A note on centralizers of involutions involving simple groups

Donald Wright

If a finite group G has a 'central' involution t whose centralizer in G is $\langle t \rangle \times H$ then, under certain conditions on H, G cannot be simple.

The purpose of this note is to observe the following generalization of the theorem of [1]. Let i(X) denote the number of conjugacy classes of involutions of a group X.

THEOREM. Let G be a finite group possessing a 'central' involution t such that $C_G(t) = \langle t \rangle \times H$ where H is a non-abelian simple group such that

(i) the centre of a Sylow 2-subgroup S of H is cyclic, and (ii) the involution τ of Z(S) is a square in H.

Then

(a) if i(H) = 1 then $G = O(G).C_{C}(t)$;

(b) if i(H) = 2 then G has a subgroup of index 2.

Proof. Let χ denote the permutation character of the representation of G on the left cosets of $C_G(t)$. Suppose i(H) = 1. Since t is a non-square in G, (ii) implies that $t \neq \tau$ in G. If $G \neq O(G).C_G(t)$ then $t \sim \tau t$ from [2]. By inducing the identity character of $C_G(t)$ to G one sees that $\chi(t) \equiv 0 \pmod{2}$. Therefore

Received 26 February 1976.

425

https://doi.org/10.1017/S000497270002534X Published online by Cambridge University Press

$$\left[G: C_{C}(t)\right] = \chi(1) \equiv 0 \pmod{2},$$

contradicting the fact that t is 'central' in G .

Suppose i(H) = 2 and let $\tau_1 \in H$ be an involution not conjugate to τ in H. Again $t \neq \tau$ in G. If $t \sim t\tau$ in G then, since Z(S)has a unique involution, one again obtains $\chi(t) \equiv 0 \pmod{2}$ and $\chi(1) \equiv 0 \pmod{2}$, a contradiction. Therefore $t \neq t\tau$ in G. Suppose Ghas no subgroup of index 2. Then by a well-known transfer lemma (see, for example, [3], p. 265) S must contain a representative of each conjugacy class of involutions of G. Therefore i(G) = 2. Since t is conjugate in G to neither of τ , $t\tau$, one must have $\tau \sim t\tau$ in G. Since Z(S) has a unique involution one sees that $\chi(\tau) \equiv 0 \pmod{2}$. Therefore $[G: C_G(t)] = \chi(1) \equiv 0 \pmod{2}$, contradicting the fact that tis 'central' in G. The theorem is proved.

REMARK. Most of the sporadic simple groups, including the Mathieu groups, satisfy the conditions imposed on H.

References

- [1] M.J. Curran, "Centralizers involving Mathieu groups", Bull. Austral. Math. Soc. 13 (1975), 321-323.
- [2] George Glauberman, "Central elements in core-free groups", J. Algebra
 4 (1966), 403-420.
- [3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).

Department of Mathematics, Monash University, Clayton, Victoria.