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There are some simple facts which distinguish Lie-algebras over fields of prime charac-
teristic from Lie-algebras over fields of characteristic zero. These are

(1) The degrees of the absolutely irreducible representations of a Lie-algebra of prime
characteristic are bounded whereas, according to a theorem of H. Weyl, the degrees of the
absolutely irreducible representations of a semi-simple Lie-algebra over a field of characteristic
zero can be arbitrarily high.*

(2) For each Lie-algebra of prime characteristic there are indecomposable representations
which are not irreducible, whereas every indecomposable representation of a semi-simple Lie-
algebra over a field of characteristic zero is irreducible (cf. [4]).

(3) The quotient ring of the embedding algebra of a Lie-algebra over a field of prime
characteristic is a division algebra of finite dimension over its center, whereas this is not the
case for characteristic zero. (cf. [4]).

(4) There are faithful fully reducible representations of every Lie-algebra of prime
characteristic, whereas for characteristic zero only ring sums of semi-simple Lie-algebras and
abelian Lie-algebras admit faithful fully reducible representations (cf. [6], [2], [4]).

These facts have been established for special cases for many years, and some of them have
been considered in the general case by N. Jacobson recently in [4]. They are at the basis of
every investigation aiming at a theory of Lie-algebras of prime characteristic embedded into
their enveloping algebras.

In this paper I attempt to work out sucli a theory up to the point where (l)-(4) and a
number of deeper-lying properties of Lie-algebraa of prime characteristic become connected
with the central fact that if one wants to study the representations of a Lie-algebra of prime
characteristic, one is concerned with specializations of an algebraic variety. This is an illus-
tration of the significance of a remark of A. Weil that the tools and results of algebraic geometry
are capable of being applied with great advantage in the study of Lie-algebras. Furthermore
the method of elementary ideals introduced by E. Steinitz proves its value once again.

The following is a summary of the present paper.
It is proved that the enveloping algebra A (L) of a Lie-algebra L of dimension n over a

field F of characteristic p>0 is a maximal order of a division algebra of dimension pim over
the quotient field of the center § of A (L) and t h a t § is a normal algebraic variety of dimension
n over F.

* This property of Lie-algebras of prime characteristic is implicitly contained in [3], [7] and [4] and
explicitly, for special cases, in [6], [8] and [2]. The following is a brief account of a proof, given by N.
Jacobson in a letter to I. Kaplansky, communicated to the author on 12th November, 1952.

Let £ be a finite-dimensional Lie-algebra over an algebraically closed field F of characteristic p>0, and
let A be its Birkhoff-Witt algebra. For any linear element x of A there exists by Jacobson a polynomial /
such that f(x) is in the center § of A. Let there be given an irreducible representation of £ on a finifce-
dimonsional vector space over F. Then in the induced representation of A, f(x) must go into a scalar c.
Let xlt x2, ... , xn be a basis of L with corresponding/,- and c,-. Let/,- have degree r(-. Let / be the ideal in A
generatod by all/(xt) -cf. Then the representation is really one of Ajl. But Ajl is really finite-dimensional
with dimension at most rlra ... rn. Hence this is a bound for the degrees of the irreducible representations.

A . G.M.A.
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2 HANS ZASSENHAUS

Every specialization 8 of § onto an algebraf <P over F determines a specialization of A (L)
onto a finitely-generated <P-ring x¥, which is uniquely determined up to isomorphisms over 0.
The indecomposable representations of L are in (l-l)-correspondence with the faithful in-
decomposable representations of all algebras !Ffor which 0 is a primary ring over F. In other
words, for characteristic p>0, the theory of the representations of Lie-algebras allows a
structural reduction to the theory of representations of associative algebras.

To every absolutely irreducible representation of L there corresponds a specialization of
the algebraic variety § onto F. Only a finite number of classes of equivalent absolutely
irreducible representations lead to the same specialization of § . The degree of these repre-
sentations is less than or equal to pm. Except for a subvariety characterized by the vanishing
of the specialized discriminant ideal of A (L) over § , the correspondence between the classes of
equivalent absolutely irreducible representations and the specializations of § onto F is 1-1
and the degree is equal to pm.

The irreducible constituents of an indecomposable representation lead to equivalent
specializations of § . Conversely, for every specialization of § onto a finite extension of F over
F there are indecomposable representations of arbitrarily high degree, in the sense indicated
above.

The .F-module
L*=L+FL"+FL"' + ...

generated by the set of all the elements av\ with aeL and j ranging from zero to infinity, turns
out to be an J-Lie-ring containing L as an ideal with abelian difference ring.

The ring § is finitely-generated over the subring o which is generated by the unit element
1 and the intersection § « L * of § and L*. Two representations are called members of the
same family if they induce equivalent specializations of o over F.

The representations of L over F are distributed into families, each consisting of a certain
number of classes with at most a finite number of irreducible ones among them. Any two
families are coprime.

The Lie-Kronecker product induces an addition of the families corresponding to the
specializations of o over F onto F ; so these specializations form a module of characteristic p.

I take this opportunity of expressing my appreciation of the generous support which I
have received from the Canadian National Research Council, under whose auspices the
investigations presented in this paper were begun in the summer of 1950 and concluded in the
summer of 1952 at the Summer Research Institute at Kingston, Ont.

§ 1. Let L be a Lie-algebra with basis av a2,..., an over the field F. Let A (L) be the en-
veloping algebra of L over F, i.e., the associative -F-ring with the basis elements

over F and multiplication defined by juxtaposition and application of the straightening pro-
cedure of G. Birkhoff which is derived from the commutation rule

atak =

f The word " algebra ", without any qualifying adjective, will be used to mean associative algebra of
finite dimension.
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REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC

which itself is obtained from the multiplication rule

y ^ a j (i,k = l,2,...,n;yl
ikeF)

1

for the Lie-multiplication of the basis elements of L(cf. [1]).
LEMMA 1. A (L) has no divisors of zero.
Proof: Define the degree of the monomial expression

of«<!£ • . . . a£»
to be the sum of the exponents, according to the formula

and the degree d (X) of a linear combination X of the basis elements to be the maximum of the
degrees of all the basis elements of A (L) having non-vanishing coefficients in X. The zero ele-
ment 0 is not given a degree. The sum s(X) of all contributions to X from the basis elements
of degree d(X), which we may call the highest terms, is called the leading member of X ; e.g.,

Since the application of the straightening procedure of Birkhoff to X Y, where X and Y are
linear combinations of the basis elements of A (L), only permutes factors and creates new
produots of less than d(X) +d(Y) basis elements of L, it follows that if

S(X)=y
and

a(Y)~

then

J 7 = \ a^x2... An /SMl/,2...,,„ a"ia^ ... a"n + terms of lower degree,

where summation is over all sets of non-negative integral values of Xlt A2, ... , An such that
Aj+Aa-t-... + Xn = d(X) and all sets of non-negative integral values of fiv (JL2, ..., fj.n such that
Mi +M2 + ••• +/xn =d(Y), and vj = Xs +fij (j = 1,2,... , n). In other words, there is an operator
isomorphism <f> between A (L) and the polynomial ring F[xly x2, ... , xn] in n polynomial
variables xlt x2, ... , xn, both A (L) and F[xlt x2, ... , xn] being considered as i^-modules only,
such that

and under this operator isomorphism the leading member of X corresponds to the leading
member of <j>{X) and the leading member of 1 7 corresponds to the leading member of
<j>(X)<l>{Y). Consequently

d(XY)=d(X)+d(T),
s(XY)=s(s(X)s(Y)),

Thusif X^Oand y#0 , A T # 0 ; q.e.d.
From now on we assume that F is a field of characteristic p>0, where p is a prime

number.
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4 HANS ZASSENHAUS

LEMMA 2. The elements

a / ( » = l , 2 « ; j =0 ,1 ,2 , . . . )

are the basis elements of an F-Lie ring L* contained in the universal embedding ring A (L) of L
over F such that the Lie-algebra L is an ideal of L* with Abelian difference ring.

Proof: The linear independence of the elements a,1"3 over F follows from the construction
of A (L). The rest of lemma 2 follows from repeated application of the formula

(1) xvoy = -yoxv = xvy -yxv

— xo (xo ... (xoy) ...), where x occursp times to the left of y,
= - (... {yox) ... ox) ox, where x occurs p times to the right of y,

in rings of characteristic p (cf. [3]).
LEMMA 3. L* is independent of the choice of the basis of L over F, since

where Lvi denotes the module generated by all the elements avi with a contained in L.
Furthermore, the elements aP\ a?*, ... , aff form a basis of the F-module L +FL" + ... +FLpt

modulo the F-module L+FLV +.. . + FL"^1 over F.
The proof follows from repeated application of the formula

(2) (

in rings of characteristic p, where At (x, y) denotes a certain sum of Lie-products with i factors
x and p-i factors y (cf. [4]).

LEMMA 4. Let M be an F-Lie-ring contained in L* and satisfying the condition

Let Mk=M^(L + FLv + ... +FLvk),

Then it follows that

(a) 0 < / i = y dimp(Mk

(b) There are ̂  elements uv u2,... , tili in M such that the elements

uf (1 <»<,*; j = 0, 1,2,...)

form a basis of M over F.

(c) The elements •

M>g'...<n (0<a.)
form an F-basis of the F-ring (M) generated by M and the unit element.

(d) • (M)~L*=M.

(e) The F-module L* -M is of finite dimension over F if and only if p=n. In this case

dimF(L* -M)=y k dimF(Mk -M'k).

(/) Considering A(L) as an {M)-ring, there is a basis of A (L) over (M}t provided that F is a
perfect field. In this case, iffi = n, there is a basis consisting ofp1 elements, where I = dim p (L* - M).
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REPKESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 5

For the proof, let us assume first that F is a perfect field of characteristic p>0, i.e., that
every equation fp = a with a in F has a solution £ in F. This solution is uniquely determined
by a and may be denoted by a""1. We define recursively

«»-' = (a'>-('-1))>>-1 (i = 2,3, . . .) .

Then it follows by repeated application of the formulas (1), (2) and

(3) {Xx)» = \'z'> (XeF)

that

(4) \1xli + \&? + ...+\rZ? = (XP
1-

iX1+\P
i-

iXi + ...+\riXr)pi

modulo L+L" + ... +Lpi~1, for { = 1, 2 , . . . ; xv x2, ... , xreL.
We adapt the choice of the basis av a2, ... , an of L over F to the situation of M and L*

relative to each other. Let au a2,... aWo be a basis of Mo over F, where, of course, no=O if
Jf«-(O).

By lemma 3 the elements af, af, ... , a£0 are linearly independent modulo L over F.

Faf, it follows that M=M0+ > J'af, where + and > denote

i=i ^ i ° i Z - -

direct summation. There is a basis a^+1, . . . , a^+lli of Jfj modulo il/j over .F. According to
(4), we find that

with a^+j eL ; j = l , 2 ^ .
The elements Oj, a2, ... , a^0+ ,̂ of L are linearly independent over F, since a linear relation

• i - 1
would imply in succession

^ - T A ? a | ) s 0
(mod L),

X ^ " ° + > " >Pa(D=0 (mod M[),

( = 0 ,

A1=A2 = ... =Atf0 = 0.

Note that

Set /x,=dimf ( l f £ - i f - ) .

Continuing the above process, we find /xo+^1 + ... +^ip elements ava2, ... ,

of L, linearly independent over F, and fi0 +n1 +.. . +^p elements

« a „ . ffl(D
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6 HANS ZASSENHAUS

of M such that

and furthermore

Since certainly

the construction will terminate after a finite number of steps ; say

Ma> 0, Ma+l = Ma+2 = • • • = 0.
Let

Extend the set of linearly independent elements alt a2, ... , atf to form a basis au a2, ...,anofL
over J1. If fii>0, define

From the construction it follows that

(Q) ah ah

The elements

with <4°' =a{ for i = 1, 2 /n0, are elements of M with the property that the elements

form a basis of Ms modulo Mj_x over F (j=0, 1, 2, ... , ^ ^ = (0)) and that

If there were a linear relation

i

with some non-zero coefficients, then among the non-zero coefficients Xik there would be one
with maximum value of i' + k, say m ; and it would follow that

0 = V Xikvf

which contradicts the linear independence of the elements vfk, with i' +k = m, modulo Mm_x

over F. Hence the elements

vf (» = 1 , 2 , . . . , / x ; 4 = 0 , 1 , . . . )

are linearly independent over F.
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REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC

If there were an element z in M not a linear combination of the elements vfk, then
zeL*,
zeL+L" + ... +Lph, for some h^O,
zeMh.

Among all such elements there would be one with minimum value of h. If h = 0, then

xeMQ= y Fait

contrary to the first property of x. If h>0, then

x s ^ P *<«T*"*' ( m o d M*-i)> (A<e F)>
and thus the element

could not be a linear combination of the elements vf . But the fact that x' is in Mh_1 contra-
dicts the minimum property of x. Consequently the elements vfk form a basis of M over F.
This proves (a.) and (b) for perfect ground fields.

The -f-Lie-rmg M has the basis elements

Applying the straightening procedure of Birkhoffto any linear combination of higher products
of the basis elements of if, we arrive at the fact that the F-ring(M) generated by M and the
unit element consists of all linear combinations of the elements

(7) < X a - C (<><«,).
From (5) it follows that the degree of the basis element v^vl* ...v"f is equal to > <xtp

l

and that the highest term is equal to aFx
 a'a% "*... a% "".

For a non-trivial hnear combination

x=\ ^ vllv%...v""

of the elements (7), denote by d the maximum of all the numbers } a(p
l with A,,̂  _ ^ 0.

It follows that d (x) = d

and .

summation being over all sets of values of a1( a2,... atf for which ^ atp
1' = d.

From this it follows that the elements (7) form a basis of (M) over F. This proves (c) for
perfect ground fields.
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8 . HANS ZASSENHAUS

Now assume that

Then there is an element

=/

in L* which is not in M. Since x is not in M, it follows that x # 0. Among all the elements in
L* but not in M, let x be one of minimum degree. I t follows that

summation being over those sets of values of «lt <x2,... , a,, for which \ c^p*' =d(x). But

since x e L*, it follows that d (x) =pv and that s{x)= y X{af. Thus Aaicti... a/4 = 0 whenever

9*' = flJ(a;) and two indices «, and a,- do not vanish. Furthermore

the second summation being over all sets of values of av a2,..., a for which > x^' <p".

Thus x'=x-\ KVT~1' is not contained in M, but x'e(M)~L* and d(x')<d(x). This

contradicts the minimum property of x. I t follows that

This proves (d) for perfect fields.
We now prove that the elements

fof*.(8) <

l«r» *>/*
form a basis of L* modulo M over i*1.

Suppose that the elements (8) do not span L* modulo M over F. Then there is an element

• i=0

of i * which is not a linear combination of the elements (8) modulo M. I t follows that x ¥= 0.
Among all such elements choose an element x of minimum degree, p" say. If for any coefficient
Xik & 0, either 0^&<i ' , / i o<i^/x j or i>/x, then we could subtract the corresponding term from x
and the remainder would have the same property and would have one less non-vanishing term.
Continuing this reduction we find that among all the competing elements of the same degree,
the element x may be chosen so that no contribution is made to it by the elements (8). I t
follows that
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REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 9

Since x and the element

both belong to L, and since d(x')<rf(x), it follows from the minimal property of a; that x' is con-
gruent to a linear combination of the elements (8) modulo M. The same then applies to

y AfcW?"-*'.

so that we arrive at a contradiction. We conclude that the elements (8) span L* modulo M
over F.

Now assume that there is a non-trivial congruence relation

Xi!caf = O (moditf),
i = i x •'• -"f

where, for convenience, we define (/* +1)' = {\x. + 2)' =. . . =00. Let TO be the maximum of all
the indices A; for which an inequality Xik # 0 holds. I t follows that x belongs to Mm and so

z >

which contradicts the linear independence of the elements aj"", ... , a£m.
Hence the elements (8) form a basis of L* modulo M over F.
Inspecting this basis, we find that dimF (L* - M) <oo if and only if ft = n. The number of

basis elements is then given by the formula indicated under (e).
We now prove that the elements

(9) a"'a£»... o£» with

' form a basis of A (L) over (M).
Assume that there is an element x in A (L) which is not a linear combination of the

elements (9) over (M}. It follows that x #0. Let x have minimal degree. Writing

we may subtract any term contributed by the elements (9). Hence we are allowed to make the
additional assumption that at least one of the inequalities a^p^ holds in each case in which
^....an^O. Then, by the Euclidian algorithm,

ai=qip
i' + r( with O^r^p1', for i = l, 2, ... , y..

Now

Hence x has the same highest terms as the linear combination

of the elements (9) over ( i / ) . It follows that x-y has lower degree than x. Hence it must be
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10 HANS ZASSENHAUS

a linear combination of the elements (9) over (M). The same must then apply to x. Since this
contradicts our assumption concerning x, it follows that every element of A (L) is a linear com-
bination of the elements (9) with coefficients in (-M). For any non-trivial linear combination

(10) *

of the elements (9) with coefficients /lai<Zj...«n in (M), there are some coefficients 9̂ 0. For the
corresponding terms we find

where the accent on the summation symbol indicates tha t only those /^-tuples filt /32, ••• ,
are admitted for which

z:..
It follows that

Under what circumstances does it occur that in the development (11) for the leading members
of two summands on the right hand side of (10) there are proportional terms ^0? Suppose that
in the development of s(ACCiXs...xna*1a** ... e£n) there is a term

A „ • B a a aorl+ftP1' nXu+PllP11 nan f 1 - tO
'>a,a2...«n, ftP|-f>(i i ••• t*M li+l '" '

and in the development of s (AYlYi... Yn a^1 av
2'... off) there is a term

such that
«i + fty = y. + 8 ^ ' (* = l , 2 , . . . ,

U = 1. 2. ••• . w -
and hence there hold the congruences

cci = Yi {modp1'), (i = l,2,...,n).

From these congruences and'the conditions

O^Kpf, 0 < y 4 < / , (t = l, 2, . . . , M),

it follows that «i = yi(i = l, 2, ... , p) and hence that pi = 8i(i = l, 2, ... , /x). In other words,
the highest terms of the summands on the right hand side of (10) are linearly independent.
This shows that x does not vanish. Therefore the elements (9) form a basis of A (L) over
(M), which proves (e).

Inspecting the number of basis elements in the case in which /*. =n, we obtain for the num-
ber of such basis elements the value pi'+2'+-+»'.

This completes the proof of the lemma for perfect ground fields.
Now let F be an arbitrary field of characteristic p. Then there is a perfect extension P of

F.
We determine a basis uv u2) ... , u^ of Mo modulo M'o over F, a basis u^+v ... , «„„+„,

of M1 modulo M[ over F, a basis Wj,o+Mi+1, ... , u^o+tli+lh of M2 modulo M'2 over F, and so on,
the number ^ being defined as the dimension of Mt - M\ over F.
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REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 11

On the other hand, we construct the extension A(L)p of A(L) as the product ring of
A (L) and F over F. This contains the Lie-algebra LF over F and in fact

A(L)p=A(LF).

We find that MF satisfies the requirements of the lemma with respect to Ĵ . Hence we may
construct vx, v2, ... , v^ as previously, where

/*, =dimF[(MF)t - (MF)l] =dim^(Jlfi -M• ) .
We find that

( fi=O

and therefore 0</J.<W. This proves (a).
We prove (6) exactly as before.
It is easily shown that

(MF)={M)P,

(MF) ~ (LF)* = [(M)F] ~ [L*F] = ((M) ~L)F.

We have proved that {MF) ~(LF)*= MF. Since (M) ~L = M and ((M) ~L)F = MF, it follows
that (M)rsL=M, which proves (d).

We prove exactly as before that the elements (tj'tt*1... w*n (0<at) span (71/} over F.
In order to prove the linear independence of the elements u*'u2

tl... w°n over F, we proceed as
follows. From the construction of the elements uv u2,... , u^ and vlt v2, ... , v^ there follow
relations

^ — v ^—^ph'—i'

(12) %=> > tut*?,

(13)

We consider the subset Sf formed by 0 and all elements of (MF) of degree / or less with
respect to the basis av a2, ... , an of LF over F. Obviously Sf is an .f-module containing all
linear combinations of the elements

(14) «?«?.••«*
satisfying

(14a) y " «i3»*'</.

If the element

of Sf is not a linear combination of the elements (14) satisfying (14a), then let x be chosen so
that no contribution is made to x by the elements (14) satisfying (14a). It follows from the
construction of the elements vx, v2 v^ that
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12 HANS ZASSENHAUS

where not only

a,̂ *' = d (x)

but also y "-iP^^f f°r a ny coefficient Aaia>...̂ ¥=0. Hence d(x)>f, contrary to our

assumption. Hence the elements (14) satisfying (14a) form a basis of Sf over F. From (12)
it follows that <Z(MA)̂ pA>. Hence all the elements

(15) «?«?...«;<•
satisfying

belong to Ss. From the construction of the elements %, w2 ŵ  there follow commutation
rules

Using these rules, we may substitute the right hand side of (13) in (14) and straighten out the
expression so that each element (14) will be expressed as a linear combination of the elements
(15) over F. Since the two sets (14) and (15) have the same number of elements, it follows that
the set (14) forms another basis of ft. Consequently the elements (14) are linearly independent
over F.

Since / is arbitrary, it follows that the elements

are linearly independent over F.
The statement (e) follows from the corresponding statement for the difference module

(LP)* - MP. This completes the proof of lemma 4.f
From lemma 2 it follows that to each element x of L there corresponds a derivation x

defined by the formula

x = ( ), (ueL).

The correspondence

yields a representation P* of the .F-Lie-ring L* by linear transformations of L. Since there are
at most n2 linearly independent linear transformations of the Lie-algebra L, since it is of
dimension n over F, it follows that the difference ring of L modulo the kernel L^ is of finite
dimension.

Each element of L^ is permutable with each element of L. Since L generates the ring
A (L), it follows that Lf^ is contained in the center § of A (L). Conversely, each element of
§^Z* belongs to the kernel of P* and so

t This proof can be used to cover more ground by using the language of filtered and graded rings (see Colby
Summer Institute Lectures, Appendix to Zassenhaus, "Representation Theory of Lie-algebras of prime
characteristic").
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REPRESENTATIONS OF LIE ALGEBRAS OF PRIME CHARACTERISTIC 13

We denote by o the .F-ririg generated by the unit element andg^Z* , i.e.,

Now o appears as a subring of the center of A (L). By lemma 4, o is isomorphic over F to the
polynomial ring in n variables over F.

There are n elements tiv u2, ... ,un of § ~L* such that every element of o can be expressed
uniquely as a polynomial in tilt u2, ... ,un with coefficients in F. The elements uf3 (i = 1, 2 , . . . ,
n ; j=0, 1, 2,...) form a basis of §^Zi* over F.

If F is perfect, then, according to lemma 4, there is a basis of A (L) over o consisting of pl

elements, where l=dimp(L* - §

§ 2. In this section we introduce the new concept of a quotient ring, which is needed in
the sequel. Since the results are of some independent interest, they will be developed some-
what more fully than is strictly necessary for the present purpose.

Definition : A scalar of a semi-ringf V is any single-valued mapping v of V into itself
satisfying the conditions

(i) v(a+b) = va + vb
(ii) v(ab)=(va)b=a(vb)

for any two elements a, b of D.
The set of all scalars forms a semi-ring of operators of the additive semi-group of Z) with

the identity mapping 1 as unit element. If D is a module, then the scalars form a ring of
operators of the additive group of D. If D D = D, the scalars form a commutative ring. At any
rate, the scalars of V induce a commutative semi-ring on the additive semi-group of DD.

Definition : A scalar v of D is called a denominator if

(i) va — 0 implies a = 0,
(ii) VJX=JXV for any scalar fj,.

The cet of all denominators of 3) forms a multiplicative abelian semi-group with unit element
and cancellation law.

Definition : The quotient ring Q(Q) of a semi-ring 3) consists of the set of all quotient
symbols

a
V

with aeV and v a denominator of D.
Equality of two quotient symbols is defined by the rule

- = - if and only if ua = vb.
v H

Addition and multiplication of two of these symbols is defined by the rules

a b fia + vb

a b ab

•f A semi-ring is defined to be a commutative additive semi-group (i.e., a semi-module) in which there is
defined a multiplication assigning to any two elements a, b of the semi-module a third element ab of the semi-
module, such that from a=a' and 6 =6' it follows that at =a'b', and furthermore the two distributive laws
a(b +e) =ab +ac and (6 +c)a =ba +ca hold.
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14 HANS ZASSENHAUS

It follows that the quotient ring of a semi-ring P is itself a semi-ring.
There is an isomorphism

a

between P and a subsemi-ring of the quotient ring. This isomorphism is used to embed P into

its quotient ring, by replacing the quotient symbol -r in Q(D) by the element a of P without

interfering with the laws of equality, addition and multiplication governing the semi-ring
Q(D). Every scalar v of P is extended to a scalar of the quotient ring by the definition

( a\ va

The scalars of P then form a subsemi-ring of the semi-ring of scalars of <2(P) such that the

semi-ring of scalars of Q (P) of the form - , where v is derived from a scalar of P and ji is derived

from a denominator of P, is isomorphic to the quotient ring of the scalar semi-ring of D. Here
If

- is defined by the rule
v /a\ va

The scalar- of Q(V) is a denominator of Q(T>) if and only ifv is a denominator of P. The set of

all the denominators of Q(D) of the form - , where v and p are denominators of P, forms an

abelian group which is isomorphic to the quotient group of the multiplicative semi-group
constituted by the denominators of P.

If ~D is finitely determined, i.e., if there is a finite number of elements av a2, ... , ar of P
such that P is the smallest two-sided ideal of P containing au a2, ... , a,., then every scalar of
<3(P) is a quotient of a scalar of P and a denominator of P. If P has a unit element, then P
is finitely determined.

We call a semi-ring closed with respect to quotients if it coincides with its own quotient ring.
This happens if and only if its denominators form an abelian multiplicative group. The
quotient ring of a finitely determined semi-ring is closed with respect to quotients.

If a given semi-ring P is embedded into a semi-ring D1 in such a way that any denominator
of P is induced by a denominator of Px, then for each denominator v of P there is a denominator
v' of Q (Pj) such that v'v induces the identity operator of P. It then follows that the correspon-
dence

a ,
V

is an isomorphism between Q(V) and a subsemi-ring of Q(PX) over P.
If P is a semi-ring over a commutative ring o with a unit element*, then the scalars form

an associative o-semi-ring. We usually impose the additional condition

(16) Xv-vX (Aeo)

on the scalars v of P, a condition which is automatically satisfied in the case when PP = P.

* This means that for every element of A of 0 and every element a of P , there is uniquely defined the
product \a as an element of P , such that (\l+\i)a=\1a+\ia, X(al +o2) =Ao, +Xav (A1A2)a = A1(A8a), la=a,
where J is the unit element of o.
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The previous definitions are used as before.
The quotient ring of D is again an o-semi-ring.
If the elements of the semi-ring D form an additive group and hence a module, the same

is true for the quotient ring Q(D).
If the semi-ring D is associative, then Q (D) is also associative. If V is an associative semi-

ring with a unit element, then the scalars of V are realised by the multiplications by elements
of the center of 5 . The denominators of V are realised by the non zero-divisors in the center
of D.

This shows that our concept of a quotient ring coincides with the usual concept, for com-
mutatve rings with a unit element.

An algebra over a field F is closed with respect to quotients. This, of course, only holds if
the scalars are restricted by the condition (16).

If I) is a semi-algebra over a field F, i.e., if X> is a linear space with basis alt a2, ... ,an over
F with the multiplication rule

with arbitrary multiplication constants y\keF, then the scalars of P (restricted by (16)!) form
an algebra over F and P is closed with respect to quotients.

If o is an integral domain, then the quotient ring of o is a field, the quotient field of o.
If the o-semi-ring P has the finite basis alt a2, ... , an over the commutative ring o with a

unit element*, then Q (P) has the basis alt a2,... ,an over Q (o) and the rule of multiplication for
Q(T>) over Q(o) turns out to be the same as the rule for multiplication for P over o.

But even when we do not know of a basis of an o-semi-ring P over a commutative ring o
with a unit element, it may happen that the quotient ring of P is a Q(o)-semi-ring. In other
words, we may raise the question under what circumstances it is possible to define a product
AU for any element A of Q(o) and any element U of Q(D), such that Q{V) becomes a Q(o)-
semi-ring and the new multiplication coincides with the old one if A e o and U e P. We shall
give an answer under the assumption that o is an integral domain.

As a necessary condition we find that P must be an o-semi-module without torsion ; i.e.,
from A 9*0 in o and Xu = Xv it must follow that u=v. In fact if QCD) isa Q(o)-semi-ringof the
kind described above, then from A ^ 0 in o and Xu = Xv, with u, v e P it follows that

u = lu = (A-1 A) w = X-^Xii) = A-x(Aw) = (A-1 X)v = lv=v.

Conversely, if P is an o-module without torsion, then to each element A ¥= 0 of o there
corresponds a denominator of P and hence Q{T>) has a denominator A' satisfying A'A = 1, which
proves that Q(P) is a Q(o)-semi-algebra if P is a finite o-module without torsion over the
integral domain o.

The quotient-ring of a Lie-ring is itself a Lie-ring.
After these preliminary remarks we make an application to the universal embedding

algebra A (L) of a Lip-algebra L over a field F of characteristic p > 0 .
Since A (L) is without divisors of zero, it follows that A (L) is an o-module without torsion.

Hence the quotient ring K of A (L) is a Q(o)-ring. I t has no divisors of zero ; for from

it follows that

* I.e., P is a vector-module with basis alt a2, ... , an over o.
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where O^Aco, 0#^eo, Q*xeA(L), Q*yeA(L). Hence

since
Since o belongs to the center of A (L), we may consider Q(o) as a subfield of the center of

K. Furthermore
K = Q(o)A(L).

Hence there is a basis B of K over Q(o) contained in A (L).
Let F be a perfect algebraic extension of F. Then we find that the product ring L x F of

L and F over .F is a Lie-algebra of dimension n over F which has as its universal embedding
algebra A(Lx F), the product ring of A (L) and F over F. The center § of A (L x F) is the
product ring of § and F over J7 and furthermore

(LxF)*=L*xF=L*F,

The quotient ring K of A(LxF) contains the quotient ring K of A(L), with the natural
embedding. I t follows that Q{o)F = Q(o) x F has no divisors of zero. Since F is algebraic
over F, it follows that (Q{o) xF)F is a field. Hence (Q(o) xF)F = Q({o xF)F).

From lemma 4 it follows that A (L xF) has a finite basis B over oxF ; hence K is an
algebra over Q((o xF)F). I t follows that

K=A(LxF)Q(oxF)=A(L)Q(o)F=KF
= KxF = (BFxQ(o)) xF=BFx(Q(o) xF)
= BFxQ(oxF);

i.e., Biaa, basis of K over Q(o xF). Since any basis of K over Q(o xF) is finite, it follows that
B is finite ; in fact it consists of pl elements, where l=dimF(L* -Z*^§) . Hence K is an
algebra of dimension pl over Q(o) and has no divisors of zero ; i.e., it is a division algebra.

The center of K is the quotient field QC§>) of the center § of A (L). According to the general
theory, the dimension of a division algebra over its centre is a square number. On the other
hand,

[K : Q(o)] = [K : Q(Q)] [Q($): Q(o)]=pK
Hence [K: Q(§)]=pim,

where m is a non-negative rational integer.

§ 3. LEMMA 5. A (L) is a maximal order of K.
Proof: We have to prove that A (L) coincides with any subring Q of K satisfying

with A ?*0 an element of § .
Here we may replace A by an element £^0 of o.
Denoting the regular representation of K over Q(o) by R, we find that
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If F is a perfect field we use a basis of A (L) over o for computation of R(A).
If F is not a perfect field, let F be a perfect extension of F and use a -basis of A (L x F)

over ox P. At any rate, the coefficients of the characteristic equation of R(A) are in
o x (F ̂ K) =o. Since the last coefficient is equal to the determinant of R{A), up to a factor
±1, it follows that it is an element £ ^0 of o. Furthermore, since the highest coefficient in the
characteristic equation of R(A) is 1, there is an equation t,=AA1 with A1 a polynomial ex-
pression in A with all its coefficients in o. Hence Ax eg. Thus

£-M (£)= trxAxA (L)=A~1A?A1A (L) =A~lA (£)=> Q=A (L),

so that, in fact, £ may take the place of A.
Assume now that, for a certain subring Q of K, A (L)<=Qc=£~M (L). Then

Among all the elements of D not contained in A (L), choose X such that d(£X) is minimal. Let

Y = £X.
For v = 2, 3, . . . , we have

and, in the notation of lemma 1,

I(s(Y)Ye4(8

* ! . *2 *„]•

Since F[xv x2,... , xn] is integral^ closed, it follows that

Since both polynomials (j>(s(Y)) and <f>(s(Q) are homogeneous, their quotient is also homo-
geneous ; hence U = s (U) and so

Hence Y = t,U + V, where either Ve A (L) and d(V)<d(Y)orV = 0. But since X = S"1 Y is not
in 4(L) it follows that F#0, d(V)<d(Y),

Since X is not in A (L) and U is in 4 (L), it follows that £-1F is not in A (L). But then

contrary to the minimal property of X. Consequently our assumption concerning Q must have
been wrong. Hence Q=A(L); q.e.d.

B G.M.A.
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LEMMA 6. § is an algebraic variety of dimension n over F.
We have to show that
(1) § is an integrally closed integral domain,
(2) I1 is a subfield of § such that every element of § which is algebraic over F belongs to F,
(3) § is finitely-generated over F,
(4) There are n algebraically independent elements ult u2, ... , un in § such that

0(5) : F(ult u2, ... ,un)<co.

Proof: (1) §, being the center of the integrally closed ring A (L) without divisors of zero,
must itself be integrally closed and hence must be an integral domain ; in fact, if there is a
subring Q of Q(G>) satisfying ^^Q^A-1^ for some A contained in §, then there is a subring
QA\L) of Q(A (L)) satisfying A (L)c=QA (i) t=A~xA (£), contrary to lemma 5. A consequence
of this statement is the customary statement: § is integrally closed in the sense that every
element of Q(§) which satisfies an algebraic equation with all its coefficients in § and highest
coefficient 1 must belong to §.

(2) Obviously F is a subfield of §. Let x be an arbitrary element of A (L) which does not
belong to .P. It follows that d(x)>0. Now if

X<eF and Am#0, d(Xmxm + Xm_1x
m~1 +... +X0)=md(x).

Hence x is not algebraic over F.
(4) By lemma 4, o is generated by n algebraically independent elements uv u2, ... , un

over F. We have already seen that Q(§) : <2(o)<oo ; observing that Q(o) =F(uv u2, ... , un),
we have (4).

(3) We observe that A (L) is finitely-generated over o. Let alt a2, ... , an be a basis of L
over F. The derivations a,-, af, a\ ,... of £ are not all linearly independent over F. Hence
there is a linear relation

i.e., af+

According to lemma 4, the elements

'3 = 0

• ^ —

af

... a£n, with

form a basis of A (L) over the ring generated by F and bv b2,... ,bn. These p1' +pli + ...+pl"
elements generate A (L) over o. Furthermore, by Hilbert's theorem, o satisfies the maximal
condition for ideals. From the theorem of Lasker-Macaulay it follows that the o-subring§ of the
finitely-generated o-ring A (L) is itself finitely-generated over o. Since o is finitely-generated
over F, it follows that § is finitely-generated over F ; q.e.d.

We summarise the results of lemmas 1-6 in
THEOREM 1. The universal embedding ring A(L) of a Lie-algebra L over a field F of

characteristic p>0 is a maximal order of a division algebra K of dimensionp2m over the quotient
field of the center & of A (L); furthermore, § is an algebraic variety of dimension n over F.
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§ 4. Let P be a commutative J^-ring with a unit element, and let HT be a P-module.
A homomorphism 8 of P onto another J^-ring 8P is called a homomorphism over F if

8 (XI) = X8(l) for all A e F. The ring 9P is a commutative ring over F with 61 as unit element,
such that

B(Xx) = 8(XI . x) = 8(Xl)8(x) = \B1. Ox = X8x.

We want to define a homomorphism #(m) of ITT onto a 8P-module 0(£rl) HI in as general a
manner as possible. For this purpose we define 0(in)iTI to be the module with generators

and the defining relations

6^^(u + v) = 8^u + 8mv, (u, v e ITT),

0<m>(/hf) = 0 if A belongs to the kernel PB of 8.
Since the correspondence

8^miu->A8m^u = d^m)(Au), (AeP, we ITT),

carries over each defining relation of 0(m)ITT into a consequential relation, as can easily be seen,
it follows that there is assigned to each element 8A of 8P an operator of 0(m)ITT. Furthermore
it follows easily that in the correspondence defined above A may have added to it any element
of the kernel of P without changing the operator of 0(m>ITT assigned to 8A. Hence there is
uniquely assigned to each element of 9P an operator of 0(m)ITT. It is not difficult to see that
this assignment also satisfies all the other rules which are imposed on 0P-modules.

If <f> is any operator-homomorphism of HI onto a 0P-module <£ITT such that

<j> (Au) = 8A <f>u for all AeP, ue ITT,

then it follows that the relations

</> (u + v) = <f>u + cf>v '
<f>(Au)=0

hold and hence that there is mapping 8(m^u-^xf>u (u e ITT) which is an operator homomorphism of
the 0P-module 0<m>lTT onto the 0P-module <£ITT. Hence 0(m>ITT is the most general 0P-
module which is operator homomorphic to ITT.

The operator-homomorphism between JTI and a 0P-module is called a specialization of
ITT over 8.

Let ITT be a P-ring, i.e., let HI be a ring and let there be defined, for any pair of elements
AeP and u e ITT, a product element Au in HI, satisfying, besides the conditions for a P-module,
namely,

(1) Au=A'u'ttA=A',u=u',
(2) A(u+v)-Au+Av,
(3) (A+A')u=Au+A'u,
(4) (AA')u = A(A'u),

the following further conditions

(5) A(uv) = (Au)v=u(Av)
(6) lPu=u.

The correspondence

0W)v_+Q(m)(uv)> (w fixed, v arbitrary),
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between 0(m)(tTC) and a subset of 0(m>2Tt carries over each defining relation of 0( m )m into
a consequential relation. Hence to each element ueXfl there is assigned an operator u of
0<m>m carrying 0<m>i> into 0«">(w). The rules

u1+ui=u1+u2,-\
Au=Au, \{u, Ux, W2elTt, A eP, AePg)
Au = 0,~ J

can easily be verified. Hence the correspondence

establishes an operator homomorphism between 0(m)ttT and the 0P-module 0(m)2Tt formed by
all the operators u acting on 0(m>ITt; in fact in 0(m)lTt there is defined a unique multiplication

. by the formula

Consequently 0(m)2Tt is a ring homomorphic to the ring UT. In fact <?(m)2TT is a 0P-ring, as
follows from the following computations :

We call 0(m) a specialization of the P-ring ITt over 0.
It may happen that P is a part of the P-ring JTt in the sense that ITt possesses a unit element

1m and that Alxn=0, with AeP, implies that .4=0. The correspondence A-^-AIm{AeP)
then provides an isomorphism between P and a subring in the centre of ITt.

If this happens it cannot be inferred in general that 0P is a part of 0(m)2Tt in the same
sense.

Example. Let F have characteristic not equal to 2, let

m=F + Fzt + Fz2 + Fa1 + Fa2

with multiplication table
1 Zj Z2 flj Cln

z1 0 0 z2 0
22 0 0 0 0
a1 z2 0 0 z2

a2 0 0 - z 2 0
and let

6 (£)=£ {mod FzJ for £ e P,

0<m>(JTt) =
Then z^^l =0 but z261 *0 .

We call 0 an extendable homomorphism of P over F if 0P is part of 0(in)2Tt in the sense
considered above.

If IT! has a basis B over P, i.e., if there is a set B of elements of UT such that for each element
a; of ITt there is one and only one equation

a;= > A,,v

with all but a finite number of the coefficients vanishing and the non-vanishing ones belonging
to P, then 0<rn>ITT has the basis 0(m>£ over 0P. We prove this as follows.
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Each element u of 1)1 is equal to a linear combination of elements of B :

/ *

Avv,(AveP);
• • - "

Hence 0«" > u = > 6A

On the other hand there is a 0P-module21T with basis elements v(v e B). We define an operator

homomorphism between 21T and 1)1 by the formula

^
v->u= ^ 6Avv.

Since the elements u satisfy the defining relations of 0(m)lTT, it follows that there is an operator-
homomorphism

} 0Av0W>v->y 6Avv

between 0(mU1T and iff, which proves that from } dAvd
m^v=0 it follows that 6Av = 0

for all veB. The elements 0(m't> therefore form a basis of the 0P-module
If HI is finitely-generated over P, then to each set of generators uv u2..., ur of ITT over

P there belongs the P-module R(uv u2, ... ,ur; P) consisting of the set of all r-rows
(Av A2, ••• , Ar) (A(eP, t = l, 2, . . . , r) which satisfy the relation ^4!% +A2u2 + ... +Arur=0.
Ushig such a relation module B(ult u2, ... , ur; P), one defines the elementary ideals

€0(m;P), (E1(m;P))...
as follows :

If 0 < i < r , €,(111; P) is defined to be the ideal of P generated by the set of all (r - t)-rowed
minors of all matrices consisting of (r -i) rows of R(%, u2, ... ,ur; P); if i~^r, <£,• is denned
to be P. It. follows that

and that the elementary ideals depend only on 111 and not on the special set of generators
uv M2, ... , ur which we had to choose in order to be able to give a definition of <E0, <£lt €2,
Hence we may write €^ = €,(211; P) without any ambiguity resulting from the particular
choice of the system of generators %, u2, ... , ur (see [9], p. 87).

€0 is usually called the order ideal of ITt over P ; it always satisfies the relation <£oltt = (0)
(c/ [9], p. 89). The rank of HI over P is the number p=/>(ltt ; P) defined by €0 = <£! = ...
= €p_j = 0, €p # 0 ; if €0 # 0, the rank is defined to be 0. If ITt has a basis uvu2,... , ur over P,
then R(uv u2, ... ,ur; P) = 0 and hence <£0 = (£x =. . . = <£,._! = 0, € r = P, so that the rank in this
case is equal to the number of basis elements, i.e., the dimension of the vector module ITT over
P.

If P is a field, then ITT will have a basis over P and so the rank of ITT over P is equal to the
dimension of ITT over P.

In the more general case of semiprimary rings we can state

THEOREM 2. A module ITT finitely-generated over a commutative semiprimary ring P with a
unit element is a P-vector module of dimension p if and only if
(17) <EO(1TT ; P) = <Z1(m ; P) = . . . = (E^ITT ; P )=0 , €P(1TT ; P) = P.
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Proof : A ring P is called semiprimary if the difference ring of P over its radical R (i.e.,
its maximal two-sided nilideal) is semi-simple ; e.g., fields and direct sums of fields with finitely
many summands are semiprimary.

We have already seen that (17) is a necessary condition for JTt to be a vector module of
dimension p over P. Let P be a commutative semiprimary ring with a unit element and let
2TT be a finitely-generated P-module for which (17) holds. We have to prove that Ul has a basis
of p elements over P.

LetM1,«2, ... , uo be a system of as few as possible generators of ITt over P. In view of (17)
it follows that o~^p.

Since the difference ring of P modulo R is semi-simple, and hence a principal ideal ring,
we may transform the matrix of all relations between the given a generators by suitable
elementary transformations to its canonical form modulo R, thus showing that there is a
certain set of a generators vv v2, ... , vo of IH over P between which there are relations of the
form

> rikvk=0 (* = l, 2, ... , a),

with rik e R, €o_,(m ; P) + R = Peie2... es +R (cf. [9], p. 92).
Now assume that a>p ; we then have

Since P has a unit element it follows that Pej = P and so 1 = {fej for some £ e P. On multiplying
the relation

by £, we obtain a relation by means of which v1 may be eliminated from the set of generators,
thus establishing the existence of a set of less than a elements which generate ITt over P. This
contradicts the minimal property of a ; hence cr>p, and therefore o=p. But from

it follows that R(uv u2, ... , wp; P) =0, i.e., the elements uv u2, ... , up constitute a basis of
ITT over P.

If P is an integral domain and the finitely-generated P-module ITt is torsion free (i.e., such
that Au = 0, with AeP and 0 # u e ITt, implies that A = 0) then the rank of til over P turns out to
be equal to the dimension of the extended module Q(P)V(l over the quotient field Q(P). This
follows from the obvious fact that any system of generators of ITt over P is also a system of
generators of Q(P)Vil over Q(P) and any relation between such generators with coefficients in
Q (P) is a multiple of a relation with coefficients in P. Hence

For a homomorphism 8 of P over F it follows that the set of all rows (BAV 6A2, ... , 9Ar)
with (Alt A2,... , Ar)eR(uv u2, . . . , uT; P) forms a 0P-module 9R(uv u2, ... , ur; P) con-
tained in R(6^m^uv .„ , 0W)Wr; 0P). On the other hand let W be the difference module of
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the 0P-module of all r-rows with coefficients in 8P, modulo 8R(uv u2 ur; P). Then ITT
is a P-module and the mapping

t, 8A2, ... , 0Ar)+0B(ult ... , ur; P)/eE(uv « „ . . . , « , ; P)

defines an operator-homomorphism between 0(m)iTT and ITT. It therefore follows from

that
(8AV 8A2, ... , eAr)e0B(Ul, u2,...,ur; P ) .

Hence
v u2, ... , ur; P),
m; P).

The order ideal of the specialised module 0(m)tTC is obtained by applying 8 to the order
ideal of HI.

The rank of the specialised module 0(in)lTT is not less than the rank of 111:

p(0<m>m; 0P)3*p(m; P).

We recall that a bilinear form on the P-module HT is defined to be any function f(u, v)
ranging over X\\ with values in P such that

f(u1+u2,v)'=f(u1,v)+f(u2,v), -I
f(u,v1+v2)=f(u,v1)+f(u,v2) L (u, v, uv u2, vlt v2e tn ; AeP).

f{Au, v) =f(u, Av) —Af(u, v))

It follows trivially that/(O, v) =/(«, 0) =0. The bilinear form is called symmetric if

f(u, v) =f(v, u) for all u, v e ITT.

The h-th discriminant ideal of/ is defined to be the ideal Dm/p,»,y of P generated by the
set of all the determinants

\f(ut,vk)\, (i, k = l, 2, ... , h ; ux, u2, ... , uh, vt, v2, ... , vheV(l).

Dm/p, o,f is defined to be P.
It follows from the Laplace development of the determinants concerned that

5m/p,A,+A,,/=2)tn/p>A1,/ • 5tn/p,A,,/',
in particular

P=5m/p,o,/ = 5m/p,i,/ = 5m/p,2,/ = ••• •

If ITT is generated by a subset B over P then we may restrict the elements uv u2 uh,
vlt v2, ... ,vh occurring in the determinants generating VmiP.hj to t n e elements of B. Hence,
if B consists of a finite number of elements, say r elements, it follows that Dm/p,hj is finitely-
generated over P and that

while T>miptrj is the principal ideal generated by | /(&,-, bk) \,bvb2,..., br being r elements of B.
If 8 is a homomorphism of the F-xing P onto the F-nng 6P over F, then the bilinear

form / on ITT is mapped by 8 onto the bilinear form 8f on 0(m)lTT defined by

https://doi.org/10.1017/S2040618500032974 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500032974


24 HANS ZASSENHAUS

and accordingly for the discriminant ideals we have

p,h, ef~u-L'miP,h,f

If ITC is torsion free over P, then P must be an integral domain. ITT can then be uniquely
extended to a Q(P)-module generated by 2TT over Q(P), which is bound to be Q(P)ITT.
The bilinear form / can be uniquely extended to a bilinear form / on Q (P) ITT according to the
formula

= \ \ AiBJiut, vk),

for arbitrary A(, BkeQ(P) and «,-, vke3TT.
The h-th discriminant ideal of/ on Q(P)Vil is generated by the ^-th discriminant ideal of/

onlTT:

If 1TC is finitely-generated over P, then it has a rank r which is equal to the dimension of
Q (P) Vfl over Q (P). It follows that

2 ) m / P , r + l , / = X > m / P , r + 2 , / = ••• = 0 .

The bilinear form / is called degenerate or non-degenerate according as Dm/p, r,/ = 0 or
^ miP, r, f s4 0 • The bilinear form / i s degenerate if and only if there are elements u ^ 0 in IU such
that/(w, v) = 0 for all t> in ITT; an equivalent condition is of course that there are elements u ^ 0
in ITC such that f(v, u)=0 for all v in JTt.

The ideal ZHn/p, r, / is called simply the discriminant ideal/ defined on lit over F; we denote
the discriminant ideal by "Dmipj- More generally, if 111 is finitely-generated and of rank r over
the commutative ring P with a unit element, then for any bilinear form / on ITf over P, the
ideal Pm/p,r,/ is called simply the discriminant ideal of / a n d is denoted by 5m/;>,/.

§ 5. In this section we study the representations of a Lie-algebra L over a field F of
characteristic p, a representation A of L being a single-valued mapping a->Aa of the elements
a of L onto a set of matrices Aa of a certain degree / and with coefficients in F, such that

A(\a)-\Aa,
A(a o b) = Aa . Ab - Ab . Aa=AaoAb.

The representation A oiL induces a representation zlW ( i ) ) of degree/of the enveloping algebra
A (L), mapping each element a of L onto Aa and the unit element of A (L) onto the identity
matrix of degree/; hence every proper representation of finite degree over F of A (L) induces
a representation of L, by which it is itself induced as described above.

For every proper representation A of A (L) by matrices of finite degree over F we obtain a
specialisation 6 of the center § of A(L) by an algebra A(£>) over F. The representation A
appears as an extension of the specialisation 8 to a specialisation of A (L) onto the algebra
AA (L) over F. Hence every representation of finite degree over F of A (L) may be obtained
in the following way.

(1) Find extendable specialisations 6 of § by an algebra 0§ over F such that 0§ can be
considered as part of the center of 0U(c»4 (£). The latter also will be an algebra over F.

(2) Form all proper representations of finite degree over F of the algebra O^^AiL)
obtained under (1). These induce proper representations of finite degree over F of A (L) and
hence representations of L.
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An indecomposable proper representation A of A (L) of finite degree over F is, according
to the theory, characterised by the fact that the ring of all matrices commuting with A is
primary. Since A£, is part of this ring, A& itself will be a primary ring. Accordingly, in the
construction just described, it is only necessary to consider specialisations of § by primary
algebras over F.

It is now necessary to take up the question whether every specialisation of § by a primary
ring over F is extendable to a specialisation of A (L) over F and, if this is not the case, whether
there is a criterion for extendability.

• An irreducible representation A of A (L) of finite degree over F, which is not the null
representation, is certainly proper, and for it the set of all matrices commuting with A forms a
division algebra over F. Consequently /)§ is an extension of F.

Let us now consider a specialisation 6 over F of Q onto an extension 9$ of F. Since § is
finitely-generated over o, it follows that zl§ is finitely-generated over Ao, an integral domain
contained in AQ.

Quite generally we have

THEOREM 3. If a ring 5 with a unit element coincides with its quotient ring and if 5 is finitely
generated over an integral domain o, then o is afield and consequently S is an algebra over o..

Proof: We have

5 =

with a finite number of generating elements I=a1,a2,... , aa of 5 over o. Since o is contained
in the center of 5, it follows that Q (o) c=<2 (5) = 5. In fact, Q(o) even belongs to the center of

5. Since 5= y Q{o)at and since Q(o), as the quotient ring of an integral domain, is a

field, it follows that 5 is an algebra over Q(o). I t is possible to choose the basis l=alt a2, ... , as

of 5 over o so that l=ava2, ... , ar is a basis of 5 over Q(o); then

X~A f A-
a£= y — ak, with Xik, pikeo, for i = r + l, r+2, ... , s.

Introducing

we see that all the elements av a2, ... ,as are contained in the o-module with basis

— , — , . . . , — . I t follows that 5, i.e., the set of all linear combinations of alt a,, . . . , a, over o,

is contained in this o-module. For an arbitrary element A of Q(o), we find that

= A, . \-A2 1-... + Ar — ,

wi th coefficients A,, A2, ... , Ar in o. Since t h e e lements - = — , — , .•• , — form a basis of 5
/x /x y, ii

over Q (o) it follows that A = Xv A2 = A3 =. . . = Ar = 0, and hence A belongs to o. Hence Q (o) = o,
i.e., o is a field.

For the special case under consideration, we conclude that do is an extension of F. In
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other words, every specialisation 0 of § onto an extension 0g of F over F induces a specialisa-
tion <f> of o onto an extension <f>o = 8o of F over F.

Since the rank of A (L) over § is p2m, it follows from the theory developed in § 4 that the
rank of 8U(L^A(L) over 0§ must be at least p2m. Consequently we have 6^L^A(L)^0,
0(A(D)J ^o Since there is an operator-homomorphism between 0§ and 0(^(i ) )g #0 and since
0§j is a field, we have in fact an operator-isomorphism ; i.e., 0U(D) extends to 0.

We know that A (L) is finitely-generated over § , say

go,

It follows that

and that 0 maps the general element

a=

of A (L) over § onto the general element

8xt.

Since § is the center of an integrally closed ring, it is itself integrally closed, as we have
seen before. Since the quotient ring of A (L) is centrally simple of dimension p2m over Q(£>),
it follows that there is a minimal polynomial

of the general element a over§, where Pi(xv x2, ... , xs) is a homogeneous polynomial of degree
i contained in § [xlt x2, ... , xn] (cf. Deuring, AJgebren, p. 50). The homomorphism 0 maps
P(t) onto the polynomial

(-l)i8Pi(x1>x2,...,x,)t*m-i.

From P(a) =0 it follows that P(0a) =0.
Hence 0P is divisible by the minimal polynomial of da over 0^j.
The degree of any minimal polynomial oid^^^A (L) over 0§ is consequently at most jpm.
The discriminant ideal of A (L) over § can be defined in the usual fashion (cf. Deuring,

Algebren, p. 87). I t does not vanish, since K is centrally simple, and so separable, over the
quotient field of § . It is known that the degree / of the minimal equation of a separable
algebra 5 over a field F satisfies the inequality/2>dimf 5, equality holding if and only if 5 is
centrally simple over F. From these and other known results, we deduce

THEOREM 4. Any specialisation 8 over F of the center § of A (L) onto an extension 0§ of F
can be extended to a specialisation 0W<i» of A (L) over F onto an algebra 0W(t».4 (L) of dimension
not less than p2m over 0§. There is a general element of A (L) over § and it is mapped by 8 onto a
multiple of the minimal polynomial of the corresponding general element of 0^*i"J.(Z) over
0§. The algebra d^VA (L) is separable over 0§ if and only if it is centrally simple of dimension
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p2m over 6Q. In this case, 8 maps any minimal polynomial of A(L) over § onto a minimal
polynomial of fl^tt))^ (£) over 0g. y^e discriminant ideal of A (L) over § does not vanish.

Furthermore we have
THEOBEM 5. Let 6 be a specialisation over F of& onto an extension #g of F. Then

where QA(L)I3 ^S ^ e discriminant ideal of A(L) over § , if and only if d^^A (L) is centrally
simple of dimension p2m over 0g.

Proof :* (1) Let 8^A<-L^A (L) be centrally simple over 0g. Then, according to theorem 4,
the dimension of B^^^A (L) over 0§ is p2m and any minimal polynomial of A (L) over § is
mapped onto a minimal polynomial of 0WC£»4(_£) o v e r 0§. The second highest coefficient
of the minimal polynomial is the linear form which is used to define the discriminant ideal.
I t follows that

and since flWCt))^ (£) j s separable over 0g, it follows that
Conversely, let ^ I ^ ^ / g ^ O . The discriminant ideal QA(L)I3> is obtained as the pZm-th.

discriminant ideal of a bilinear form f(a, b) =tr(ab) on A {L) over § , where tr x is denned to
be the trace of x for an absolutely irreducible representation of Q(A (L)) over <2(§). Hence

f(a,b)=f(b,a), f(ab,c)=f(a,bc),

and, for characteristic p>0,
f(av,bv)={f(a,b)}'.

Furthermore

By application of 8 it follows that

8f(u,v)=8f(v,u),
8f(u, vw) =6f(uv, w),

for u, v, w contained in

It follows that the set of all the elements u of 5 which satisfy the condition

f(u, v) = 0 for all v e 5

forms a two-sided ideal 21 of 5 such that dimBg( 5/21) =p2m, and 8f induces a non-degenerate
symmetric bilinear form g on 5/21 over 0§ satisfying g{uv, vv) ={g{u, v)}v and hence
g(upi, vpi)={g(u, v)}pi, for all M, V contained in 5/21. Now for any element x of the radical of
5/21, xpi = 0 for some j . Hence {g(x, v)}pj = g (xp\ vpi) = 0 and therefore g (x, t)) = 0 for all v in
5/21; hence x = 0. Since this argument still holds after any extension of the ground field
0g of 5/21, it follows that 5/21 is separable over 0g. From theorem 4 it follows that the
degree of a minimal polynomial of 5 over 8§ is not greater than pm. This holds a fortiori for
5/21. Since 5/21 is separable and of dimension p2m over 8§, it follows that 5/21 is centrally
simple over 8& and hence that the degree of 5/21 over 0§ is equal to pm. But the degree of

* For a simplification of this proof and for other valuable advice, I am indebted to W. E. Jenner.
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the minimal polynomial of an algebra S with a unit element over the ground field is at least
equal to the sum of the degrees of the minimal polynomials of the simple components of S
modulo its radical, and is certainly greater than this sum if the radical of 5 is not zero. Since
we have already proved that there is a simple component of 5 over its radical with minimal
polynomial over 0§ of degree pm, it follows that the degree of the minimal polynomial of S
over 6Q is at least pm and is equal to pm only if 5 is simple. But, according to theorem 4, the
degree of the minimal polynomial of 5 over 8Q is not greater than pm. Hence the degree is

pm and 5 is simple; i.e., Sc^.S/21, i.e., 21=0. Hence 8iA^L^A(L) is centrally simple of dimen-
sion p2m over 0§ ; q.e.d.

Theorems 4 and 5 find convenient expression in

THEOREM 6. The degree of any absolutely irreducible representation A of the Lie-algebra L
over F is at most pm. It is equal to pm if and only if A does not map the discriminant ideal of
A (L) over § onto zero.

The representation A is given as the representation of the Lie-algebra (L x <P)F =L# over
a suitable extension 0 of F, such that the proper representation of A (L<p) = (A (L) x &)F over
0 induced by A, which may also be denoted by A, maps A (L&) onto the full ring of matrices
of degree / over 0. The representation A induces a specialisation 8 of §* = (§ x 0)F onto a set
of matrices which commute with A. According to Schur's Lemma, A maps §& onto 01f.
We consider the specialisation 8 of g^ over 0 defined by

There is an operator-homomorphism

of 0U(£*)M (L0) over 0§* onto AA (L0). In other words, A induces an absolutely irreducible
representation of degree / of B(A<Jji>))A (L0) over 0§<p; i.e., there is a difference algebra of the
algebra 0^A<~L^A(Lt,) over 6Q0 isomorphic to the full matrix algebra of degree / over 6Q0.
According to theorem 4, the degree of a minimal polynomial is not greater than pm, and hence
f^pm. If the degree is equal to pm, then the argument given in the proof of theorem 5 shows
that the algebra 0UC£*)M (L<p) is itself isomorphic to the full matrix algebra of degree^)™ over
§*. Furthermore it follows from theorem 5 t h a t / = p m if and only if

Since VA(LC,)IQ<I>
 =^^a(£)/4> ^n e previous inequality is equivalent to the inequality "OA(L)I& ^ 0 ;

q.e.d.
Though it is probably not true that the image of the minimal polynomial P belonging to

the general element a o£A(L) over § under any specialisation 8 of § over F onto an extension
of F will be a minimal polynomial again, it can be jDroved that 8P is the characteristic poly-
nomial of da for a suitable representation of 0(j4(i)M (L) over 8^>.

From theorem 2 and the general theory developed in § 4, we derive
THEOREM 7. The specialisation 8of§ onto a semiprimary ring over F is extendable to a

specialisation #Utt» o y ^ (£) o r e j 0 a 8^-ring with exactly p2m basis elements over 8$ if and only if

in other words, if and only if

where § denotes the kernel of 8.
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We have seen that for any indecomposable representation A of L over F, the algebra A%
is primary. Consequently all irreducible constituents of A will lead to specialisations of § with
the same kernel, i.e., to (weakly) equivalent specialisations. On the other hand, corresponding
to any specialisation 8 of § by a finite extension of F, there are indecomposable representa-
tions of L which are not irreducible, such that all the irreducible components lead to specialisa-
tions of § which are weakly equivalent to 8. In order to prove this we use a method of W.
Krull.

Assume that there is an ideal a ̂ 0 of § such that aA (L) = a2A (L). We shall show that

In fact, since § satisfies the maximal condition and A (L) is finitely-generated over %,
it follows that aA (L) is finitely-generated over §, say

aA(L)= N &,§>.

Since a2A (L) = aA (L), there must be equations

with aik in a ; hence

y (Srt-a«)6,=0 (k = l,2,...,q),

from which it follows that
Det(IQ-(ocik))=O,

since not all the bk vanish and A (L) has no divisors of zero. Hence

J=Det/ a = 0 (mod a),
i.e., lea and so ct=gj.

If, for an ideal a of§, aA(L)=A(L), then a^O and a2A(L) = aA(L) ; hence a = § .
It follows that any proper ideal of § also generates a proper ideal of A (L) ; e.g., the

kernel 3e of 6 generates a proper ideal of A (L).
Since the image 6Q is of finite dimension over F but § is not, it follows that

Hence the two-sided ideal 2l=§gA(L) satisfies.

Nowforj = l, 2,... ,§g*0 and W = ($eA(L)y = §i(A(L)y=$eA(L). Since A (L) has no divi-
sors of zero it follows that (0)c=2t»^=2| = ^l(L) and hence, as we have already seen, that
(IV)2 c= 21*. If 21* were equal to W+1, it would follow that 2121* = 212I»+1, i.e., that 2I'+1 = 2t3+2,
and therefore that 21' = W+2 and, by induction, that

and hence that 2f> = 2I)+J' = 2l23 = (2l^2, contrary to our previous result. Hence

Hence we have the infinite chain
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F o r j > l , the algebra* 5=A(L) -&3
eA(L) over F contains in its radical the two-sided

ideal 8 =&eA (L) -g&4 (L) *0, for which 5 - 23 ~ 0U(£»J (£). I t follows that 5 admits only
proper representations such that all their irreducible constituents induce specialisations of §
over F which are weakly equivalent to 6. But the regular representation of S over F induces
a representation which is not fully reducible. This is because the radical of 5 does not vanish.
Hence we have

THEOREM 8. Every representation of finite degree over F of the Lie-algebra L decomposes into
a sum of representations leading to specialisations of § by primary algebras over F. For any
specialisation of§ by a finite extension of F there are indecomposable representations of L of finite
degree over F which are not fully reducible and such that each irreducible constituent leads to
specialisations of& which are weakly equivalent to 6.

Example 1. Let L be a nilpotent Lie-algebra. We know from [6] that for every absolutely
irreducible representation A of L each matrix Aa has only one characteristic root A (a) and that
any two absolutely irreducible representations with the same distribution of characteristic
roots are equivalent. Furthermore, for any element a of L, av} = 0 if p' is a power of p greater
than the class of L. Hence avi belongs to the ring o previously constructed. It follows that
for every specialisation <f> over F of o onto F the algebra </><AW»A (L) over <f>o has only one
absolutely irreducible representation, up to equivalence. Since dimF<£(A(i)M (L) =p<-A<-L'>; o) =pl,
we find, by reduction of the regular representation of ^ ^ " i (L) over F, which is of degree
pl, that every absolutely irreducible representation has a power of p for its degree.

This is one of the results proved in another way in [3] and in [4].
We may consider Q(o)L as a nilpotent Lie-algebra over Q(o). In the regular representa-

tion R of Q(A (L)) over Q(o), every element

of Q(o)L has only one characteristic root A (a), namely the one defined by the equation

Since Q(o)L generates Q(A (L)) over Q(o) it follows that all absolutely irreducible constituents
of R are equivalent. We find

THEOREM 9. If Lisa nilpotent Lie-algebra over F, then Q (§) is a pure inseparable extension
ofQ(o).

It is not always true for nilpotent Lie-algebras that Q{&) =Q(o), or what amounts to the
same thing, that § = o.

* We observe that oil A (L) =2J3, where 21 =^gA (£), is a two-sided ideal of A (L) for which

We have to prove that dimp[A(L) -2I3']<°°- This follows from the general result that if for two ideals
X, 3) of an J'-ring p there are equations

then

and from the fact that every ideal of A (L) is finitely-generated over §.
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Example. Let L have four basis elements e1( e2, e3, ei over a field of characteristic p>2,
and multiplication table e,- o e1 = 0, e4 o e2 = e3 o e2 = e^ eioe3 — e2. We see immediately that el
efi 63, e4 belong to o<^L*, that ej is the basis of the center of L and that

L* =Fe2+Fe3+Fei + [<elf ef, ef, eJ>,«L*]-

Since no non-trivial linear combination of e2, e3, e4 is in the center of L, it follows that

Z i ^—*•»

> Fe^},
t=i ^—--j=i

o=(elt el, el, ef)F,

l=dimF(L*-o~L*) = 3, dim0A(L)=p3,
dimQ(3)Q(A(L))=p2<p3, m = \, oc=§.

It is an interesting problem to find out whether for all non-nilpotent Lie-algebras it is the
case that <2(§) is not pure inseparable over Q{o).

Example 2. The simple Lie-rings of Witt (c/. [2]) are obtained by taking a finite sub-
module'in of a field F of prime characteristic p and forming the Lie-algebra L (iTt, F) with basis
elements ea, ep, ey, ... over F, where a, jS, y, ... range over ITt and the multiplication rule is

We deal only with the case in which JTt is the prime field of F and p>2. We note that for
a ^ 0 , Lie-multiplication by ea applied^ times annihilates each element, and that Lie-multiplica-
tion by e0 applied p times has the same effect as when applied once. It follows that the
elements

belong to o^L* ; and clearly they are linearly independent over F. They generate the
p-invariant -f-Lie-ring

m =
contained i n g ^ Z * , and the -F-subring o ^ ^ , , , £1( ... , £P_IXF of o. Since o1^L* = LJ> +L, it
follows that L* = (L + o1)^L* and therefore that o^L* =(o^L) +(o1^Z*). Since L has
center (0) it follows that o^L = (0), o^L* =ox^L*, o=(pr,L*)P =(p1^L*yF = ov We note
that dimp(Z* -HI) =p, and so A(L) has pv basis elements over o namely, the pv elements

o ' i
It follows that dimg^(X) divides pv. Since dim^A(L)=p2m and p>2, it follows that
d i m ^ (L) <pp; hence o <=g.

Choose the basis of L over F in the order e0, ej ev_x. Let

(18) C

be an element of § in canonical form. Denote by v0 = vo(£) the highest power of e0 occurring
among the terms of highest degree in (18), so that there is a term

Avov,...«j,_1eo°ei1 ... e^j-^O, with vo+v1+ ... +vv_1=d(£),

in (18).
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Suppose, for some such term, that there is an exponent i > 0 for which p does not divide
vt. If we let A = AV(|Va... ,p_lt we have

0 =e_<o £ =. . . +e_io Ae-jeji... e ^ 1 + . . . .

Computing the value of e_,-o Aej>e"i... e"^1 and straightening it out, we could find a term

2ivi\e
v
0°

+1... e'i"1... *0

which, because of the maximum property of v0, could not be cancelled out by any other term.
Hence

vt = Q (mod p), for i = l, 2 , . . . , p-l.

Substituting f4 for ef if i > 0 and substituting £o+eo for e% and continuing in this way
for as long as possible, we transform the canonical expression (18) for £, after a finite number
of steps, into the form

(19) "w.

which expresses £ as a linear combination of the pv basis elements of A (L) over o. Writing
for (19),

(20) £

with |e,0...a _ i ; Xa...x _1
e-f. we may associate with each term on the right hand side of (20)

a weight, the weight of the term shown being

1 = 0

In the process of transforming (18) into (20), we find that at each step a term of a certain weight
is replaced by a term of the same weight, with the same coefficient.and perhaps an additional
term of lower weight. At any rate the terms of highest weight in (20) are obtained from the
terms of highest degree in (18) by replacing, as far as possible, pth powers of e,- by £,-, for i =0,
1, ... , p-l. After this has been done none of the terms of highest weight is cancelled out;
there are highest terms, not equal to zero, of the form

in (18). Writing vo=j +pfl0, we find that there is a term of highest weight of the form

A**>, ^-i^^-C-"ile^°
in (20). We thus find that, in (19),

KjO0...0*0-

It follows that the operator-homomorphism

of the o-module § onto the o-module with the p basis elements 1, e0, ..., eg"1 is an operator-
isomorphism. The rank of § over o is therefore less than or equal to p.
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It follows that

Our result may be stated thus :
The enveloping algebras of the Lie-algebras of Witt of dimension p over a field of characteristic

p>2 are maximal orders of a division algebra of dimension pv~1 over its center. Each absolutely
irreducible representation is of degree jpi<J>-i) or less, and the upper bound is actually attained.

From [2] it follows now that Q(g>) is separable over Q(o).
For more detailed results, see [2].

§ 6. For certain purposes, in particular for the discussion of Kronecker-Lie-products (cf. [6])
it is of advantage to deal with A (L) as a ring over o instead of as a ring over §.

We know that after a suitable extension of the ground field there is a basis of A (L) over o
consisting of pl elements, where l = dimp(L* -§^Z*). It follows that

,i=0, for» = 0, 1, ...,pl-l,

Hence for any homomorphism 8 of o onto an algebra over F, it follows from theorem 2
that there will always be pl basis elements of 6(A(L^A(L) over 9o. Hence all these homo-
morphisms are extendable.

Again, for the discussion of the irreducible representations of A (L) of finite degree over
F, we have to deal with the homomorphisms of o over F onto finite extensions of F, and there
will belong to any of them only a finite number of non-equivalent irreducible representations
ofL.

For the discussion of the indecomposable representations of A (L) of finite degree over F,
we have to deal with the homomorphisms of o over F onto primary algebras over F.

Any homomorphism 0 over F otA (L) into an luring H8, mapping 1 onto the unit element
of He, may be called a specialisation of A (L) into this 2 -̂ring. Two specialisations 0 and &'
of A (L) into K® and H8', respectively, are called equivalent if there is an isomorphism between
X8 and X8' over F mapping &x onto @'x for all x e A (L). This notion meets the usual three
requirements for an equivalence relation. Two specialisations @ and &' of A (L) into the
.F-rings K8 and H8', respectively, are added by the rule

(8 + 8')x=0x + 0'x,

which defines a specialisation of A (L) into the algebraic sum of He and Ke'.
The Lie-Kronecker product of two specialisations 0 and 0', denoted by 0 ® 0', is defined

by the rules
iH

8 .0'(a) + &(a) . lne-, iovaeL,

«,«,... <*„ { 0 ® 0 'K)}" ' . . . { 0 ® ®'(an)Yn,

G.M.A.
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by which, in fact, a specialisation & <g> &' of A (L) into the product ring of He and H®' over F is
defined, as can be easily verified. Furthermore, it is easy to verify that the substitution laws
of addition and multiplication with respect to our equivalence notion hold, and that the classes
of equivalent specialisations form a commutative semi-ring S(A (L)) with that specialisation
@! of A (L) onto F which is defined by the rules

@1(a)=0 f

acting as unit element. The semi-ring S(A(L)) contains as a subring the set D(A(L)) of all
classes of equivalent specialisations containing all representations of A (L) in the ring of all
matrices of a certain finite degree, and the equivalence notion defined above coincides with the
ordinary equivalence notion for representations.

From the theorem of Wedderburn-Remak-Krull-Schmidt-Fitting, it follows that
THEOBEM 10. The set of all classes of specialisations of A (L) over F containing indecom-

posable representations of finite degree over F forms a basis of the commutative semi-ring D(A (L))
consisting of the set of all classes of equivalent specialisations containing representations of A (L)
of finite degree over F, relative to the natural numbers as multipliers.

Any specialisation @ of A (L) into the ring He induces a specialisation @L of L into H9,
i.e., a homomorphism over F of the Lie-algebra L over F into the .F-Lie-ring attached to the
associative jP-ring He. In this way there is defined a (1-1 ̂ correspondence between the
specialisations of A (L) and those of L. Furthermore, the specialisations of L may be distri-
buted into classes of equivalent ones, and added and multiplied as above, the Lie-Kronecker
product this time being defined simply by the formula

®'a + 0a.lRe.

It follows that the correspondence

induces an isomorphism between the semi-ring S(A(L)) and the semi-ring S(L) of all classes
of equivalent specialisations of L containing representations in the ring of all matrices of fixed
finite degree over F.

All this can be stated with L* in place of L, if the specialisations of L* are defined as
Lie-homomorphisms © of the .F-Lie-ring L* over F into arbitrary associative 2^-rings H9 with
unit elements, satisfying the additional condition

®{x») = {&X)P for all x in L*.

We then have to use the rule

which is easily verified, for the product definition.
Any specialisation @ of A(L) into H9induces also a specialisation 0° of o into Ke, i.e., a

homomorphism over F of the .F-ring o into the .F-ring H® which maps the unit element of o
onto the unit element of He. Equivalence, sum and product are defined as above, the Lie-
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Rronecker product of two specialisations 0, &' of o into He and He', respectively, being de-
fined by the formulas

©'« + (
and

for an arbitrary element of o as represented according to lemma 4 of § 1.
But this time we find only a homomorphism of S(A(L)) onto the semi-ring S(o) of all

classes of equivalent specialisations of o, and only a homomorphism of D (A (L)) onto the semi-
ring D (o) of all classes of equivalent specialisations of o containing representations by matrices
of finite degree over F.

We call two specialisations &, &' of any one of the systems A (L), L, L* and o weakly
equivalent if

&x = 0 if and only if G'x = 0. *

Weak equivalence again satisfies the necessary three requirements, and is implied by ordinary
equivalence. It also satisfies the substitution laws of addition and multiplication ; so the
sets of all classes of weakly equivalent specialisations form subrings W(A(L)), W(L), W(L*)
and W(o). The sets of all classes of weakly equivalent specialisations containing representa-
tions by matrices of finite degree over F form semi-rings WD(A(L)), WD(L), WD(L*) and
WD(o).

The semi-rings W(A(L)), W{L) and W(L*) are homomorphic to S(A(L)), S(L) and
S(L*.), respectively ; WD(A(L)), WD(L) and WD(L*) are homomorphic to D(A(L)), D{L)
and D(L*), respectively ; and W(o) is homomorphic to both S(o) and W(A(L)).

Instead of referring to classes of weakly equivalent specialisations containing representa-
tions by matrices of finite degree over / we might equally well refer to classes of weakly
equivalent specialisations containing specialisations onto algebras over F. Instead of theorem
10 we have

THEOREM 11. The sets of all classes of weakly equivalent specialisations of A(L) and o,
respectively, containing a specialisation onto a primary algebra over F, constitute bases of the
commutative semi-rings WD(A{L)) and WD(o), respectively, of all classes of weakly equivalent
specialisations of A(L) and o, respectively, containing specialisations onto algebras over F,
relative to the natural numbers as multipliers.

Furthermore we have
THEOREM 12. The units of the semi-ring W (o) of all classes of weakly equivalent specialisa-

tions of o over F are represented by the specialisations of o onto F, over F.
Proof: If & represents a unit of W (o), then © may be chosen as a specialisation of o onto

an .F-ring @o. There will be another specialisation ©' onto an .F-ring &'o, such that ©® &'
maps all elements of L* ~ § onto zero :

ieo • ®'w + ®u • IQ'O =0, for all u in L* ^g.
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From the relation
leo . @'u=-0u . 76'o (ueL*r,§)

in the product ring ©o ® ®'o over F, we conclude that

&u=A(u)leo, @'M= -A(u)le-o, where A(u)eF ;

hence both ®o and @'o coincide with F.

Conversely, if there is a specialisation 0 of o onto F, then there is another one, &' say,
defined by &'u = - @u. It follows that their product maps each element of L* ̂ § onto zero,
which means that this product represents the unit element of W(o)

If © and &' are two specialisations of o onto F, say

®u = A(u)eF, &'u = A'(u)eF, forMe£*~3,
then it follows that

&®@'(u)=A(u)+A'(u).
This proves the corollary to theorem 12.

The specialisations of o onto F over F form an abelian group of characteristic p isomorphic to
the group of units in W (o) and also to the group of units of S(o).

We define two specialisations 0 and ©' of A (L) to belong to the same family if they induce
weakly equivalent specialisation of o. This relation satisfies the three necessary requirements
for an equivalence relation.

Weak equivalence of two specialisations of A (L) implies that they both belong to the
same family. Again the substitution laws of addition and multiplication are satisfied. The
set of all families forms a commutative semi-ring F(A(L)), and F(A(L)) is isomorphic to
JF(o). Each family contains among its members at most a finite number of non-equivalent
irreducible representations of finite degree over F.

The set of all families containing an absolutely irreducible representation forms an abelian
group of characteristic p which is isomorphic to the group of units of S(o).

This group may be recognised by making use of lemma 4 of § 1 as the additive group
defined by the vector module of n dimensions over F.
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