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Summary: The quadrature formula of order m using values of derivatives up to the m — 1st
order with the best possible bound in Z.j,ml is derived. Using certain properties of the
polynomials minimal in Lq norm, it is proved that the optimal formula does not use the
derivatives of m — 1st order if m is even.

1. Introduction and notation

Let L be some linear normed space of real functions / on a finite interval
(a, b) and let Q be some set of quadrature formulae Q (/) which approximate
the integral

I(f)=jbJ(x)dx.

If for any Q e Q the remainder

forms a linear continuous functional on L it is natural to seek that Qo in Q
for which \\RQ \\L, is minimal and to call this Qo the optimal quadrature
formula in Q with respect to the normed space L. While the relation

\RQ(f)\^\\RQ\\L.\\f\\L

gives a bound on the error for any quadrature formula, the optimal formula
possesses the best possible estimate with respect to the norm in L. This
norm should be chosen to express our knowledge of the integrated function /.

Throughout this paper we shall use the letters k, m, n to denote positive
integers-,

a, b, c, d, q, q', alt a2, • • •, an, C n , C12, • • •, Ckn

real numbers and we shall assume

— oo < a < 6 < oo
— oo < c < d < oo

(1.1) l ^ ? < o o
1 1
- + - = 1 if q > 1
? 1

a ^ ax < a2 < • • • < an ^ b.
48
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DEFINITION 1. We denote by Q(m, k, n) the set of all quadrature
formulae of the form

t=l i= l

such that for I = 0, 1, • • •, m—1,

RQ(x')=I{z*)-Q(x') = O.

DEFINITION 2. Let L[m) denote the Banach space of real functions
f(x), x e (a, b), which do not differ by more than a polynomial of degree
m—1, the m—l'st derivative of which is absolutely continuous and the
w'th derivative of which is summable with the qth power. The norm in
L[m> is (by definition)

DEFINITION 3. We shall say that the knots a,- form a semi-equidistant
net on [a, b] with ratio p if

a, = a+ho+{j-l)h
where

2A0+(w— \)h = b—a
and

2h0 = ph.

The case p = 0 (p = 2) is called a closed (open respectively) equidistant
net.

For k :£ m and Q e Q{m, k, n), the remainder RQ = 7—Q is obviously
algebraically linear on L{

g
m). Its continuity is proved in § 4.

It was shown in [1] that the knots of the optimal quadrature formula in
Q(2, 1, n) with respect to the space L^ form a semi-equidistant net in
[a, b] with the ratio p being a function of q. The purpose of this paper is
to show that the above mentioned optimal quadrature formula is in fact
optimal in a larger set Q(2, 2, n). Furthermore, generalizing this result,
we shall derive the optimal quadrature formula in Q(m, m, n) with respect
to the space Z^m) and prove that this optimal formula is from Q(m, m— 1, n)
for m even.

The last property arises from the relation between the norm and the
end-point value of the polynomial of minimal LQ norm (§ 2). In § 3 a similar
problem is dealt with in terms of minimal monosplines of given discon-
tinuities and the result is applied in § 4 to obtain the required optimal
quadrature formulae.
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2. Polynomials of minimal L9-norm

Among all real polynomials of the form

(2.1) f{x) = a -+« m _ 1 x" - 1 + • • • +Oo

there exists a unique one, for which the LQ{a, b) norm,

is minimal. We shall denote this polynomial pm(x), or more precisely
p(m, q, a,b; x). The necessary and sufficient condition for the polynomial
(2.1) to be the minimal polynomial pm(x) is (see e.g. [3], 2.8.25, p. 64) to
satisfy the so called normal equations

(2.2) j V|£m(a0|«-i signpm(x)dx = 0, k = 0, 1, • • •, m - 1 .

Let N denote the norm of the minimal polynomial pm(x) or, more precisely

N == N(m, q, a, b) = (j*\p{*», q. a, b; a;)

The following properties of the minimal polynomial can be easily derived
from (2.2):

(A) ,

i.e. for m even (odd) the minimal polynomial is an even (odd respectively)
function with respect to the centre of interval (a, b).

(B) All roots of the minimal polynomial are real, distinct and lie in (a, b).

(d—c\m I , (b—a)x+ad—bc\/d—c\m I
(C) p(m,q,c,d;x) = l——\ p\m,q,a,b;

d-c

/^_c\(m«+l)/«
(D) N(m, q, c, d) = N{m, q, a, b).

\b—a/
We want to establish the relation between the norm of the minimal poly-
nomial and its value at the endpoint b (or a, which is equivalent according
to {A)). For this purpose let Pt, j = 1, • • •, m denote the roots of pm{x) in
increasing order and let /?0 = a, /?m+1 = b. Thus

and signpm{x) = (—l)m+> on %, pM), j = 0, • • •, m. Integrating by parts
we obtain
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3=0 J B

i=o JB,

where g{x) = x\pm{x)\«.
But g(/Ŝ ) = 0 for j = 1, • • •, m and hence

(2.3) N« = {b-a)pi{b)-q\\p'm{x)\pm{x)\^ sign A » ^ -

As xp'm(x)—mpm(x) is a polynomial of degree less than m, the integral in
(2.3) equals mN9. We have thus proved the relation

/mq+iy
(E) p(m, q,a,b;b)=\ N(m,q,a,b).

\ b—a J

Note that the extension of these properties, including (E), for q tending
to infinity, i.e. for the uniform norm

ll/lloo = sup ess l/(ar)j,
is obvious. a~x&b

3. Monosplines of minimal Lq-nortn

DEFINITION 4. Let nt^k. Any function g(a;) defined for all x is said
to be an mth degree monospline with discontinuities of order k at n knots
on the interval [a, b] if the following conditions hold:

(i) There are n distinct points a3- of form (1.1), called knots, such that
on each open interval

/ . = (a3., aj+1), j = 0, • • •, n, a0 = ax, an+1 = b

g(z) is a polynomial of the form (2.1).

(ii) g(x) = 0 outside [a, b].

(iii) If a < alt g(x), g'(x), • • •, g^-^(x) are continuous at x = a.
Similarly for b, if an < b.

(iv) If k < m, g{x),g'{x), • • •,g(m-k-1)(x) are continuous at
x = al> a2> * ' "i an-

Thus a, monospline is piece-wise an m'th. degree polynomial on [a, b]
and vanishes elsewhere. The ca.se k = 1 corresponds to the usual meaning
given to the word 'monospline' (compare, e.g. [2]), i.e. only the m — l'st
derivative is allowed to have discontinuities at the knots. When k = 2,
both m—l'st and m—2'nd derivatives of g(x) may have discontinuities
at knots, etc.; for k = m the local polynomials defining g(x) on Ii
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(] = 2, • • •, m—1) are independent and we consider two monosplines being
equal if they differ only at knots.

LEMMA. Let A, B,C be positive real numbers and a > 1. The function

F(x0> *!,..., xn) = A(x*0+x«n "i

with the domain of definition given by

3=0

reaches its minimal value

uniquely at the point

2x0 = 2xn = Pxj = CpKp+n-l), j = 1, 2, • • •, n-l,
where

p = 2(5/^)1/(«-D.

Proof is by elementary calculus.

THEOREM 1. Among all m'th. degree monosplines with discontinuities
of order m at n knots on the interval [a, b] there is exactly one that has minimal
LQ norm. The knots of this minimal spline form a semi-equidistant net with
the ratio p {independent of n) given by (3.2); the minimal norm is given by
(3.1). Further, if m is even, the minimal monospline has discontinuities of
the order m—\ only.

PROOF. By definition 4 an arbitrary spline g(x) having knots (1.1)
must be of the form

g{x) = (x-a)m on Io,

g(x) = (x — b)m on In and

g(x) of the type (2.1) on /,-, j = 1, • • •, n—\.

The <7'th power of its La norm, which we may minimize instead of the norm
itself, is

= (" \g(x)\<dx = 2 f \g(x)\"dx.

As the local polynomials defining g(x) on the intervals 73- are independent,
we can divide the minimization of NQ(g) into two steps: firstly, we find the
minimal monospline, say g0 for each fixed net. Secondly we minimize
N"(g0) = F(h0, hlt • • •, hn) as a function of the lengths hi = aj^—a^ of
in te rva l s / , • , / = 0, 1, • • • , » , in t h e doma in given b y
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n
2>;. = b-a, ho^O, hn^0

and

hi > 0 , / = ! , - - •, n - l .

However, to establish the first step, we have only to set

gQ(x) = p(m, q, a,., aj+1;x) on /,., / = 1, • • •, w — 1.

Using property (D) of the minimal polynomials and denoting

N{m,q) =N(m,q, - 1 , 1)
we obtain

F(h0, • • •, hn) =N'{g0) = f*\(z-a)«
n - l

+ 2N*(m,q,aj,ai+
3 = 1

mq+l x "

For the second step we use the above mentioned lemma to find the norm
iVmin of the minimal monospline and the ratio p of its semi-equidistant net
of knots:

N(m, q)

(3.2) P

To complete the proof of Theorem 1 we have to show that for m even the
minimal monospline, say g^x), is continuous at the knots. Denoting
p(m, q; x) = p(m, q, —1, I; x) and using property (C) we have

(3-3) gl(x) = ( £ ) % ( « , q; 2Xa^U^ on /,, / = ! , • • - , n - l .

where «

(3.4) A = b~U

P+n-l
is the step of the semi-equidistant net. As p(m, q; x) is an even function for
m even, the continuity of g^x) at a, is obvious for ; = 2, 3, • • •, n—1. The
continuity at ax (and at an) follows from the property (E):
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gi(«i + ) = (j) p(tn,q;-l)

4. Optimal quadrature formulae in ^

THEOREM 2. Z.e< k ^ m. There is a one-to-one correspondence between the
set of quadrature formulae Q (m, k, n) and the set of all m'ih degree monosplines
with discontinuities of order k at n knots in the interval [a, b], which satisfies
the following conditions:

(i) The knots ait j = 1, • • -, n are common both to Q e Q{m, k, n) and
to the corresponding monospline g(x).

(ii) If f s D™] and Ci} are coefficients of Q, then

(4.1)

(iii)

(4.2) c
ml

Proof of Theorem 2 will only be outlined here for the theorem is only a
modification of known properties of the remainders of quadrature formulae.
Given a monospline g(x) we may integrate by parts the integral

jb
afi<*>{x)g{x)dx.

We find that the quadrature formula Q with the same knots as g(x) and
coefficients Cu given by (4.2) satisfies (4.1). Therefore its order of precision
is m and because of the order of discontinuity of g(x), Ctj = 0 for i > k.
Thus Q e Q(m, k,n). On the other hand, given QeQ{m, k,n), we will
construct a function g(x) in the following way:

g(x) = 0 on ( -co , a), g(x) = (x-a)m on Io, g{x) of type (2.1) on Ix

to satisfy (4.2) for / = 1 (with Cu = 0 for i > k), and similarly for /,-,
/ = 2, • • • , » ; finally, we set g(x) = 0 on (6, oo). This function g(x) satisfies
all conditions of a monospline. The restrictions required at point b are easily
proved from the fact that Q has the order of precision m.
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COROLLARY. Since gsLq> and (4.1) holds, RQ(f) forms a continuous
linear functional on L^ for any Q e Q(m, k, n).

COROLLARY. The knots of the quadrature formula in Q(m, m, n) which is
optimal with respect to the space L^m) form a semi-equidistant net

with ratio p given by (3.2) and step h by (3.4). The coefficients of the optimal
formula are ((3.3) and (4.2))

\z/ \m! ' i\
and

ct2 = Ct3 = • • • = Cin_x = Cf = — I —I p(m-%)(m, q; 1)

/ / m is even, Cmj = 0 for j = 1, • • •, n and thus <2opt £ Q{m, m—l, n). The
error estimate of the optimal quadrature formula is

where Nmla is from (3.1).
We can give the explicit forms of the derivatives of minimal poly-

nomials p(m,q;x) for some values of q. In particular if q = 2, oo, 1,
p(m, q; x) are the Legendre, Chebyshev first and Chebyshev second order
polynomials respectively. Then

m

oo; 1) = m—l
f o r / > 0

21""1 for / = 0

and the knots and coefficients of corresponding optimal quadrature formulae
can be easily calculated. Even though these three minimal polynomials are
special cases of Jacobi polynomials, the author's opinion, based on results
of numerical computation, is that in general the minimal polynomials
p(m, q; x) are not Jacobi polynomials.
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