extension of
a Set-functor is induced by a set of predicate liftings (Wild and Schröder 2020) to quantalic gen-
erality. Here, we have avoided restrictions on the quantale that are needed when classical notions
of density (Flagg 1997) are used (like in recent results on quantalic van Benthem and Hennessy-
Milner theorems Wild and Schröder 2021), by employing instead a categorical closure operator
available on all quantale-enriched categories.
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