Congruence properties of self-contained balanced sets

By Hansraj Gupta.

(Received 10th June, 1938. Read 4th November, 1938.)

1. Let the set $b_{1}, b_{2}, b_{3}, \ldots, b_{k}$; of k non-negative integers be denoted by B_{k}. Let ξB_{k} denote the set $\xi b_{1}, \xi b_{2}, \xi b_{3}, \ldots, \xi b_{k} ; \xi$ being any integer >1. Without loss of generality, we can suppose that $b \leqq b_{i+1}$.

In what follows, $G_{r}\left(B_{k}\right)$ denotes the sum of the products taken r at a time of the members of set $B_{k} ; 0 \leqq r \leqq k$. We take $G_{0}\left(B_{k}\right)=1$. $S_{r}\left(B_{k}\right)$ stands for the sum of the r-th powers of the members of set B_{k}. All small letters denote integers $\geqq 0$, unless stated otherwise; p 's denote primes $\geqq 2 ; m>2$; and ϕ is Euler's function.

If $m \equiv 0\left(\bmod p^{u}\right)$, but $\equiv 0\left(\bmod p^{u+1}\right), u>0$, then we say that m is u-potent in p, and write $\operatorname{Pot}_{p} m=u$. In the same way, when $\phi\left(p^{a}\right) \mid g$, but $\phi\left(p^{a+1}\right)$ does not divide $g, a>0$, then we say that g is α-piquant in p, and write $\operatorname{Piq}_{p} g=\alpha$. Evidently if $\operatorname{Piq}_{p} g=a$, then $\operatorname{Pot}_{p} g=a-1$, but not conversely. Again if $\operatorname{Piq}_{p} g=\alpha>0$, then we write M_{g} for the product $\Pi\left(p^{a+[2 / p]}\right)$, and N_{g} for the product $\prod_{a>0}\left(p^{1+[2 / p]}\right)$. Thus $N_{6}=7.3 .2^{2}$, and $M_{6}=7.3^{2} .2^{3}$.

A set B_{k} is said to be self-contained modulo m, when for every number ξ less than and prime to m, the members of set ξB_{k} are congruent modulo m to the members of set B_{k}, each to each, though not necessarily in the same order.

If the members of set B_{k} satisfy the relation:

$$
b_{i}+b_{k-i+1}=m, \quad i=1,2,3, \ldots, k
$$

then B_{k} is called a balanced m-set.
2. We make use of the following

Lemma. If $\operatorname{Piq}_{p} g=a$, then numbers ξ prime to p, exist such that $\operatorname{Pot}_{p}\left(\xi^{g}-1\right)=a+\left[\frac{2}{p}\right]$.

Numbers ξ exist such that $\operatorname{Pot}_{p}\left(\xi^{h}-1\right)=\alpha+\left[\frac{2}{p}\right]$, where $h=\phi\left(p^{\alpha}\right)$. Let $g=s . h$, where p does not divide s. Then since

$$
\left(\xi^{g}-1\right) /\left(\xi^{h}-1\right)=1+\xi^{h}+\xi^{2 h}+\ldots+\xi^{(s-1) h} \equiv s\left(\bmod p^{\alpha+[2 / p]}\right)
$$

we have

$$
\operatorname{Pot}_{p}\left(\xi^{g}-1\right)=\operatorname{Pot}_{p}\left(\xi^{h}-1\right)=\alpha+\left[\frac{2}{p}\right]
$$

3. Theorem 1. If B_{k} be a balanced m-set, then

$$
2 G_{2 j+1}\left(B_{k}\right) \equiv(k-2 j) m G_{2 j}\left(B_{k}\right)\left(\bmod m^{2} n\right)
$$

where $n=m / 2$, only when m is even and k odd; otherwise $n=m$.
We have

$$
\prod_{i=1}^{k}\left(x+b_{i}\right)=\prod_{i=1}^{k}\left(x+m-b_{i}\right)
$$

Therefore

$$
\sum_{r=0}^{k} G_{r}\left(B_{k}\right) x^{k-r}=\sum_{r=0}^{k}(-1)^{r} G_{r}\left(B_{k}\right)(x+m)^{k-r} .
$$

Equating the coefficients of $x^{k-(2 j+1)}$, we get

$$
\begin{gathered}
2 G_{2 j+1}\left(B_{k}\right)=\binom{k-2 j}{1} m G_{2 j}\left(B_{k}\right)-\binom{k-2 j+1}{2} m^{2} G_{2 j-1}\left(B_{k}\right)+\ldots \\
+\binom{k}{2 j+1} m^{2 j+1} G_{0}\left(B_{k}\right)
\end{gathered}
$$

Therefore

$$
G_{2 j+1}\left(B_{k}\right) \equiv 0(\bmod n), \quad j=0,1,2, \ldots,\left[\frac{k-1}{2}\right]
$$

In particular

$$
G_{2 j-1}\left(B_{k}\right) \equiv 0(\bmod n), \quad j=1,2,3, \ldots,\left[\frac{k+1}{2}\right] .
$$

Hence the theorem.
Again, if B_{k} be a balanced m-set, we notice that

$$
2 S_{2 j+1}\left(B_{k}\right)=\sum_{i=1}^{k}\left\{b_{i}^{2 j+1}+\left(m-b_{i}\right)^{2 j+1}\right\} .
$$

Therefore

$$
2 S_{2 j+1}\left(B_{k}\right) \equiv(2 j+1) m S_{2 j}\left(B_{k}\right)\left(\bmod m^{2} t\right)
$$

where $t=m$ or $m / 2$, according as m is odd or even.
4. Theorem 2. If \boldsymbol{B}_{k} be a self-contained set modulo m, then

$$
G_{2 j}\left(B_{k}\right) \equiv 0 \equiv S_{2 j}\left(B_{k}\right)\left(\bmod p^{u-\alpha-[2 / p]}\right) ;
$$

where $\operatorname{Pot}_{p} m=u$, and $\operatorname{Piq}_{p}(2 j)=a$; and $j>0$.
Evidently, we can suppose that $a \leqq u-\left[\frac{2}{p}\right]$. Now let ξ be a
number such that $\operatorname{Pot}_{p}\left(\xi^{2 j}-1\right)=a+\left[\frac{2}{p}\right]$.

Then
whence

$$
\begin{aligned}
\xi^{2 j} G_{2 j}\left(B_{k}\right)=G_{2 j}\left(\xi B_{k}\right) & \equiv G_{2 j}\left(B_{k}\right)\left(\bmod p^{u}\right) \\
\left(\xi^{2 j}-1\right) G_{2 j}\left(B_{k}\right) & \equiv 0\left(\bmod p^{u}\right) \\
G_{2 j}\left(B_{k}\right) & \equiv 0\left(\bmod p^{u-\alpha-[2 / p]}\right)
\end{aligned}
$$

As an immediate consequence of Theorem 2, we have

$$
\left(m, M_{2 j}\right) G_{2 j}\left(B_{k}\right) \equiv 0(\bmod m)
$$

The above proof holds good also when G is replaced by S.
5. Theorem 3. If B_{k} be a balanced m-set, self-contained modulo m, then
$2\left(m, M_{2 j}\right) S_{2 j+1}\left(B_{k}\right) \equiv 0 \equiv 2\left(m, M_{2 j}\right) G_{2 j+1}\left(B_{k}\right)\left(\bmod m^{2}\right) ; j>0$.
This theorem follows directly from theorems 1 and 2.
If $(k, 2 j)=g$, then the second part of this theorem takes the form

$$
2\left(m, M_{2 j} N_{g} / M_{g}\right) G_{2 j+1}\left(B_{k}\right) \equiv 0\left(\bmod m^{2}\right)
$$

for $\operatorname{Pot}_{p}(k-2 j) \geqq \operatorname{Pot}_{p} g$.
6. When set B_{k} consists of integers less than and prime to m. Theorem 3 leads to the following generalisation of Leudesdorf's Theorem:

$$
2\left(m, N_{g}\right) G_{2 j+1}\left(B_{k}\right) \equiv 0\left(\bmod m^{2}\right) ; j \geqq 1, g=(k, 2 j), k=\phi(m)
$$

Let C denote the set of integers $1,2,3, \ldots, m-1$; and let D denote the set $0,1,2,3, \ldots, m-1$.

Then for $j \geqq 1$, we have

$$
2\left(m, M_{2 j}\right) G_{2 j \div 1}(C) \equiv 0\left(\bmod m^{2}\right)
$$

and

$$
2\left(m-1, M_{2 j}\right) G_{2 j+1}(D) \equiv 0\left(\bmod (m-1)^{2}\right)
$$

Since $G_{2 j+1}(C)=G_{2 j+1}(D)$, we get

$$
2\left(m .(m-1), M_{2 j}\right) G_{2 j+1}(C) \equiv 0\left(\bmod m^{2}(m-1)^{2}\right)
$$

This is a generalisation ${ }^{1}$ of two theorems of Glaisher. The theorem holds when G is replaced by S.

In particular, if E denote the set of integers $1,2,3, \ldots, p^{u}-1$, we have

$$
G_{2 j+1}(E) \equiv 0\left(\bmod p^{2 u-\lambda-[2 / p]}\right)
$$

where $\lambda=\operatorname{Piq}_{p}(2 j)$, and $j \geqq 1$.

[^0]
Government College,

 Hoshiarpur, India.
[^0]: 1.J. W. L. Glaisher, Messenger of Math., 28 (1898), 184-185. For snother generalisation see H. Gupta, Proc. Edinburgh Math. Soc. (2), 4 (1935), 61-66.

