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Abstract

Let K be a two-dimensional global field of characteristic 6= 2 and let V be a divisorial
set of places of K. We show that for a given n > 5, the set of K-isomorphism classes
of spinor groups G = Spinn(q) of nondegenerate n-dimensional quadratic forms over K
that have good reduction at all v ∈ V is finite. This result yields some other finiteness
properties, such as the finiteness of the genus genK(G) and the properness of the
global-to-local map in Galois cohomology. The proof relies on the finiteness of the
unramified cohomology groups H i(K,µ2)V for i > 1 established in the paper. The
results for spinor groups are then extended to some unitary groups and to groups of
type G2.

1. Introduction

Let K be a field. The purpose of this paper is to present new results in the framework of the
following general problem:

(∗) (When) can one equip K with a natural set V of discrete valuations such that for a given
absolutely almost simple simply connected algebraic K-group G, the set of K-isomorphism
classes of (inner) K-forms of G having good reduction at all v ∈ V (respectively, at all
v ∈ V \S, where S ⊂ V is an arbitrary finite subset) is finite?

(We refer to the subsection Notation and conventions below for the definition of good reduction.)
Although the analysis of Abelian varieties defined over a global field and having good

reduction at a given set of places of the field has been one of the central topics in arithmetic
geometry for a long time, particularly since the work of Faltings [Fal83], similar questions in
various situations involving linear algebraic groups have received less attention so far. Thus,
before formulating our results, we would like to include a brief account of the previous work
in this direction and discuss connections between (∗) and several other topics of active current
research, which should provide the reader with some context for (∗) and its variations.
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Spinor groups

Historically, the consideration of forms of linear algebraic groups with good reduction can be
traced back to the work of Harder [Har67], Colliot-Thélène and Sansuc [CS79] and Gross [Gro96].
We note that in [Har67], the focus was primarily on a number field K. In this case, combining
well-known results about the properness of the global-to-local map for the Galois cohomology
of algebraic groups [Ser97, ch. III, 4.6] with the fact that an absolutely almost simple algebraic
group with good reduction over a p-adic field is necessarily quasi-split, one can see that a set V
consisting of almost all nonarchimedean places of K satisfies (∗); see [Gro96, Con15] for more
precise results over K = Q, and also [JL15].

The case where K = k(x) is the field of rational functions in one variable over a field k and V
consists of the discrete valuations vp(x) corresponding to all irreducible polynomials p(x) ∈ k[x]
was considered by Raghunathan and Ramanathan [RR84] (see also [CGP12, Theorem 2.1]): their
result implies that if G0 is a (connected) semi-simple group over k and G is obtained from G0 by
the base change K/k, then any K-form G that splits over k̄(x) (where k̄ is a separable closure
of k) and has good reduction at all v ∈ V is obtained by base change from a certain k-form of
G0. In the same notation, a description of the K-forms of G that (split over k̄(x) and) have good
reduction at all v ∈ V \{vx} was obtained by Chernousov, Gille and Pianzola [CGP12], which
played a crucial role in the proof of the conjugacy of the analogues of Cartan subalgebras in
certain infinite-dimensional Lie algebras [CNPY16]. (We note that if k has characteristic zero,
then every semi-simple K-group G becomes quasi-split over k̄(x), which implies that those G
that have good reduction at all v ∈ V \{vx} automatically split over k̄(x).)

In all these instances, K was the fraction field of a certain Dedekind ring and V was the set
of discrete valuations associated with the nonzero prime ideals of this ring, making the situation
‘one-dimensional’. Although the finiteness questions have not been fully answered yet even in the
one-dimensional case (cf. Theorem 1.4 below and subsequent remarks), the current work on the
following problems necessitate the analysis of (∗) in a more general (higher-dimensional) setting.

• The genus problem. Given an absolutely almost simple simply connected algebraic K-group
G, its genus genK(G) is defined to be the set of K-isomorphism classes of K-forms G′ of G that
have the same isomorphism classes of maximal K-tori as G (the latter means that every maximal
K-torus T of G is K-isomorphic to some maximal K-torus T ′ of G′, and vice versa). One expects
genK(G) to be finite for any G over an arbitrary finitely generated field K. This has been proven
for groups of all types when K is a number field [PR09, Theorem 7.5], and for inner forms of
type A` over arbitrary finitely generated fields, cf. [CRR13, CRR16a, CRR1]. The connection
between the genus and good reduction described in [CRR16b, Theorem 5] and [CRR2] implies
that (under minor additional technical assumptions) the fact that K possesses a set V of discrete
valuations such that (∗) holds for a given G implies that genK(G) is finite. Thus, (∗) provides
a natural approach to proving the finiteness of the genus.

• The Hasse principle. For a given algebraic K-group G and a given set V of valuations of K,
one considers the global-to-local map in Galois cohomology:

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G),

(where Kv is the completion of K with respect to v), and one says that the Hasse principle
holds for G with respect to V if θG,V is injective (cf. [Ser97, ch. III, § 4.7]). Although the Hasse
principle does hold in many important situations over a number field K (in which case, one takes
for V the set of all valuations of K, including archimedean ones; see [PR94, ch. VI]), it may fail
for general semi-simple groups [Ser97, 4.7], but for any algebraic group G over a number field K,
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the map θG,V is proper (in other words, the deviation from the Hasse principle is always finite).
It is important to point out that the affirmative answer to (∗) would enable one to significantly
extend this result, namely one shows that if (∗) holds for a given K, V and G, then for the
corresponding adjoint group G the map θG,V is proper (cf. § 5.2). See Conjecture B and its
discussion below for more concrete statements/results.

• Eigenvalue rigidity. Let G1 and G2 be two semi-simple algebraic groups over a field F of
characteristic zero and let Γi ⊂ Gi(F ) be a Zariski-dense subgroup for i = 1, 2. In [PR09], the
notion of weak commensurability of Γ1 and Γ2, based on the consideration of eigenvalues of
semi-simple elements of those subgroups, was introduced and developed. A detailed analysis of
weakly commensurable arithmetic groups was used in [PR09] to derive geometric consequences. It
is currently expected that certain results allowing one to (almost) recover some characteristics of
an arithmetic group from the information about the eigenvalues of its elements should be valid
for arbitrary finitely generated Zariski-dense subgroups; this phenomenon is called eigenvalue
rigidity [Rap14]. Central to it is the following finiteness conjecture [PR15, Rap14]: let G1 and
G2 be absolutely simple (adjoint) algebraic groups over a field F of characteristic zero, and let
Γ1 ⊂ G1(F ) be a finitely generated Zariski-dense subgroup with trace field1 K = KΓ1 . Then

there are only finitely many F/K-forms G
(1)
2 , . . . ,G

(r)
2 of G2 such that any finitely generated

Zariski-dense subgroup Γ2 ⊂ G2(F ) that is weakly commensurable to Γ1 is G2(F )-conjugate to

a subgroup of G
(j)
2 (K) ⊂ G2(F ) for some j = 1, . . . , r. Note that the field K is finitely generated,

hence admits a divisorial set of places V (see below). Then if (∗) holds for K, V and an absolutely
almost simple simply connected group G of the same type as G2, the above finiteness conjecture
is valid, cf. [CRR2].

While various forms of the Hasse principle (including the cohomological form cited above) have
been studied extensively for a long time, the genus problem and eigenvalue rigidity emerged
relatively recently as an extension of the research carried out in [PR09] in connection with some
geometric problems for isospectral and length-commensurable locally symmetric spaces. Thus,
the fact that (∗) has strong consequences for all three problems, combined with the previous
work done in the Dedekind case, makes the analysis of (∗) in the general case worthwhile.

To make (∗) more tractable, one can specialize it to a suitable class of fields K or restrict
the type of an absolutely almost simple algebraic K-group G in its statement (or do both). It
is most interesting to investigate (∗) for finitely generated fields K. In this case, K possesses
natural sets of discrete valuations called divisorial. More precisely, let X be a normal irreducible
scheme of finite type over Z (if charK = 0) or over a finite field (if charK > 0) such that K is
the field of rational functions on X (we will refer to X as a model of K). It is well-known that
to every prime divisor Z of X there corresponds a discrete valuation vZ on K (cf. [Cut18, 12.3]
and [Har77, ch. II, § 6]). Then

V (X) = {vZ | Z prime divisor of X}

is called the divisorial set of places of K corresponding to the model X. Any set of places V of
K of this form (for some model X) will be simply called divisorial. Note that any two divisorial
sets V1 and V2 are commensurable, i.e. Vi\(V1 ∩V2) is finite for i = 1, 2, and for any finite subset
S of a divisorial set V the set V \S contains a divisorial set. We then can formulate the following
more precise version of (∗).

1 Defined to be the subfield of F generated by the traces Tr AdG1(γ) of all elements γ ∈ Γ1 in the adjoint
representation.
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Conjecture A. Let K be a finitely generated field and let V be a divisorial set of places. Then

for a given absolutely almost simple algebraic K-group G, the set of K-isomorphism classes of

(inner) K-forms of G that have good reduction at all v ∈ V is finite.

Rapoport suggested that a finiteness statement of such nature is likely to be true for arbitrary

reductive K-groups, namely the number of K-isomorphisms classes of reductive K-groups of

bounded dimension (or rank) that have good reduction at all v ∈ V should be finite. At this

point, Conjecture A is known over arbitrary finitely generated only for inner forms of type

A`+1 with (` + 1) prime to charK (cf. [CRR16a, CRR16b]). In fact, before the current paper

Conjecture A was not known for any other type over fields other than global.

One of the goals of the paper is to prove Conjecture A for the spinor groups of quadratic

forms, and also some unitary groups and groups of type G2, over two-dimensional global fields

of characteristic 6= 2. Following Kato [Kat86], by a two-dimensional global field, we mean either

the function field K = k(C) of a smooth geometrically integral curve C over a number field k,

or the function field K = k(S) of a smooth geometrically integral surface S over a finite field k.

Theorem 1.1. Let K be a two-dimensional global field of characteristic 6= 2 and let V be a

divisorial set of places of K. Fix an integer n > 5. Then the set of K-isomorphism classes of

spinor groups G = Spinn(q) of nondegenerate quadratic forms in n variables over K that have

good reduction at all v ∈ V is finite.

We will now indicate some consequences of this result for two of the three problems discussed

above. First, we have the following finiteness result for the genus of spinor groups over two-

dimensional global fields.

Theorem 1.2. Let K be a two-dimensional global field of characteristic 6= 2 and let G =

Spinn(q), where q is an n-dimensional nondegenerate quadratic form over K. If either n > 5

is odd or n > 10 is even and q is K-isotropic, then genK(G) is finite.

(In fact, we prove that the number of K-isomorphism classes of spinor groups G′ = Spinn(q′)

of nondegenerate n-dimensional quadratic forms q′ over K that have the same isomorphism

classes of maximal K-tori as G is finite for any n > 5; see Theorem 5.1.)

Another application deals with the global-to-local map in Galois cohomology. Namely, the

techniques developed to prove Theorem 1.1 also yield the following.

Theorem 1.3. With notation as in Theorem 1.1, for G = SOn(q) the map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper, i.e. the pre-image of a finite set is finite.

Moreover, our techniques in fact yield similar results for some groups G of the form SL1,D

(cf. Theorem 5.7), some unitary groups and groups of type G2 (cf. §§ 8–9), and a partial result

for some spinor groups (cf. Proposition 5.8). Based on these results, we propose the following

conjecture.
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Conjecture B. Let K be a two-dimensional global field and let V be a divisorial set of places
of K. Then for any absolutely almost simple (or even semi-simple) algebraic group G, the natural
map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper. In particular,
X(G,V ) := ker θG,V

is finite.

(We note that the use of twisting shows that proving the finiteness of X(G,V ) is the most
essential part of Conjecture B.)

Of course, it would be quite tempting to extend this conjecture to all finitely generated
fields, but for this more evidence needs to be developed. At this point, the only result that
goes beyond two-dimensional global fields is that for any finitely generated field K, its divisorial
set of places V , and any n prime to charK, the map H1(K,G) →

∏
v∈V H

1(Kv, G) is proper
for G = PGLn, which follows from the finiteness of the unramified Brauer group nBr(K)V
(cf. [CRR16a, CRR16b]).

Applications to weakly commensurable Zariski-dense subgroups will be given in [CRR2].
Theorem 1.1 will be derived from a more general Theorem 2.1 (see § 3) that (potentially)

enables one to answer (∗) for spinor groups over arbitrary finitely generated fields. We will
also use this result to prove a finiteness statement for spinor groups, as well as some unitary
groups and groups of type G2, with good reduction over a class of fields that are not finitely
generated. This class includes the function fields of p-adic curves that have received a great deal
of attention in recent years (we refer the reader to [Bru10, CPS12, Par14, PS98] and references
therein for various results involving division algebras, quadratic forms and algebraic groups over
those fields), but is in fact much larger. We will formulate our results using a generalization of
Serre’s condition (F) (see [Ser97, ch. III, § 4]) offered in [Rap18]. Let K be a field and let m > 1
an integer prime to charK. We then introduce the following condition on K:

(F′m) For every finite separable extension L/K, the quotient L×/L×
m

is finite.

(Note that if L×/L×
m

is finite for every finite separable extension L/K, then it is finite for any
finite extension of K; see [Rap18, Lemma 2.8]). Combining Theorem 2.1 with the results on the
finiteness of unramified cohomology with µm-coefficients over fields satisfying (F′m) (see [Rap18]),
we obtain the following.

Theorem 1.4. Let C be a smooth geometrically integral curve over a field k of characteristic 6= 2
that satisfies condition (F′2) and let K = k(C) be its function field. Denote by V the set of discrete
valuations of K corresponding to the closed points of C. Then the number of K-isomorphism
classes of spinor groups G = Spinn(q) of nondegenerate quadratic forms q over K in n > 5
variables that have good reduction at all v ∈ V is finite.

Theorem 1.4 is likely to extend to absolutely almost simple simply connected groups of
all types over the function fields of curves defined over a field that satisfies condition (F); see
Conjecture 7.3. In this regard, we observe that in §§ 8–9 we extend the above results for spinor
groups to the special unitary groups of Hermitian forms over quadratic extensions of the base
field and to groups of type G2 (for the same fields K and the same sets of valuations V ).
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The paper is organized as follows. In § 2, we develop some formalism involving the Picard
group associated with a set of discrete valuations and then use it to formulate a general result
(Theorem 2.1) that reduces the proof of the finiteness of the set of isomorphism classes of spinor
groups having good reduction to the finiteness of certain unramified cohomology groups. We
prove Theorem 2.1 in § 3, where we also give an application of our method to the properness of
the global-to-local map in Galois cohomology (Theorem 3.4). In § 4, we combine Theorem 2.1
with the finiteness results for unramified cohomology of two-dimensional global fields to prove
Theorem 1.1. It should be pointed out that these finiteness results are known in degrees 6 2
and easily follow from the theorems of Poitou–Tate in degrees > 4, but have not appeared in
the literature in degree three. We derive the required fact in degree three (Corollary 6.2) from
the more general Theorem 6.1. For several reasons (see the discussion in § 4.1), we give two
proofs of the characteristic zero case of Theorem 6.1: that given in § 6 is based on the referee’s
suggestions, whereas that in Appendix A is our original argument. The positive characteristic
case of Theorem 6.1 is treated in § 7, along with the finiteness results involving fields of type
(F′m) and the proof of Theorem 1.4. Theorems 1.2 and 1.3 are proved in § 5. Finally, in §§ 8–9,
we present finiteness results for special unitary groups and groups of type G2.

Notation and conventions. For a field k, we will denote by k̄ a fixed separable closure. Given
a discrete valuation v of k, we let kv and k(v) denote the completion and the residue field of
k at v, respectively. We recall that a Gal(k̄/k)-module M is said to be unramified at v if for
some (equivalently, any) extension w of v to k̄, the inertia subgroup of the decomposition group
Decw ⊂ Gal(k̄/k) acts trivially on M . In addition, if G is an absolutely almost simple linear
algebraic group defined over k, we will say that G has good reduction at v if there exists a
reductive group scheme G over the valuation ring Ov of kv whose generic fiber G ⊗Ov kv is
isomorphic to G ⊗k kv (this definition, involving completions, is convenient for applications to
the Hasse principle).

We will follow the conventions outlined in [GMS03, ch. II, § 7.8] regarding Tate twists of
Galois modules. Namely, suppose v is a discrete valuation of k, n an integer prime to char k(v)

and M a finite Gal(k̄/k)-module satisfying nM = 0. For an integer d, one defines M(d) to be

µ⊗dn ⊗M if d > 0 and Hom(µ
⊗(−d)
n ,M) if d < 0. In particular, M(−1) = Hom(µn,M). In the

case where M is torsion (but not necessarily finite) without any elements of order equal to the
residue characteristic, one writes M = lim

−→
M ′, where M ′ are the finite submodules of M , and

sets M(d) = lim
−→

M ′(d). As usual, we will use µ⊗dn to denote Z/nZ(d) for all d.

Finally, we recall that if n is an integer prime to char k, then isomorphism k×/k×
n '

H1(k, µn) from Kummer theory is induced by sending an element a ∈ k× to the cohomology
class of the 1-cocycle

χn,a(σ) = σ( n
√
a)/ n
√
a for σ ∈ Gal(k̄/k).

When n = 2, we will denote this cocycle simply by χa.

2. The Picard group associated with a set of discrete valuations

Suppose that a field K is equipped with a set V of discrete valuations that satisfies the following
condition:

(A) For any a ∈ K×, the set V (a) := {v ∈ V | v(a) 6= 0} is finite.

(It is worth noting that (A) automatically holds for a divisorial set of valuations V of a finitely
generated field K.) We now let Div(V ) denote the free Abelian group on the set V , the elements
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of which will be called ‘divisors’. The fact that V satisfies (A) enables one to associate to any
a ∈ K× the corresponding ‘principal divisor ’

(a) =
∑
v∈V

v(a) · v.

Let P(V ) denote the subgroup of Div(V ) formed by all principal divisors. We call the quotient
Div(V )/P(V ) the Picard group of V and denote it by Pic(V ).

Next, we recall (cf. [GMS03, ch. II]) that for a discrete valuation v of a field K and a finite
Galois module M that is unramified at v and order of which is prime to charK(v), one has a
residue map

∂Mi,v : H i(K,M) −→ H i−1(K(v),M(−1)) (i > 1).

In particular, for every n prime to charK(v) and every d we have the residue map

∂n,di,v : H i(K,µ⊗dn ) −→ H i−1(K(v), µ⊗(d−1)
n ).

An element of H i(K,M) (in particular, of H i(K,µ⊗dn )) is said to be unramified if it lies in the
kernel of the relevant residue map.

In this section, we only consider cohomology with coefficients in µ2 = {±1}. Then for a
discrete valuation v of K, the corresponding residue map is defined whenever charK(v) 6= 2 and
will be denoted by

∂iv : H i(K,µ2) −→ H i−1(K(v), µ2).

We now make the following assumption:

(B) charK(v) 6= 2 for all v ∈ V .

We then define the ith unramified cohomology group of K with respect to V by

H i(K,µ2)V =
⋂
v∈V

Ker ∂iv.

With this notation, we have the following result.

Theorem 2.1. Let K be a field equipped with a set V of discrete valuations satisfying conditions
(A) and (B) and let n > 5 be an integer. Assume that:

(1) the quotient Pic(V )/2 · Pic(V ) is finite; and

(2) the unramified cohomology groups H i(K,µ2)V are finite for all i = 1, . . . , ` := [log2 n] + 1.

Then the number of K-isomorphism classes of spinor groups G = Spinn(q) of nondegenerate
quadratic forms q over K in n variables that have good reduction at all v ∈ V is

6 |Pic(V )/2 · Pic(V )| ·
∏̀
i=1

|H i(K,µ2)V |

(in particular, finite).

We postpone the proof of Theorem 2.1 until the next section, and recall now the connection
between Pic(V ) and the idèles, which is well-known in the classical setting (cf. [CF10, ch. II, § 17]).
Given a field K endowed with a set V of discrete valuations that satisfies (A), we define the
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group of idèles I(K,V ) as the restricted direct product of the multiplicative groups K×v for v ∈ V
with respect to the groups of units Uv = O×v :

I(K,V ) =

{
(xv) ∈

∏
v∈V

K×v

∣∣∣∣ xv ∈ Uv for almost all v ∈ V
}
.

Furthermore, we let

I0(K,V ) =
∏
v∈V

Uv

be the subgroup of integral idèles. As V satisfies (A), one can consider the diagonal embedding
K× ↪→ I(K,V ), the image of which will be called the group of principal idèles and denoted also
by K×. Then

ν : I(K,V ) → Div(V ), (xv) 7→
∑
v∈V

v(xv) · v

is a surjective group homomorphism with kernel ker ν = I0(K,V ). Thus, we obtain the following.

Lemma 2.2. The map ν induces a natural identification of the quotient I(K,V )/I0(K,V )K×

with Pic(V ).

3. Proof of Theorem 2.1 and its variations

3.1 Two facts about the Witt ring
Let F be a field of characteristic 6= 2. We let W (F ) and I(F ) denote the Witt ring of F and its
fundamental ideal, respectively. For a nondegenerate quadratic form q over F , [q] denotes the
corresponding class in W (F ). As usual, the quadratic form a1x

2
1 + · · ·+ anx

2
n with ai ∈ F× will

be denoted by 〈a1, . . . , an〉, whereas 〈〈a1, . . . , ad〉〉 will be used to denote the d-fold Pfister form
〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ad〉. Clearly, for any d > 1, the dth power I(F )d is additively generated by
the classes of d-fold Pfister forms.

Lemma 3.1. Let q be a nondegenerate quadratic form over F such that [q] ∈ I(F )d for some
d > 1. Then for any λ ∈ F×, we have [λq] ∈ I(F )d and [λq] + I(F )d+1 = [q] + I(F )d+1.

Proof. The fact that [λq] ∈ I(F )d is obvious. Furthermore, we have

[q]− [λq] = [q ⊥ (−λq)] = [〈1,−λ〉 ⊗ q] ∈ I(F )d+1,

as required. 2

Now, let F be a field complete with respect to a discrete valuation v such that the
characteristic of the residue field F (v) is 6= 2. We let U(F ) denote the group of units in F ,
and fix a uniformizer π. Then one can define the first and second residue maps

∂i : W (F ) → W (F (v)), i = 1, 2,

which are homomorphisms of additive groups uniquely characterized by the conditions

∂1〈u〉 = 〈ū〉, ∂1〈πu〉 = 0 and ∂2〈u〉 = 0, ∂2〈πu〉 = 〈ū〉,

for any u ∈ U(F ) (where ū denote the image of u in F (v)) (see [Lam05, ch. VI, § 1] or [Mil70, § 5]
for the details). Let W0(F ) be the subring of W (F ) generated by the classes of 〈u〉 for u ∈ U(F ).
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Then W0(F ) = Ker ∂2, whereas ∂1 yields an isomorphism between W0(F ) and W (F (v)).
Thus, we have the following split exact sequence

0 → W0(F ) −→ W (F )
∂2−→ W (F (v)) → 0.

Let I0(F ) = W0(F )∩ I(F ). Milnor [Mil70, § 5] shows that for any d > 1, the restriction of ∂2 to
Id(F ) (the dth power of I(F )) yields the exact sequence

0 → Id0 (F ) −→ Id(F )
∂2−→ Id−1(F (v)) → 0.

This, in particular, gives the following result.

Lemma 3.2. For any d > 1, we have I(F )d ∩W0(F ) = I0(F )d.

3.2 The Milnor isomorphism and unramified classes
Again let F be a field of characteristic 6= 2. It is a consequence of Voevodsky’s proof of the
Milnor conjecture (see [OVV07, Voe03, Voe11]) that for d > 1, there are natural isomorphisms
of Abelian groups

γF,d : I(F )d/I(F )d+1 −→ Hd(F, µ2).

Explicitly, γF,d is defined by sending the class of the Pfister form 〈〈a1, . . . , ad〉〉 to the cup-product
χa1 ∪ · · · ∪χad , where for a ∈ F×, we let χa be the corresponding 1-cocycle given by Kummer
theory.

Lemma 3.3. Let F be a field complete with respect to a discrete valuation v such that charF (v) 6=
2 and let d > 1. If q is a nondegenerate quadratic form over F such that [λq] ∈ I(F )d ∩W0(F )
for some λ ∈ F× (notation as in the previous subsection), then [q] ∈ I(F )d and the cohomology
class γF,d([q]) ∈ Hd(F, µ2) is unramified at v.

Proof. It immediately follows from Lemma 3.1 that [q] ∈ I(F )d and γF,d([q]) = γF,d([λq]). Thus,
it is enough to show that if [q] ∈ I(F )d ∩W0(F ), then γF,d([q]) is unramified at v. According to
Lemma 3.2, we have I(F )d ∩W0(F ) = I0(F )d, which is additively generated by the classes of
Pfister forms 〈〈a1, . . . , ad〉〉 with ai ∈ U(F ). However, for any such form, the corresponding class

γF,d([〈〈a1, . . . , ad〉〉]) = χa1 ∪ · · · ∪ χad

is clearly unramified, and our claim follows. 2

3.3 Proof of Theorem 2.1
Let {qi}i∈I be a family of n-dimensional nondegenerate quadratic forms over K such that:
• for each i ∈ I, the spinor group Gi = Spinn(qi) has good reduction at all v ∈ V ; and
• for i, j ∈ I, i 6= j, the forms qi and qj are not similar (i.e. qi is not equivalent to any nonzero

scalar multiple of qj).
We wish to show that I is finite and

|I| 6 d0d1 · · · d`, (1)

where

d0 = |Pic(V )/2 · Pic(V )| and di = |H i(K,µ2)V | for i = 1, . . . , ` = [log2 n] + 1.
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We begin by observing that the first of the above conditions implies that for each i ∈ I and

any v ∈ V , there exists λ
(i)
v ∈ K×v such that the form λ

(i)
v qi ∈ W0(Kv) in the above notation.

In addition, we may assume without loss of generality that for each i ∈ I, we have λ
(i)
v = 1 for

almost all v; then λ(i) := (λ
(i)
v )v∈V ∈ I(K,V ). Using Lemma 2.2, we see that

I(K,V )/I(K,V )2I0(K,V )K× ' Pic(V )/2 · Pic(V ).

Thus, there exists a subset J0 ⊂ I of size > |I|/d0 (if I is infinite then this simply means that J0

is also infinite) such that all λ(i) for i ∈ J0 have the same image in I(K,V )/I(K,V )2I0(K,V )K×.
Now, fix j0 ∈ J0. For any j ∈ J0, we can write

λ(j) = λ(j0)(α(j))2β(j)δ(j) with α(j) ∈ I(K,V ), β(j) ∈ I0(K,V ), δ(j) ∈ K×,

(assuming that the elements α(j0), β(j0) and δ(j0) are all trivial), and then set

q̃j = δ(j)qj and λ̃(j) = λ(j)(δ(j))−1.

We note that the forms q̃j for j ∈ J0 remain pairwise nonsimilar, in particular, inequivalent.

Furthermore, for any v ∈ V we have λ̃
(j)
v q̃j = λ

(j)
v qj , hence [λ̃

(j)
v q̃j ] ∈W0(Kv), and

λ̃(j) = λ̃(j0)(α(j))2β(j).

Then for any v ∈ V , the form

q(j, v) := λ̃(j0)
v (q̃j ⊥ (−q̃j0)) = (α(j)

v )−2(β(j))−1(λ̃(j)
v q̃j) ⊥ λ̃(j0)

v (−q̃j0)

is equivalent to
(β(j)
v )−1(λ̃(j)

v q̃j) ⊥ λ̃(j0)
v (−q̃j0).

As β
(j)
v ∈ U(Kv), we see that [q(j, v)] ∈W0(Kv)∩ I(Kv). Now, invoking Lemma 3.3 with d = 1,

we obtain that γKv ,1([q̃j ]− [q̃j0 ]) ∈ H1(Kv, µ2) is unramified at v. This being true for all v ∈ V ,
we conclude that

γK,1([q̃j ]− [q̃j0 ]) ∈ H1(K,µ2)V .

Then one can find a subset J1 ⊂ J0 of size

> |J0|/d1 > |I|/(d0d1)

(again, if I is infinite this simply means that J1 is also infinite) such that the elements [q̃j ]−[q̃j0 ] ∈
I(K) for j ∈ J1 have the same image under γK,1. Fix j1 ∈ J1. Then for any j ∈ J1 we have

γK,1([q̃j ]− [q̃j1 ]) = γK,1(([q̃j ]− [q̃j0 ])− ([q̃j1 ]− [q̃j0 ])) = 0,

implying that [q̃j ]− [q̃j1 ] ∈ I(K)2. Furthermore, we observe that

λ̃(j) = λ̃(j1)(ᾱ(j))2β̄(j) with ᾱ(j) ∈ I(K,V ), β̄(j) ∈ I0(K,V ),

using which one shows that for each v ∈ V the class of the form λ̃
(j1)
v (q̃j ⊥ (−q̃j1)) lies in

W0(Kv)∩ I(Kv)
2. Now, Lemma 3.3 with d = 2 yields that

γK,2([q̃j ]− [q̃j1 ]) ∈ H2(K,µ2)V .

Then there exists a subset J2 ⊂ J1 of size>|I|/(d0d1d2) such that the elements [q̃j ]−[q̃j1 ] for j ∈ J2

have the same image under γK,2. Consequently, fixing j2 ∈ J2, we will have [q̃j ]−[q̃j2 ] ∈ I(K)3

for all j ∈ J2. Proceeding inductively, we construct a nested sequence of subsets

I ⊃ J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ J`
such that:
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(a) |Jm| > |I|/(d0d1 · · · dm); and

(b) fixing jm ∈ Jm, we will have [q̃j ]− [q̃jm ] ∈ I(K)m+1 for all j ∈ Jm,

for any m = 1, . . . , `. However, according to [Lam05, ch. X, Hauptsatz 5.1], the dimension of any
positive-dimensional anisotropic form in I(K)`+1 is >2`+1 > 2log2 n+1 = 2n. Thus, the fact that

[q̃j ]− [q̃j` ] = [q̃j ⊥ (−q̃j`)] ∈ I(K)`+1

implies that the form q̃j ⊥ (−q̃j`) is hyperbolic, and consequently q̃j and q̃j` are equivalent. As
j ∈ J` was arbitrary and the forms q̃j for j ∈ J` are pairwise inequivalent, we see that J` actually
reduces to a single element. Then the inequality in part (a) yields the required estimation (1). 2

3.4 Another application of the method
The method developed to prove Theorem 2.1 can be used in various situations. Here we would
like to indicate one application to the analysis of the global-to-local map in Galois cohomology.

Theorem 3.4. Let K be a field equipped with a set V of discrete valuations satisfying conditions
(A) and (B) and let n > 5 be an integer. Assume that:

(•) for each i = 1, . . . , [log2 n] + 1 = `, the kernel Ωi of the diagonal map

H i(K,µ2) −→
∏
v∈V

H i(Kv, µ2)

is finite of order ωi.

Then for a nondegenerate n-dimensional quadratic form q over K and the diagonal map

π : H1(K,SOn(q)) −→
∏
v∈V

H1(Kv,SOn(q)),

the set π−1(π(h)) is finite of size 6 ω1 · · ·ω` for any h ∈ H1(K,SOn(q)). In particular, π is a
proper map.

Proof. Let π−1(π(h)) = {hi}i∈I and let qi be the quadratic form obtained from q by twisting using
hi. It is well-known that the K-equivalence classes of nondegenerate n-dimensional quadratic
forms over K are in a natural bijective correspondence with the elements of H1(K,On(q)). As
the map H1(K,SOn(q)) → H1(K,On(q)) is injective (cf. [PR94, § 6.6]), the forms qi for i ∈ I
are pairwise inequivalent. On the other hand, by our construction, the form qi for any i ∈ I is
equivalent over Kv to the form q0 obtained from q by twisting using h, for any v ∈ V . Thus, for
any i, j ∈ I, the class [qi]− [qj ] is trivial in W (Kv) for any v ∈ V . Thus, using the compatibility of
the map γF,d with base change, we conclude that if [qi]− [qj ] ∈ I(K)d, then γK,d([qi]− [qj ]) ∈ Ωd.

We now proceed as in the proof of Theorem 2.1. Fix j0 ∈ I. Then there exists a subset J1 ⊂ I
of size > |I|/ω1 such that all elements [qj ]− [qj0 ] ∈ I(K) for j ∈ J1 have the same image under
γK,1. Fix j1 ∈ J1. Then for any j ∈ J1 we have

γK,1([qj ]− [qj1 ]) = γK,1(([qj ]− [qj0 ])− ([qj1 ]− [qj0 ])) = 0,

which means that [qj ]− [qj1 ] ∈ I(K)2. Inductively, we construct a sequence of subsets I ⊃ J1 ⊃
J2 ⊃ · · · ⊃ J` such that:

(a′) |Jm| > |I|/ω1 · · ·ωm;

(b′) fixing jm ∈ Jm, we will have [qj ]− [qjm ] ∈ I(K)m+1 for all j ∈ Jm,
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for anym= 1, . . . , `. As in the proof of Theorem 2.1, we see that the fact that [qj ]− [qj` ] ∈ I(K)`+1

implies that qj and qj` are actually equivalent. This means that J` reduces to a single element,
and then the inequality in (a′) yields the required estimation. 2

We observe that for any i, we have the inclusion Ωi ⊂ H i(K,µ2)V in the above notation. In
particular, the finiteness of H i(K,µ2)V implies that of Ωi, which enables us to apply Theorem 3.4.

4. Proof of Theorem 1.1

4.1 The proof
Let K be a two-dimensional global field of characteristic 6= 2 and let V be any divisorial set of
places of K associated with a (normal) model X of finite type on which 2 is invertible (thus,
charK(v) 6= 2 for all v ∈ V ). According to Theorem 2.1, it is enough to establish the finiteness of
the quotient Pic(V )/2·Pic(V ) and of the unramified cohomology groups H i(K,µ2)V for all i > 1.
However, it easily follows from the definitions that the group Pic(V ) coincides with the usual
Picard group Pic(X) of the scheme X. Thus, the finiteness of Pic(V )/2 ·Pic(V ) is a consequence
of the following well-known statement.

Proposition 4.1. Let X be an irreducible normal scheme of finite type over Z or a finite field
and let n > 2 be an integer that is invertible on X. Then the quotient Pic(X)/n ·Pic(X) and the
n-torsion nPic(X) are finite groups.

Sketch of proof. As n is invertible on X, we have the following Kummer sequence of étale sheaves
on X

1 → µn,X −→ Gm,X
[n]
−→ Gm,X → 1,

which gives rise to the long exact sequence

H1(X, µn,X) −→ H1(X,Gm,X)
[n]
−→ H1(X,Gm,X) −→ H2(X, µn,X)

in étale cohomology. As Pic(X) = H1(X,Gm,X) (cf. [Mil80, ch. III, Proposition 4.9]), we have a
surjection H1(X, µn,X) � nPic(X) and an injection Pic(X)/n · Pic(X) ↪→ H2(X, µn,X). Thus, it
is enough to prove the finiteness of H i(X, µn,X) for i = 1, 2. In fact, these groups are finite for
all i. For X of finite type over a finite field, this is a consequence of [SGA4½, Théorème 1.1 in
‘Théorèmes de finitude’] and the Leray spectral sequence [Mil80, ch. III, Theorem 1.18] in general
and is [Mil80, ch. VI, Corollary 5.5] for X smooth. For X of finite type over Z, this is [CRR16a,
Theorem 10.2]. 2

It should be noted that Kahn [Kah06] in fact showed that the group Pic(X) is finitely
generated.

Combining the finiteness of 2Pic(V ) with the fact that the group of V -units

U(V ) = {a ∈ K× | v(a) = 0 for all v ∈ V }

is finitely generated (cf. [Sam66]) and applying [CRR16a, Proposition 5.1(a)], we obtain that
H1(K,µ2)V is finite. The finiteness of H2(K,µ2)V = 2Br(K)V was established in [CRR16a,
§ 10]. The finiteness of H3(K,µ2)V is a new result (see Corollary 6.2 of the more general
Theorem 6.1) whose proof requires separate arguments in the characteristic zero and positive
characteristic cases. The proof for the characteristic zero case that is given in § 6 was suggested

495

https://doi.org/10.1112/S0010437X1900705X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1900705X


V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk

by one of the referees; it uses several powerful results, first and foremost, those of Kato [Kat86]
on cohomological Hasse principles. We have included our original proof of Theorem 6.1 in
Appendix A. It uses considerably less input; in particular, it does not rely on Kato’s local–global
principle but is based instead on a modification of Jannsen’s [Jan89–90] proof of the latter. The
reason we decided to keep this argument in the paper is that it appears to be more amenable
to generalizations in the spirit of Jannsen’s proof [Jan16] of Kato’s local–global principle for
higher-dimensional varieties that generalized his original argument [Jan89–90]. The finiteness of
H3(K,µ2)V for two-dimensional global fields of positive characteristic will be established in § 7
(we note that this result is implicitly contained in [Rap18, Proposition 4.4 and Remark 4.5]).

As the cohomological dimension of a two-dimensional global field of positive characteristic
is 6 3 (cf. [Ser97, ch. II, 4.2]), the groups H i(K,µ2) vanish for all i > 4. We will now show that
in characteristic zero, the finiteness of H i(K,µ2)V for i > 4 easily follows from the results of
Poitou–Tate (cf. [Ser97, ch. II, 6.3]), which will complete the proof of Theorem 1.1.

Proposition 4.2. Let C be a smooth (but not necessarily projective) geometrically integral
curve over a number field k, and K = k(C). Then for i > 4, the groups H i(K,µ2)V0 , where V0 is
the set of geometric places of K associated with the closed points of C, are finite.

To apply the proposition in our situation, we observe that given a divisorial set of places V
of a two-dimensional global field K of characteristic zero, there exists a smooth geometrically
connected curve C defined over a number field k such that K = k(C) and for the set of geometric
places V0 of K associated with the closed points of C, we have the inclusion

H i(K,µ2)V ⊂ H i(K,µ2)V0 .

For the proof of the proposition, we first need to review the exact sequence for the étale
cohomology of a curve, which will also be used in Appendix A.

4.2 The fundamental exact sequence
Let C be a geometrically integral smooth affine curve over an arbitrary field k and let n > 2 be
an integer prime to char k. Then for any integer d, we consider the Hochschild–Serre spectral
sequence in étale cohomology

Ep,q2 = Hp(k,Hq(C ⊗k k̄, µ⊗dn ))⇒ Hp+q(C, µ⊗dn ).

As C is affine, we have Hp(C⊗k k̄, µ⊗dn ) = 0 for p > 2 (cf. [Stacks19, Lemma 65.3], [Mil80, ch. V,
§ 2]). Thus, for each ` > 1, the spectral sequence yields the following short exact sequence:

H`(k, µ⊗dn )
ιd,`k,n−→ H`(C, µ⊗dn )

ωd,`
k,n−→ H`−1(k,H1(C ⊗k k̄, µ⊗dn )). (2)

Furthermore, let V0 denote the set of places of K = k(C) associated with the closed points of C.
Then, because n is prime to char k, it follows from the Bloch–Ogus spectral sequence (see [BO74,
CHK97, JSS14]) that for each ` > 1, the natural map H`(C, µ⊗dn ) → H`(K,µ⊗dn )V0 is surjective.
(This is a consequence of the fact that the E2-terms in the Bloch–Ogus spectral sequence satisfy
Ep,q2 = 0 for all p > dimC = 1 and all q, whereas E0,q

2 = Hq(K,µ⊗dn )V0 .)
Let

M(n, d) = H1(C ⊗k k̄, µ⊗dn ).

Equivalently,
M(n, d) = Hom(π1(C ⊗k k̄, η̄), µ⊗dn ) where η̄ = Spec K̄. (3)

It follows that we have the following equality for the Tate twist

M(n, d)(`) = M(n, d+ `).
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4.3 Proof of Proposition 4.2
We may assume that C is affine, and it is enough to show that H i(C, µ⊗dn ) is finite for all i > 4.
According to Poitou–Tate, for a number field k and any finite Galois module M , the natural
homomorphism

H i(k,M) −→
∏
v∈V k

∞

H i(kv,M),

where V k
∞ is the set of all real places of k, is an isomorphism for any i > 3 (see [Ser97, ch. II, 6.3,

Theorem B]); in particular, the group H i(k,M) is finite. As H1(C ⊗k k̄, µ⊗dn ) is finite by [SGA4,
Exposé XVI, Théorème 5.2], it follows that the left-most and the right-most terms in the exact
sequence (2) are finite. Thus, the middle term is also finite for all i > 4, as required. 2

5. Proof of Theorems 1.2 and 1.3.

5.1 The finiteness of genus
Theorem 1.2 will be derived from the following result.

Theorem 5.1. Let K be a two-dimensional global field of characteristic 6= 2 and let G =
Spinn(q), where q is a nondegenerate quadratic form over K of dimension n> 5. Then the number
of K-isomorphism classes of the spinor groups G′ = Spinn(q′) of nondegenerate n-dimensional
quadratic forms q′ over K that have the same isomorphism classes of maximal K-tori as G, is
finite.

To prove Theorem 5.1, we need the following general statement.

Theorem 5.2 [CRR16b, Theorem 5]. Let G be an absolutely almost simple simply connected
algebraic group over a field K and let v be a discrete valuation of K. Assume that the residue
field K(v) is finitely generated and that G has good reduction at v. Then any G′ ∈ genK(G)

also has good reduction at v. Moreover, the reduction G′
(v)

lies in the genus genK(v)(G(v)) of
the reduction G(v).

Let V be a divisorial set of places of our two-dimensional global field K of characteristic 6= 2.
Using the fact that V satisfies condition (A), it is not difficult to see that the set v ∈ V where
G = Spinn(q) does not have good reduction, is finite. Picking a divisorial set of places in the
complement of this finite set, we may assume without loss of generality that G has good reduction
at all v ∈ V . Then according to Theorem 5.2, every G′ ∈ genK(G) has good reduction at all
v ∈ V . Thus, Theorem 1.1 yields the finiteness of the number of K-isomorphism classes of the
spinor groups G′ = Spinn(q′) lying in genK(G), which is precisely the assertion of Theorem 5.1.

Now, Theorem 1.2 for quadratic forms of odd dimension immediately follows from
Theorem 5.1. To consider the case of isotropic quadratic forms q of even dimension, we need to
combine the latter with part (a) of the following proposition, which implies that every group in
genK(G) is of the form Spinn(q′).

Proposition 5.3. Let K be an infinite finitely generated field of characteristic 6= 2, let G =
Spinn(q) where q is a nondegenerate quadratic form over K of even dimension n > 10 and let

H = S̃Um(D,h) (universal cover) where D is a central division algebra over K of degree d > 1
with an orthogonal involution τ and h is a nondegenerate m-dimensional τ -Hermitian form.
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(a) If d > 1 and q is K-isotropic, then H /∈ genK(G).

(b) If d > 2, then H /∈ genK(G) for any q.

(Note that d is a power of 2.)
We will first establish one general fact that involves the notion of generic tori, which we

now recall for the reader’s convenience. Let G be a semi-simple algebraic group over a field
K. Fix a maximal K-torus T of G, and let Φ(G,T) and W (G,T) denote the corresponding root
system and the Weyl group. The natural action of the absolute Galois group Gal(Ksep/K), where
Ksep is a fixed separable closure of K, on the character group X(T) of T gives rise to a group
homomorphism

θT : Gal(Ksep/K) → Aut(Φ(G,T))

that factors through the Galois group Gal(KT/K) of the minimal splitting field of T in Ksep

inducing an injective homomorphism θ̄T : Gal(KT/K) → Aut(Φ(G,T)). We say that T is generic
over K if θT(Gal(Ksep/K)) ⊃W (T,G).

Proposition 5.4. Let D be a central division algebra of degree d > 1 over a field K of
characteristic 6= 2 with an orthogonal involution τ , and let h be a nondegenerate m-dimensional
τ -Hermitian form. Then H = SUm(D, h) does not contain a maximal K-torus of the form
T = T1T2 (almost direct product over K) where T1 = Gm and T2 is isomorphic to a generic
torus in a K-group of type Dn/2−1 with n = dm.

Proof. We begin with the following lemma.

Lemma 5.5. Notations as in Proposition 5.4, let r denote the Witt index of h. Then for any
nontrivial K-split torus S of H, the centralizer CH(S) is an almost direct product S0H1 · · ·Hs

over K, where S0 is the central torus of CH(S) and each Hi is a semi-simple K-group either of
inner type A`−1 with ` 6 dr or of type D` with ` 6 d(m − 2)/2 (and not a triality form when
` = 4).

Proof. Let χ0 = 1, χ1,−χ1, . . . , χt,−χt be all the weights for the action of S(K) on W = Dm,
and denote by Wχ the weight subspace corresponding to the character χ of S. Set

W0 = Wχ0 and Wi = Wχi ⊕W−χi for i = 1, . . . , t.

Then W has the following orthogonal decomposition

W = W0 ⊥W1 ⊥ · · · ⊥Wt.

Let
m0 = dimDW0 and mi = dimDWχi = dimDW−χi for i = 1, . . . , t,

so that mi 6 r 6 m/2 and dimDWi = 2mi. Then

CH(S) = F0 × F1 × · · · × Ft,

where F0 = SUm0(D, h|W0) and Fi for i > 0 is the stabilizer of the subspaces Wχi and W−χi in
SU2mi(D, h|Wi). As mi > 1 and t > 0 as S is nontrivial, we see that m0 6 m− 2, and therefore
F0 is of type D` with

` = dm0/2 6 d(m− 2)/2

(obviously, not a triality form). Furthermore, for i > 0, the group Fi is isomorphic to GL(Wχi)
(or GL(W−χi)). Thus, its semi-simple part is SL(Wχi), which is an inner form of type A`−1 with

` = dmi 6 dr. 2
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We will now complete the proof of Proposition 5.4. Assume the contrary, i.e. H contains a
maximal K-torus T = T1T2 as in the proposition. Applying the lemma to S = T1, we obtain that

T = T1T2 ⊂ S0H1 · · ·Hs,

where S0 is the central torus of CH(T1) and the Hi are semisimple K-groups of the types specified
in the lemma. Clearly, T 6⊂ S0 as otherwise H would be quasi-split over K, which it is not because
d > 1. As T1 ⊂ S0, we conclude that T2 6⊂ S0. It follows that there exists i ∈ {1, . . . , s} such that

T2 6⊂ Ĥi := S0H1 · · ·Hi−1Hi+1 · · ·Hs.

This means that for the quotient map πi : CH(T1) → CH(T1)/Ĥi =: H̄i, we have πi(T2) 6= {e}.
Being generic over K, the torus T2 is K-irreducible, i.e. contains no proper K-defined subtori.
Thus, the restriction of πi gives an isogeny of T2 onto a K-subtorus T̄i of H̄i. Moreover, because
dimT2 = rkH − 1 and rk H̄i 6 rkH − 1, we see that T̄i is actually a maximal K-torus of H̄i.
Let L be the common minimal splitting field of T2 and T̄i. As T2 is K-generic in a group of type
Dn/2−1 where n = dm, we have

|Gal(L/K)| > 2n/2−2 · (n/2− 1)!. (4)

Now, assume that Hi is an inner form of type A`−1 with ` 6 dr. As r 6 m/2, we obtain

|Gal(L/K)| 6 |W (H̄i, T̄i)| = `! 6 (n/2)!.

Comparing with (4), we obtain the inequality

2n/2−2 6 n/2,

which fails for all n > 10.
Next, let Hi be of type D` with ` 6 d(m − 2)/2 6 n/2 − 2 as d > 2. As it is not a triality

form when ` = 4, we have

|Gal(L/K)| 6 2 · |W (H̄i, T̄i)| = 2` · `! 6 2n/2−2 · (n/2− 2)!.

Thus, comparing with (4), we obtain the inequality

2n/2−2 · (n/2− 1)! 6 2n/2−2 · (n/2− 2)!

which never holds for n > 6.
Thus, the assumption that H contains a maximal K-torus T = T1T2 leads to a contradiction

in both cases, proving our claim. 2

Proof of Proposition 5.3. (a) Write q = q1 ⊥ q2, where q1 is a two-dimensional hyperbolic form.
Then T1 = Spin2(q1) is a one-dimensional split torus Gm. As K is infinite and finitely generated,
we can find a maximal K-torus T2 of Spinn−2(q2) that is generic over K (cf. [PR03, PR17]).
Consider the maximal K-torus T = T1T2 of G. Then it follows from Proposition 5.4 that T is
not isomorphic to a maximal K-torus of H, hence H /∈ genK(G).

(b) Again, write q = q1 ⊥ q2 where q1 = 〈a1, a2〉 is a binary form. Set L = K(
√
−a1a2). If

L=K, then our claim follows from part (a). Thus, we may assume that L is a quadratic extension

of K. Then T1 = Spin2(q1) is the one-dimensional norm torus R
(1)
L/K(Gm). Furthermore, let T2 be

a maximal K-torus of Spinn−2(q2) that is generic over L (cf. [PR03, PR17]). Then the maximal

499

https://doi.org/10.1112/S0010437X1900705X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1900705X


V. I. Chernousov, A. S. Rapinchuk and I. A. Rapinchuk

K-torus T = T1T2 is not isomorphic to a maximal K-torus of H. Indeed, assume the contrary,
i.e. T ⊂ H. Note that over L, the torus T is an almost direct product T ′1T

′
2 where T ′1 is a

one-dimensional split torus and T ′2 is isomorphic to a generic torus in a group of type Dn/2−1.

At the same time, since d > 2, the group H is L-isomorphic to S̃Um′(D, h
′) where D is a central

division algebra over K = L of degree d′ > 1 and h′ is an m′-dimensional Hermitian form (note
that d′m′ = dm). However, this contradicts Proposition 5.4. Thus, again H /∈ genK(G). 2

Remark 5.6. It follows from Proposition 5.3(b) that to complete the proof of Theorem 1.2 for
all even-dimensional form, it would be sufficient to demonstrate that genK(G) cannot contain

a group of the form H = S̃Um(D,h) where D is a central quaternion division algebra over K.
The proof of Proposition 5.3(b) given above shows that this boils down to proving that for any
quaternion division algebra D over K, the given quadratic form q contains a binary subform
q1 = 〈a1, a2〉 such that the field K(

√
−a1a2) does not split D, which seems very likely at least

when the dimension of q is sufficiently large (note that those d ∈K×\K×2
for which K(

√
d) ↪→D

must be represented by the ternary quadratic form associated with D).

5.2 Properness of the global-to-local map
Let K be a two-dimensional global field of characteristic 6= 2 and let V be a divisorial set of
places. As we already mentioned, for each i > 1, the kernel

Ωi = ker

(
H i(K,µ2) −→

∏
v∈V

H i(Kv, µ2)

)
is contained in H i(K,µ2)V , hence is finite2 (cf. § 4.1). Applying now Theorem 3.4, we conclude
that for q a nondegenerate quadratic form in n > 5 variables and G = SOn(q), the map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper, which is precisely the assertion of Theorem 1.3.
To put this result in a more general context, we recall the following general observation

[CRR15, Rap14]: Let G be an absolutely almost simple simply connected algebraic group over a
field K, and let V be a set of discrete valuations of K that satisfies condition (A). Assume that
for any finite subset S ⊂ V , the set of K-isomorphism classes of inner K-forms of G having
good reduction at all v ∈ V \S is finite. Then for the corresponding adjoint group G, the map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper. This means, in particular, that for n odd, Theorem 1.3 directly follows from
Theorem 1.1. On the other hand, for n even, the latter implies neither Theorem 1.3 nor the
corresponding fact for the simply connected and adjoint groups G̃ = Spinn(q) and G = PSOn(q)
(thus, in this case Theorem 1.3 is an independent result). Later, we will see that the analogues of
Theorem 1.3 are valid for special unitary groups of Hermitian forms over a quadratic extension of
the base (two-dimensional global) field and for the group of type G2 over such a field (note that
all these groups are simply connected); see Theorems 8.4 and 9.1(iii). We close this subsection
with some additional results on the properness of the global-to-local map for simply connected
groups.

2 We can assume without loss of generality that charK(v) 6= 2 for all v ∈ V .
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Theorem 5.7. Let K be a two-dimensional global field, let V be its divisorial set of places and
let m be a square-free integer prime to charK. Then for a central simple K-algebra A of degree
m and G = SL1,A, the map

θG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper.

Proof. We may assume without loss of generality that charK(v) is prime to m for all v ∈ V . It
is well-known (cf. [KMRT98, 29.4]) that for any extension F/K there is a bijection

νF : H1(F,G) → F×/NrdAF /F (A×F ) where AF = A⊗K F,

and this bijection is functorial in F . Thus, letting Av = AKv for v ∈ V , we need to show that
the map

ι : K×/NrdA/K(A×) →

∏
v∈V

K×v /NrdAv/Kv
(A×v )

has finite kernel. For any field extension F/K, we have a homomorphism

F× → H3(F, µ⊗2
m ), a 7→ [AF ] ∪ χm,a,

where [AF ] is the class of AF in m Br(F ) = H2(F, µm). As m is square-free, according to [MS82,
Theorem 12.2], the kernel of this map coincides with NrdAF /F (A×F ), so we have an injective
homomorphism

δF : F×/NrdAF /F (A×F ) → H3(F, µ⊗2
m ).

Then we have the following commutative diagram

K×/NrdA/K(A×)
ι //

δK

��

∏
v∈V

K×v /NrdAv/Kv
(A×v )

∆V

��

H3(K,µ⊗2
m )

η //
∏
v∈V

H3(Kv, µ
⊗2
m )

where ∆V =
∏
v∈V δKv . The fact that the unramified cohomology group H3(K,µ⊗2

m )V is finite
(Theorem 6.1) implies that ker η is finite. Then using the injectivity of δK , we conclude that ker ι
is finite as well, as needed. 2

We now turn to spinor groups. Let q be a nondegenerate quadratic form of dimension at
least three over a field K of characteristic 6= 2 and let π : Spinn(q) → SOn(q) be the canonical
K-isogeny. For a field extension F/K, we let

πF : H1(F,Spinn(q)) → H1(F,SOn(q))

be the map induced by π. Assume now that K is equipped with a set V of discrete valuations
such that the map θ : H1(K,SOn(q)) →

∏
v∈V H

1(Kv,SOn(q)) is proper. Then, analyzing the
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commutative diagram

H1(K,Spinn(q))
θ̃ //

πK

��

∏
v∈V

H1(Kv, Spinn(q))

Π
��

H1(K,SOn(q))
θ //

∏
v∈V

H1(Kv,SOn(q))

where Π =
∏
v∈V πKv , and using twisting, we see that in order to prove that θ̃ is proper, it is

enough to prove that for any nondegenerate n-dimensional quadratic form q′ over K, the set

X(Spinn(q′), V )∩ kerπ′K (5)

(where π′K is the map analogous to πK for the quadratic form q′) is finite. For a field extension
F/K, combining the standard exact sequence of cohomology corresponding to the exact sequence

1 → µ2 −→ Spinn(q′)
π′−→ SOn(q′) → 1

with the description of the spinor norm (cf. [KMRT98, 13.30, 13.31]), one easily obtains a
(functorial) identification of kerπ′F with the quotient F×/ Sn(q′, F ), where Sn(q′, F ) denotes the
image of the spinor norm SOn(q′)F . Furthermore, one observes that this identification induces
an injection of the set (5) into the kernel of the map

νq′,V : K×/ Sn(q′,K) −→
∏
v∈V

K×v /Sn(q′,Kv).

Thus, if θ is known to be proper, then to establish the properness of θ̃, it is sufficient to prove that
the kernel of νq′,V is finite for all nondegenerate n-dimensional quadratic forms q′ over K. (Of
course, ker νq′,V is automatically trivial if q′ is K-isotropic, so the properness of θ immediately

implies that of θ̃ if every n-dimensional quadratic form over K is isotropic, i.e. n is greater than
the u-invariant of K.)

Here we would like to point out the following partial result on the finiteness of the set (5).

Proposition 5.8. Let K be a two-dimensional global field of characteristic 6= 2 and let V be
its divisorial set of places. If q is a quadratic Pfister form over K of dimension n = 2d, then the
intersection

X(Spinn(q), V ) ∩ kerπK

is finite.

Proof. According to the discussion prior to the statement of the proposition, it is enough to show
that the map

ηq,V : K×/Sn(q,K) →

∏
v∈V

K×v / Sn(q,Kv)

has finite kernel. By our assumption, q is a Pfister form 〈〈a1, . . . , ad〉〉 for some a1, . . . , ad ∈ K×.
For any field extension F/K, using the fact that the nonzero values of q over F form a subgroup
of F× (see [Lam05, ch. X, Theorem 1.8]), it is easy to see that a ∈ F× belongs to Sn(q, F ) if and
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only if the Pfister form q ⊥ (−aq) = 〈〈a1, . . . , ad, a〉〉 is isotropic, hence hyperbolic (cf. [Lam05,
ch. X, Theorem 1.7]). The latter is equivalent to the symbol

(a1, . . . , ad, a) ∈ kd+1(F ) = Kd+1(F )/2 ·Kd+1(F ),

or the cup-product
χa1 ∪ · · · ∪ χad ∪ χa ∈ H

d+1(F, µ2),

being trivial. Thus, the map

F× → Hd+1(F, µ2), a 7→ χa1 ∪ · · · ∪ χad ∪ χa,

gives rise to an injective map

δF : F×/ Sn(q, F ) → Hd+1(F, µ2).

We then have the following commutative diagram

K×/ Sn(q,K)
ηq,V //

δK

��

∏
v∈V

K×v / Sn(q,Kv)

∆V

��

Hd+1(K,µ2)
ιd+1 //

∏
v∈V

Hd+1(Kv, µ2)

where ∆V =
∏
v∈V δKv . As we already mentioned several times, the finiteness of the unramified

cohomology group Hd+1(K,µ2)V (see § 4.1), implies the finiteness of ker ιd+1. Thus, the
injectivity of δK yields the finiteness of ker ηq,V , as required. 2

6. The finiteness of unramified H3 for two-dimensional global fields:
characteristic zero case

To complete the proof of Theorem 1.1 and its consequences, we need to prove the following.

Theorem 6.1. Let K be a two-dimensional global field, let n > 1 be an integer prime to charK
and let V be a divisorial set of places such that charK(v) is prime to n for all v ∈ V . Then the
unramified cohomology group H3(K,µ⊗2

n )V is finite.

Corollary 6.2. Let K be a two-dimensional global field of characteristic 6= 2 and let V be a
divisorial set of places such that charK(v) 6= 2 for all v ∈ V . Then the unramified cohomology
group H3(K,µ2)V is finite.

In the current section, we treat the characteristic zero case, where K is the function field of a
smooth geometrically integral curve C over a number field k, following the referee’s suggestions;
the positive characteristic case is handled at the end of § 7. We begin by considering the case
of a projective curve. Thus, let C̃ be a smooth projective geometrically integral curve over a
number field k with function field K = k(C̃), and let V0(C̃) be the set of geometric places of
K corresponding to the closed points of C̃. It was observed by Colliot-Thélène [Col96, proof
of Theorem 6.2] and (independently) by Berhuy [Ber07, Example 6] that Kato’s cohomological
Hasse principle [Kat86] implies the following finiteness result.
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Theorem 6.3. In the above notation, the unramified cohomology group H3(K,µ⊗2
n )

V0(C̃)
is

finite, for any n > 1.

Proof. Let V k be the set of (the equivalence classes of) all valuations of k. Then according
to [Kat86, Theorem 0.8], the map

H3(k(C̃), µ⊗2
n ) −→

∏
v∈V k

H3(kv(C̃v), µ
⊗2
n ),

where C̃v = C̃×kkv, is injective. Clearly, for v ∈ V k, the restriction map takes H3(k(C̃), µ⊗2
n )

V0(C̃)

into H3(kv(C̃), µ⊗2
n )

V0(C̃v)
. However, it was shown in [Kat86, Corollary 2.9] that the latter group

is finite for all v (see also Theorem 7.1 below), and is in fact trivial if v is nonarchimedean and C̃v
has good reduction at v. As C̃ has good reduction at almost all v ∈ V k, the required finiteness
follows. 2

Now, given an arbitrary smooth geometrically integral curve C over a number field k, we let
C̃ denote the (unique) smooth geometrically integral projective curve over k containing C as an
open subset. Then Theorem 6.3 immediately gives the finiteness of the unramified cohomology
group H3(K,µ⊗2

n ) for any divisorial set of places V of K = k(C) = k(C̃) that contains V0(C̃).
To establish the finiteness for any divisorial set, we need to describe the relationship between
the unramified cohomology of a scheme and that of the complement of a closed subscheme of
codimension one. This relationship, which essentially follows from the construction of Kato’s
complex in [Kat86], was first observed by Colliot-Thélène [Col96, § 2].

Let X be an excellent Noetherian scheme and n an integer invertible on X. For a point
x ∈ X, we let κ(x) denote its residue field, and let Xp be the set of points of dimension p. For

any integers i, j, Kato [Kat86] constructs a homological complex Ci,jn (X)

· · ·→
⊕
x∈Xp

Hp+i(κ(x), µ⊗(p+j)
n ) →

⊕
x∈Xp−1

Hp+i−1(κ(x), µ⊗(p+j−1)
n ) → · · ·→

⊕
x∈X0

H i(κ(x), µ⊗jn ),

where the term
⊕

x∈Xp
Hp+i(κ(x), µ

⊗(p+j)
n ) is placed in degree p. The differentials

∂p :
⊕
x∈Xp

Hp+i(κ(x), µ⊗(p+j)
n ) →

⊕
x∈Xp−1

Hp+i−1(κ(x), µ⊗(p+j−1)
n )

are defined as follows. Let x ∈ Xp and set Zx = {x} to be the closure of x in X. Then each point
y of codimension one on Zx corresponds to a point in Xp−1. Let y1, . . . , ys be the points on the
normalization Z̃x lying above y. The local ring at each yk is a discrete valuation ring, yielding a
discrete valuation on the function field κ(x) of Z̃x. Let

∂xyk : Hp+i(κ(x), µ⊗(p+j)
n ) → Hp+i−1(k(yk), µ

⊗(p+j−1)
n )

be the corresponding residue map. One then defines

∂xy =
s∑

k=1

Corκ(yk)/κ(y) ◦∂xyk ,

where Cor is the corestriction map. The differential ∂p is the direct sum of all such maps.
In [Kat86, Proposition 1.7], Kato verified that this construction produces a complex. Note
that if X is a Noetherian integral normal scheme of dimension d with function field K,
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then the construction of the differentials implies that the degree d homology Hd(C
i,j
n (X)) of

Ci,jn (X) is precisely the unramified cohomology Hd+j(K,µ
⊗(d+j)
n )V (X), where V (X) is the set of

discrete valuations of K corresponding to the prime divisors of X.
Suppose now that X is an excellent integral Noetherian normal scheme with function field

K and Y ⊂ X is a normal closed subscheme of pure codimension one. Thus, if Y =
⋃
j∈J Yj is

the decomposition into irreducible components, then each Yj has codimension one in X, and we
let κj denote the function field of Yj . Set U = X\Y , and let n be a positive integer invertible on
X. Then, for any i > 1 and `, we have a canonical embedding

s : H i(K,µ⊗`n )V (X) −→ H i(K,µ⊗`n )V (U).

On the other hand, for each j ∈ J , one has the residue map H i(K,µ⊗`n ) → H i−1(κj , µ
⊗(`−1)
n ),

and we let
r : H i(K,µ⊗`n ) −→

⊕
j∈J

H i−1(κj , µ
⊗(`−1)
n )

denote the direct sum of the residue maps.

Proposition 6.4. The above maps r and s give the following exact sequence of unramified
cohomology groups

0 → H i(K,µ⊗`n )V (X)
s−→ H i(K,µ⊗`n )V (U)

r−→
⊕
j∈J

H i−1(κj , µ
⊗(`−1)
n )V (Yj). (6)

Proof. Let d = dimX. The initial segment of the Kato complex for X is

∂X : H i(K,µ⊗`n ) →

( ⊕
x∈Ud−1

H i−1(κ(x), µ⊗(`−1)
n )

)
⊕
(⊕
j∈J

H i−1(κj , µ
⊗(`−1)
n )

)
and for U it is

∂U : H i(K,µ⊗`n ) →

⊕
x∈Ud−1

H i−1(κ(x), µ⊗(`−1)
n ).

As noted above, the normality of X implies that

H i(K,µ⊗`n )V (X) = ker ∂X and H i(K,µ⊗`n )V (U) = ker ∂U .

At the next stage of the Kato complex for X, there are residue maps

∂Yj : H i−1(κj , µ
⊗(`−1)
n ) →

⊕
x∈(Yj)c−1

H i−2(κ(x), µ⊗(`−2)
n )

for all j ∈ J , where c = dimYj = d− 1, and the assumption that Y is normal gives

H i−1(κj , µ
⊗(`−1)
n )V (Yj) = ker ∂Yj .

Now, the fact that we have a complex implies that the map r takes H i(K,µ⊗`n )V (U) into⊕
j∈J

H i−1(κj , µ
⊗(`−1)
n )V (Yj),

and the exactness of (6) then follows easily from the construction. 2
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Proof of Theorem 6.1. First, let C be any smooth geometrically integral curve over k such that
K = k(C), and let C̃ be a smooth projective geometrically integral curve over k containing C.
Suppose that we are given smooth models C ⊂ C̃ of C and C̃, respectively, over a suitable open
subsect T ⊂ Spec(Z) such that C̃\C is of pure codimension one. The inclusion

H3(K,µ⊗2
n )

V (C̃) ⊂ H
3(K,µ⊗2

n )
V0(C̃)

in conjunction with Theorem 6.3 implies that H3(K,µ⊗2
n )

V (C̃) is finite.

Now, let

C̃\C =
⋃
j∈J

Yj

be the decomposition into irreducible components, and let κj be the function field of Yj . By
construction, each κj is a number field and Yj is the spectrum of the ring of Sj-integers in
κj for some finite subset Sj ⊂ V κj containing V

κj
∞ . Set Tj = V κj\Sj . Then H2(κj , µn)V (Yj)

coincides with the unramified Brauer group nBr(κj), the finiteness of which easily follows from
the Artin–Hasse–Brauer–Noether theorem (cf. [CRR13, 3.6] and [CRR16a, 3.5]). Let us consider
now the exact sequence of Proposition 6.4 for X = C̃ and U = C for i = 3 and ` = 2. As the
finiteness of

H3(K,µ⊗2
n )

V (C̃) and
⊕
j∈J

H2(κj , µn)V (Yj)

has already been established, we obtain the finiteness of H3(K,µ⊗2
n )V (C). This proves the

Theorem for the divisorial set V = V (C). However, it is easy to see that any divisorial set
of valuations V of K contains a set of the form V (C) for a suitable curve C over k and its model
C as above, completing the argument in the general case. 2

As we have already mentioned, in Appendix A we give an alternative (in fact, our initial)
proof of Theorem 6.1 in characteristic zero, which does not use Kato’s cohomological Hasse
principle, but rather is inspired by Jannsen’s [Jan89–90] approach to the latter.

7. Proofs of Theorem 1.4 and of Theorem 6.1 in positive characteristic

The reason we treat these two results in the same section is that both arguments ultimately
depend on the same techniques, namely finiteness theorems in étale cohomology and Bloch–Ogus
theory. We begin with the proof of Theorem 1.4, which relies on the following.

Theorem 7.1 [Rap18, Theorem 1.3(a)]. Let C be a smooth geometrically integral curve over a
field k, let V0 be the set of places of K = k(C) associated with the closed points of C and let
m > 1 be an integer prime to char k. If k satisfies condition (F′m) (see § 1), then for any i > 1
and any j, the unramified cohomology group H i(K,µ⊗jn )V0 is finite.

We refer the reader to [Rap18] for a discussion of properties and examples of fields satisfying
condition (F′m). A sketch of the proof of Theorem 7.1 will be given below after briefly recalling
some facts from Bloch–Ogus theory that are also needed for the proof of Theorem 6.1 in
positive characteristic. Here we only mention that the proof of Theorem 7.1 makes use of the
following statement, which is of independent interest and which we will also need in the proof of
Theorem 1.4.
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Proposition 7.2 [Rap18, Theorem 1.1]. Let K be a field and m > 1 be an integer prime to
charK. Assume that K satisfies (F′m). Then for any finite Galois module A over K such that
mA = 0, the groups H i(K,A) are finite for all i > 0.

Proof of Theorem 1.4. We need to check the conditions of Theorem 2.1 for V = V0. Condition
(2) follows immediately from Theorem 7.1. To verify (1), we observe that the argument given in
the proof of Proposition 4.1 shows that there exists an embedding

Pic(V0)/2 · Pic(V0) ↪→ H2(C, µ2).

Then, because the group H2(C ⊗k k̄, µ2) is finite and of exponent 2 (see [SGA4, Exposé XVI,
Théorème 5.2]), the finiteness of H2(C, µ2) follows easily from Proposition 7.2 (with condition
(F′2)) and the Hochschild–Serre spectral sequence

Ep,q2 = Hp(k,Hq(C ⊗k k̄, µ2))⇒ Hp+q(C, µ2).

Alternatively, note that we may assume that C is affine, in which case the fundamental sequence
(2) yields the following exact sequence

H2(k, µ2) −→ H2(C, µ2) −→ H1(k,H1(C ⊗k k̄, µ2)).

The extreme terms are finite in view of condition (F′2) and Proposition 7.2, so the middle term
is also finite, as required. 2

We expect a suitable analogue of Theorem 1.4 to be valid for all types, and would like to
propose the following conjecture.

Conjecture 7.3. Let K = k(C) be the function field of a smooth affine geometrically integral
curve over a field k and let V0 be the set of discrete valuations associated with the closed points
of C. Furthermore, let G be an absolutely almost simple simply connected algebraic K-group
and let m be the order of the automorphism group of its root system. Assume that char k is
prime to m and that k satisfies (F′m). Then the set of K-isomorphism classes of K-forms of G
that have good reduction at all v ∈ V0 is finite.

It is likely that the conclusion should be true under more lax assumptions, e.g. it is probably
enough to require condition (F′p) for all primes p | m or even a certain subset of the set of such

primes.

Applying Theorem 3.4 in conjunction with Theorem 7.1, we obtain the following.

Theorem 7.4. Let C be a smooth geometrically integral curve over a field k of characteristic
6= 2 that satisfies condition (F′2), and let K = k(C) be its function field. Denote by V0 the set

of discrete valuations of K associated with the closed points of C. Then for a nondegenerate
quadratic form q of dimension n > 5 over K and G = SOn(q), the map

θG,V0 : H1(K,G) −→
∏
v∈V0

H1(Kv, G)

is proper.
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We expect that the conclusion of the theorem should be true for any absolutely almost
simple group under the assumptions made in Conjecture 7.3. Here is one result for spinor groups
in a more specialized situation. Keep the above notations but now assume that k is a finite
extension of the p-adic field Qp. Recall that k satisfies Serre’s condition (F) (cf. [Ser97, ch. III,
§ 4]), hence condition (F′m) for all m. Furthermore, Parimala and Suresh [PS10] showed that
the u-invariant of K is 8, i.e. any quadratic form over K of dimension > 9 is isotropic. Thus,
combining Theorem 7.4 with the discussion preceding Proposition 5.8, we obtain the following.

Corollary 7.5. In the above notation, for any quadratic form q over K in n > 9 variables and
G̃ = Spinn(q), the map θG̃,V0 is proper.

We now recall several results from Bloch–Ogus theory. For any smooth algebraic variety
X over an arbitrary field F , Bloch and Ogus [BO74] established the existence of the following
cohomological first quadrant spectral sequence

Ep,q1 (X/F, µ⊗bm ) =
⊕

x∈X(p)

Hq−p(κ(x), µ⊗(b−p)
m )⇒ Hp+q(X,µ⊗bm ), (7)

where X(p) denotes the set of points of X of codimension p and the summands are the Galois
cohomology groups of the residue fields κ(x) (the original statement of Bloch–Ogus was actually
given in terms of étale homology, with the above version obtained via absolute purity; we refer the
reader to [CHK97] for a derivation of this spectral sequence that avoids the use of étale homology,
as well as to [Col95] for an extensive discussion of applications of this spectral sequence to the
Gersten conjecture). The spectral sequence yields a complex

E•,q1 (X/F, µ⊗bm ), (8)

and it is well-known (see, e.g., [JSS14, Remark 2.5.5]) that the differentials in (8) coincide up to
sign with the differentials in Kato’s complex that was recalled in § 5. The fundamental result of
Bloch and Ogus was the calculation of the E2-term of (7): they showed that

Ep,q2 (X/F, µ⊗bm ) = Hp(X,Hq(µ⊗bm )),

where Hq(µ⊗jm ) denotes the Zariski sheaf on X associated to the presheaf that assigns to an open
U ⊂ X the cohomology group H i(U, µ⊗jm ). The resulting (first quadrant) spectral sequence

Ep,q2 (X/F, µ⊗bm ) = Hp(X,Hq(µ⊗bm ))⇒ Hp+q(X,µ⊗bm ) (9)

is usually referred to as the Bloch–Ogus spectral sequence and has the following key properties:

(a) Ep,q2 = 0 for p > dimX and all q;

(b) Ep,q2 = 0 for p > q; and

(c) E0,q
2 = H0(X,Hq(µ⊗bm )) coincides with the unramified cohomology Hq(F (X), µ⊗bm )V0 with

respect to the geometric places (associated with the prime divisors of X) of the function
field F (X).

For our applications, we now state the following proposition, whose proof combines
Proposition 7.2 with the Hochschild–Serre spectral sequence.

Proposition 7.6 [Rap18, Corollary 3.2]. Suppose K is a field and m > 1 is integer prime to
charK. If K is of type (F ′m), then for any smooth geometrically integral algebraic variety X over
K, the étale cohomology groups H i(X,µ⊗jm ) are finite for all i > 0 and all j.
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Sketch of proof of Theorem 7.1. As dimC = 1, property (a) of the Bloch–Ogus spectral sequence
gives surjective edge maps Ei → E0,i

2 for all i > 1. Thus, in view of property (c), we obtain
surjections

H i(C, µ2)� H i(k(C), µ2)V0

for all i > 1. The finiteness of the unramified cohomology groups then follows from
Proposition 7.6.

Proof of Theorem 6.1 in positive characteristic. Here K is the function field k(X) of a smooth
geometrically integral surface X over a finite field k. Property (b) of the Bloch–Ogus spectral
sequence yields an exact sequence

E3
→ E0,3

2 → E2,2
2 .

Hence, using the well-known isomorphism

H2(X,H2(µ⊗2
m )) ' CH2(X)/m · CH2(X),

where CH2(X) is the Chow group of codimension-two cycles on X (see, e.g. the proof of [BO74,
Theorem 7.7]), together with property (c) above, we obtain the exact sequence

H3(X,µ⊗2
m ) → H3(K,µ⊗2

m )V0 → CH2(X)/m · CH2(X).

The left-most term is finite by Proposition 7.6. On the other hand, because X is a smooth
surface over a finite field, the group CH2(X) is finitely generated (see [CSS83, Proposition 4 and
Corollaire 7]). It follows that H3(K,µ⊗2

m )V0 is finite, as needed. 2

8. Special unitary groups of Hermitian forms over quadratic extensions

Let K be a field of characteristic 6= 2 and let L/K be a quadratic field extension with nontrivial
automorphism τ . A choice of a basis of L over K enables us to identify L with K2. Then
for any n > 1 the space Ln gets identified with K2n, and under this identification, to any
τ -Hermitian form h on Ln, there naturally corresponds a quadratic form q = qh on K2n given
by qh(x) = h(x) for x ∈ K2n = Ln. Recall that if s(x, y) is the sesquilinear form on Ln×Ln that
gives h (i.e. h(x) = s(x, x)), then the bilinear form b on K2n ×K2n associated with qh is given
by

b(x, y) = 1
2 TrL/K(s(x, y)) for x, y ∈ K2n = Ln.

The following result, attributed in [Ger08, § 2.9] to Jacobson, is well-known and easy to prove:
two n-dimensional Hermitian forms h1 and h2 are equivalent if and only if the corresponding
2n-dimensional quadratic forms qh1 and qh2 are equivalent. In terms of Galois cohomology, this
means that the natural map

H1(K,Un(L/K, h)) −→ H1(K,O2n(qh))

is injective. On the other hand, it is well-known that the map

H1(K,SUn(L/K, h)) −→ H1(K,Un(L/K, h))

is also injective (the proof repeats verbatim the argument for the injectivity of the map

H1(K,SOm(q)) −→ H1(K,Om(q)),
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cf. [Ber10, proof of Corollary IV.11.3] or [KMRT98, 29.E]). It follows that the map

H1(K,SUn(L/K, h)) −→ H1(K,SO2n(qh))

is injective (in fact, it remains injective also over any extension of K). In this section, we use these
facts to prove the analogues of Theorems 1.1–1.4 for the special unitary groups SUn(L/K, h) of
nondegenerate n-dimensional Hermitian forms (n > 2).

First, let G = SUn(L/K, h) in the above notation and let v be a discrete valuation of K.
There are two cases.

Case 1: v splits in L (i.e. L⊗K Kv 'Kv⊕Kv). In this case G is Kv-isomorphic to SLn, hence has
good reduction at v. At the same time, the corresponding quadratic form qh becomes hyperbolic
over Kv and therefore (trivially) [qh] ∈W0(Kv) in the notation of § 3.

Case 2: v does not split in L (i.e. Lv := L⊗K Kv is a quadratic field extension of Kv). Then G
has good reduction at v if and only if Lv/Kv is unramified at v and there exists λ ∈ K×v such
that the Hermitian Lv/Kv-form λh is equivalent to a Hermitian form given by

h′(x1, . . . , xn) = a1NLv/Kv
(x1) + · · ·+ avNLv/Kv

(xn)

with ai ∈ U(Kv). Then again [λqh] ∈W0(Kv).

Thus, in all cases, the fact that G has a good reduction at v implies that there exists λ ∈ K×v
such that [λqh] ∈W0(Kv), or equivalently the group H = Spin2n(qh) has a good reduction at v.
It is now easy to derive a unitary analogue of Theorem 1.1.

Theorem 8.1. Let K be a two-dimensional global field of characteristic 6= 2 and let V be a
divisorial set of places. Fix a quadratic extension L/K, and let n > 2. Then the number of
K-isomorphism classes of special unitary groups G = SUn(L/K, h) of nondegenerate Hermitian
L/K-forms in n variables that have good reduction at all v ∈ V is finite.

Indeed, let Gi = SUn(L/K, hi) (i ∈ I) be an infinite family of pairwise nonisomorphic special
unitary groups associated with the quadratic extension L/K such that each Gi has a good
reduction at every v ∈ V . Then Hi = Spin2n(qhi) (i ∈ I) is a family of spinor groups each having
good reduction at all v ∈ V . Applying Theorem 1.1, we conclude that the groups Hi and Hj are
K-isomorphic for some i, j ∈ I, i 6= j. Then for some λ ∈ K×, the quadratic forms qhi and λqhj
are equivalent. It now follows from Jacobson’s theorem that the Hermitian forms hi and λhj are
equivalent, hence the groups Gi and Gj are isomorphic, a contradiction.

Remark 8.2. It follows, for example, from [CRR16a, Proposition 5.1] that K has only finitely
many quadratic extensions L/K that are unramified at all v ∈ V (note that this conclusion
remains valid for any finitely generated field K and a divisorial set of places V ). Thus, in effect,
Theorem 8.1 yields the finiteness of the set of K-isomorphic classes of the special unitary groups
with good reduction at all v ∈ V of n-dimensional nondegenerate Hermitian forms associated
with all quadratic extensions L/K.

Turning now to the genus of G = SUn(L/K, h), we observe that any G′ ∈ genK(G) is of
the form G′ = SUn(L/K, h′). This is clear for n = 2, so we assume that n > 3. The group G
possesses a maximal K-torus T of the form RL/K(Gm)n−1, so the group G′ also has such a
maximal K-torus. Note that the nontrivial automorphism τ ∈ Gal(L/K) acts on the character
group X(T ) as multiplication by (−1), and because −id is not in the Weyl group of the root
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system of type An−1 (n > 3), we see that G′ is an outer form of the split group of this type and
L is the minimal extension of K over which it becomes an inner form. Furthermore, because G′

splits over L, it cannot involve any noncommutative division L-algebra in its description, and
therefore it must be of the form SUn(L/K, h′) (cf. [PR94, 2.3]). Now, arguing as in the proof of
Theorem 1.2 (cf. § 4.4) on the basis of Theorem 8.1, we obtain the following statement, which is
even more complete (in the sense that it has no exceptions) than Theorem 1.2.

Theorem 8.3. Let K be a two-dimensional global field of characteristic 6= 2 and let G =
SUn(L/K, h), where L/K is a quadratic extension and h is a nondegenerate Hermitian form
of dimension n > 2 associated with L/K. Then the genus genK(G) is finite.

Next, we have the following cohomological statement, which is analogous to Theorem 1.3.

Theorem 8.4. Notation as in Theorem 8.1, for G = SUn(L/K, h) the map

H1(K,G) →

∏
v∈V

H1(Kv, G)

is proper.

Indeed, let H = SO2n(qh). Then we have the following commutative diagram.

H1(K,G)
α //

β

��

∏
v∈V H

1(Kv, G)

γ

��
H1(K,H)

δ //
∏
v∈V H

1(Kv, H)

According to Theorem 1.3, the map δ is proper. On the other hand, as we pointed out earlier in
this section, the map β is injective, and the properness of α follows.

Finally, we have the following result for special unitary groups over function fields of curves
over fields satisfying (F′2), which is analogous to Theorem 1.4 and which is actually derived from
it just like Theorem 8.1 was derived from Theorem 1.1.

Theorem 8.5. Let C be a smooth geometrically integral curve over a field k of characteristic
6= 2 that satisfies condition (F′2) and let K = k(C). Denote by V the set of discrete valuations
of K corresponding to the closed points of C. Let L/K be a quadratic extension. Then the
number of K-isomorphism classes of special unitary groups G = SUn(L/K, h) of nondegenerate
Hermitian L/K-forms h in n > 2 variables that have good reduction at all v ∈ V is finite.

Remark 8.6. A similar approach can be used to obtain the analogues of Theorems 8.1 and 8.3–8.5
for the (special) unitary groups G = SUn(D,h) of nondegenerate Hermitian forms h of dimension
n > 2 over a quaternion division algebra D with center K with the canonical involution. (We
note that these are precisely the absolutely almost simple simply connected groups of type
Cn that split over a quadratic extension of the base field.) More precisely, let us first fix a
central quaternion division algebra D over K. Then fixing a basis of D over K enables us to
identify Dn with K4n, and in terms of this identification, the Hermitian form h corresponds
to a quadratic form qh on K4n. Furthermore, one has an analogue of Jacobson’s theorem: two
nondegenerate n-dimensional Hermitian forms h1 and h2 over D if and only if the corresponding
4n-dimensional quadratic forms qh1 and qh2 are equivalent. Next, if G = SUn(D,h) has good
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reduction at a discrete valuation v of K, then D is unramified at v and H = Spin4n(bh) has
good reduction at v. Using these remarks, one can repeat the above arguments almost verbatim
to establish the analogues of the theorems of the current section in this situation over the same
two classes of fields, i.e. over two-dimensional global fields K of characteristic 6= 2 equipped
with a divisorial set of places V and over the function fields K = k(C) of smooth geometrically
integral curves C over a field k of characteristic 6= 2 satisfying condition (F′2) equipped with
the set V of geometric places associated with the closed points of C. Details will be published
elsewhere. We now recall that for both classes, 2Br(K)V is known to be finite, implying that the
number of isomorphism classes of central quaternion division K-algebras D such that there exists
a nondegenerate n-dimensional Hermitian form h for which G = SUn(D,h) has good reduction
at all v ∈ V is finite. Eventually, this shows that the set of K-isomorphism classes of absolutely
almost simple simply connected K-groups of type Cn that split over a quadratic extension of the
base field and have good reduction at all v ∈ V is finite (for K and V as above). Observe that
Remark 8.2 yields a similar statement for type An, and the results of § 9 do so for groups of type
G2. Thus, it would be interesting to see whether this statement in fact extends to forms of all
types that split over a quadratic extension of the base field – this would be an important test
for the general problem (∗) from § 1.

9. Groups of type G2

Let G0 be the split group of type G2 over a field K of characteristic 6= 2. Then the K-isomorphism
classes of K-groups of type G2 are in a natural one-to-one correspondence with the elements of
the (pointed) set H1(K,G0). Furthermore, there is a natural map

λK : H1(K,G0) → H3(K,µ2)

that has the following explicit description: if ξ ∈ H1(K,G0) and the twisted group G = ξG0

is the automorphism group of the octonion algebra O = O(a, b, c) corresponding to a triple

(a, b, c) ∈ (K×)
3
, then

λK(ξ) = χa ∪ χb ∪ χc,

where for t ∈K× we let χt ∈H1(K,µ2) denote, by abuse of notation, the cohomology class of the
usual 1-cocycle χt coming from Kummer theory. It is well-known that λK is injective (cf. [Ser97,
ch. III, Appendix 2, 3.3]).

Now, suppose that K is equipped with a discrete valuation v such that charK(v) 6= 2. Then
the automorphism group G of an octonian algebra O has good reduction at v if and only if O
can be represented by a triple (a, b, c) ∈ (K×)3 such that

v(a) = v(b) = v(c) = 0.

It follows that if G = ξG0 has good reduction at v, then the cocycle λK(ξ) ∈ H3(K,µ2) is
unramified at v. Now, using Corollary 6.2, we obtain the following.

Theorem 9.1. Let K be a two-dimensional global field of characteristic 6= 2, let V be a divisorial
set of places and let G be a simple algebraic K-group of type G2.

(i) The number of K-isomorphism classes of K-forms G′ having good reduction at all v ∈ V is
finite.

(ii) The genus genK(G) is finite.

(iii) The map θG,V : H1(K,G) −→
∏
v∈V H

1(Kv, G) is proper.
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Proof. Part (i) immediately follows from the remarks preceding the statement of the theorem
and Corollary 6.2. Part (ii) is derived from part (i) and Theorem 5.2 just like Theorem 1.2
was derived from Theorem 1.1. Finally, part (iii) is derived from part (i) and the observation
mentioned in § 5.2. (Alternatively, one can use the injectivity of λK and the fact that the kernel
Ω3 of the map

H3(K,µ2) −→
∏
v∈V

H3(Kv, µ2)

is finite, which immediately follows from the finiteness of H3(K,µ2)V .) 2

Next, we describe the analogues for groups of type G2 of the results of § 7.

Theorem 9.2. Let k be a field of characteristic 6= 2 that satisfies condition (F′2), let K = k(C)
be the function field of a smooth affine geometrically integral curve C over k and let V0 be the
set of places of K corresponding to the closed points of C. If G is a simple algebraic K-group of
type G2, then:

(i) the number of K-isomorphism classes of K-forms G′ having good reduction at all v ∈ V0 is
finite;

(ii) the map θG,V0 : H1(K,G) −→
∏
v∈V0 H

1(Kv, G) is proper.

Proof. Again, part (i) follows from the discussion preceding the statement of Theorems 9.1 and
7.1. Then part (ii) follows from (i) and the observation made in [CRR15, Rap14] that we discussed
at the beginning of § 5.2. (As in the proof of Theorem 9.1, one can alternatively use the injectivity
of λK in conjunction with the fact that the homomorphism

H3(K,µ2) −→
∏
v∈V0

H3(Kv, µ2)

has finite kernel, which is a consequence of the finiteness of H3(K,µ2)V0 .) 2

We now turn to a result that provides information about the genus of a group of type G2

over the fields of rational functions over global fields.

Theorem 9.3. Let K = k(x1, . . . , xr) the field of rational functions in r variables over a global
field k of characteristic 6= 2 and let G be a simple K-group of type G2.

(i) If r = 1, then the genus genK(G) reduces to a single element.

(ii) The genus genK(G) is finite for any r.

The proof requires more detailed information about the ‘residues’ of groups of type G2 at
places of bad reduction. Thus, let K be a field with a discrete valuation v such that the residue
field K = K(v) is of characteristic 6= 2 and let

∂v : H3(K,µ2) → H2(K, µ2)

be the corresponding residue map. It is well-known (cf. [GS06, §§ 7.1 and 7.5]) that any
‘decomposable’ element χa ∪χb ∪χc, where a, b, c ∈K× (and by the Bloch–Kato conjecture such
elements generate H3(K,µ2)) can be written in the form χa′ ∪χb′ ∪χc′ with v(a′) = v(b′) = 0
and v(c′) = 0 or 1, and that on elements of this form the residue map is given by

∂v(χa ∪ χb ∪ χc) =

{
0, v(a) = v(b) = v(c) = 0,

χā ∪ χb̄, v(a) = v(b) = 0, v(c) = 1,
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where ā, b̄ are the images of a, b in K×. We define the quaternion algebra corresponding to
the residue of such an element to be the matrix algebra M2(K) in the first case and the
standard quaternion algebra ((ā, b̄)/K) in the second. We will assume henceforth that K is
finitely generated.

Lemma 9.4. Given ξ1, ξ2 ∈ H1(K,G0), we denote by Gi = ξiG0 the corresponding group and
set Di to be the quaternion algebra over K corresponding to the residue ∂v(λK(ξi)) for i = 1, 2.
If G1 and G2 have the same isomorphism classes of maximal K-tori, then D1 and D2 have the
same isomorphism classes of maximal étale K-subalgebras.

Proof. Let Oi be an octonian K-algebra such that Gi = Aut(Oi) for i = 1, 2. Suppose Oi can
be represented by a triple (ai, bi, ci) ∈ (K×)3 such that v(ai) = v(bi) = v(ci) = 0. Then Gi has
a good reduction at v. As G1 and G2 have the same isomorphism classes of maximal K-tori, by
Theorem 5.2 the group G3−i also has good reduction at v. This means that O3−i can also be
represented by a triple (a3−i, b3−i, c3−i) ∈ (K×)3 such that v(a3−i) = v(b3−i) = v(c3−i) = 0. In
this case, both residues ∂v(λK(ξ1)) and ∂v(λK(ξ2)) are trivial, so our claim is obvious. It remains
to consider the case where Oi is represented by a triple (ai, bi, ci) ∈ (K×)3 satisfying

v(ai) = v(bi) = 0, v(ci) = 1

for i = 1, 2. Then Di is the quaternion algebra ((āi, b̄i)/K) where āi, b̄i are the images of ai, bi in
K×. To prove that D1 and D2 have the same maximal étale subalgebras, it suffices to prove the
following:

Let L be an extension of K of degree 62. Then L splits D1 if and only if it splits D2.

Let L be the unramified extension of Kv with the residue field L. We have

∂v(λK(ξi)) = ∂̂v(λKv(ξ̂i)),

where ∂̂v : H3(Kv, µ2) → H2(K, µ2) is the residue map and ξ̂i is the image of ξi under the
restriction map H1(K,G0) → H1(Kv, G0). As residue maps commute with restriction maps for
unramified extensions, we further obtain

ResL/K(∂v(λK(ξi))) = ∂̂Lv (λL(ResL/Kv
(ξ̂i))), (10)

where ∂̂Lv : H3(L, µ2) → H2(L, µ2) is the residue map for L (see [Col95, Proposition 3.3.1]).
Now, suppose that L splits Di, i.e. the quaternion algebra ((āi, b̄i)/L) is trivial. Then it

follows from Hensel’s lemma that the quaternion algebra ((ai, bi)/L) is also trivial, and therefore
the group Gi becomes split over L. Define a two-dimensional Kv-torus T to be

Gm ×Gm if L = Kv and R
(1)
L/Kv

(Gm)× R
(1)
L/Kv

(Gm) if [L : Kv] = 2

(where, as usual, R
(1)
L/Kv

(Gm) denotes the corresponding norm torus). Then T is isomorphic to a

maximal Kv-torus of Gi. As G1 and G2 have the same isomorphism classes of maximal K-tori,
they also have the same isomorphism classes of maximal Kv-tori (see [RR10, Remark 2.2]). Thus,
T is isomorphic to a maximal Kv-torus of G3−i as well. Then the cocycle ResL/Kv

(ξ̂3−i) is trivial,
so applying (10) with i replaced by 3− i, we obtain that ResL/K(∂v(λK(ξ3−i))) is trivial, i.e. L
splits L3−i, as required. 2
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Corollary 9.5. Assume that the residue field K = K(v) is finitely generated and has the
following property:

(?) If D1 and D2 are central quaternion algebras over K that have the same maximal étale
subalgebras, then D1 ' D2.

If ξ1, ξ2 ∈ H1(K,G0) are such that the corresponding groups Gi = ξiG0 for i = 1, 2 have the
same isomorphism classes of maximal K-tori, then ∂v(λK(ξ1)) = ∂v(λK(ξ2)).

Proof of Theorem 9.3(i). We will prove a more general result. To formulate it, in addition to
property (?) of a field K from Corollary 9.5, we need to introduce the following property of a
field k.

(??) If G1 and G2 are two k-groups of type G2 having the same maximal tori, then

G1 ' G2 over k.

Theorem 9.6. Assume that a field k of characteristic 6= 2 satisfies (??) and that any finite
extension ` of k satisfies (?). Then the field of rational functions K = k(x) satisfies (??).

We note that the mere fact that k satisfies (?) implies that K = k(x) also satisfies (?);
see [RR10, Theorem A]. Furthermore, it is well-known that global fields satisfy both conditions
(?) (cf. [CRR13, 3.6]) and (??) (cf. [PR09, Theorem 7.5]), so Theorem 9.6 immediately yields
the assertion of Theorem 9.3(i).

To prove Theorem 9.6, we let V denote the set of all places of K = k(x) that are trivial on
k (these of course correspond to the closed points of P1

k). It follows from the above remarks that
we may assume the field k to be infinite. Now, let G′ ∈ genK(G), and let ξ, ξ′ ∈ H1(K,G0) be
the corresponding cocycles (so that G = ξG0 and G′ = ξ′G0). For any v ∈ V , since the residue
field K(v) is a finite extension of k, hence satisfies (?) by our assumption, we conclude from
Corollary 9.5 that

∂v(λK(ξ)) = ∂v(λK(ξ′)).

Thus,
λK(ξ′) = λK(ξ) · ζ for some ζ ∈ H3(K,µ2)V . (11)

However, according to Faddeev’s sequence (cf. [GMS03, ch. III, § 9] and [GS06, 6.9]), the natural
(inflation) map ι : H3(k, µ2) → H3(K,µ2) identifies H3(k, µ2) with the unramified group H3(K,
µ2)V . Then in terms of this identification, ζ in (11) belongs to H3(k, µ2). We would like to show
that actually ζ = 1, which will imply that G′ ' G.

As k is infinite, we can pick v ∈ V so that K(v) = k and G and G′ have smooth reductions

G(v) and G′
(v)

at v. We have the natural map

εv : H3(K,µ2){v} → H3(k, µ2)

(defined on the v-unramified part) such that εv ◦ ι = id. Clearly, the images under λk of the

cocycles that correspond to G(v) and G′
(v)

coincide with εv(λK(ξ)) and εv(λK(ξ′)), respectively.

Now, by the last assertion of Theorem 5.2, the groups G(v) and G′
(v)

have the same isomorphism

classes of maximal k-tori, so because k is assumed to satisfy (??), we conclude that G(v) ' G′(v)
.

This means that
εv(λK(ξ)) = εv(λK(ξ′)). (12)

Applying εv to (11) and comparing the result with (12), we obtain that εv(ζ) = 1, and
consequently ζ = 1, as required. 2
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Proof of Theorem 9.3(ii). We view K as the field of rational functions on Prk, and let V be

the set of discrete valuations on K associated with the prime divisors. Pick a finite subset

V0 = {v1, . . . , vd} of V so that G has a good reduction at all v ∈ V \V0. For each i = 1, . . . , d,

we let Di denote the quaternion algebra over the residue field Ki = K(vi) that corresponds to

the residue ∂vi(λK(ξ)), where ξ ∈ H1(K,G0) is such that G = ξG0. Given any other K-group

G′ of type G2, we set ξ′ = ξ(G′) to be the cohomology class in H1(K,G0) such that G′ = ξ′G0,

and for i = 1, . . . , d, denote by D′i = Di(G
′) the quaternion algebra corresponding to the residue

∂vi(λK(ξ′)). Then Lemma 9.4 tells us that the correspondence G′ 7→ (D′i) gives a map

ρ : genK(G) −→
r∏
i=1

genKi
(Di),

where the genus genK(D) of a central quaternion algebra D over a field K (of characteristic

6= 2) is defined to be the set of the Brauer classes [D′] of central quaternion K-algebras D′

having the same maximal étale subalgebras as D; see [CRR15, CRR16a] for the details. As each

genus genKi
(Di) is finite [CRR15], to prove that genK(G) is finite, it suffices to show that each

fiber ρ−1(ρ(G′)) for G′ ∈ genK(G) is finite. For this we note that Theorem 5.2 implies that for

any G′ ∈ genK(G) and any v ∈ V \V0, the residue ∂v(λK(G′)) is trivial. Consequently, for any

G′ ∈ genK(G), any G′′ ∈ ρ−1(ρ(G′)), and corresponding cocycles ξ′, ξ′′, we have

λK(ξ′′) = λK(ξ′) · ζ for some ζ ∈ H3(K,µ2)V .

However, from Faddeev’s sequence, we again see that in our situation H3(K,µ2)V = H3(k, µ2)

(cf. [GMS03, Theorem 10.1]). As k is a global field, the latter group is finite by Poitou–Tate, so,

from the injectivity of λK , we obtain the finiteness of the fibers ρ−1(ρ(G′)) for G′ ∈ genK(G),

and hence the finiteness of genK(G). 2

Appendix A. An alternative proof of Theorem 6.1 in characteristic zero

Let K be a two-dimensional global field of characteristic zero. Take any smooth geometrically

integral affine curve C over a number field k such that K = k(C), and let V0 denote the set of

discrete valuations of K corresponding to the closed points of C. Furthermore, we can pick a

finite subset S ⊂ V k containing all archimedean places so that there exists a model C of C over

the ring of S-integers Ok,S that has good reduction at all v ∈ V k\S. Then every such v has a

canonical extension ṽ to K defined by C, and we let V1 = {ṽ | v ∈ V k\S}. It is easy to see that

any divisorial set of places of K contains V0 ∪ V1 for a suitable choice of C, S and C. Thus, it is

enough to prove the following.

Theorem A.1. Set V = V0 ∪ V1 in the above notation. Let n > 1 be an integer such that S

contains all divisors of n, so that charK(v) is prime to n for all v ∈ V . Then the unramified

cohomology group H3(K,µ⊗2
n )V is finite.

We begin by developing some formalism that applies in a more general situation.

A.1 Two injectivity results

Let C be a smooth geometrically integral curve over an arbitrary field k and let p be a

prime 6= char k. Then for any n > m, we have the following commutative diagram of étale
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sheaves on C

1 // µpm

id

��

// Gm

id
��

[pm] // Gm

[pn−m]

��

// 1

1 // µpn // Gm
[pn] // Gm

// 1

where [p`] denotes the morphism x 7→ xp
`
. Passing to cohomology, we obtain the following

commutative diagram

Pic(C)

id
��

[pm] // Pic(C)

[pn−m]

��

// H2(C, µpm) //

��

Br(C)

id
��

[pm] // Br(C)

[pn−m]

��
Pic(C)

[pn] // Pic(C) // H2(C, µpn) // Br(C)
[pn] // Br(C)

(A.1)

where [p`] denotes multiplication by p`. We now use the following elementary statement.

Lemma A.2. Let A be an Abelian group and let p be a prime. Consider the family of Abelian
groups A/pnA for n > 1 with morphisms πmn : A/pmA → A/pnA for n > m given by

πmn (a+ pmA) = pn−ma+ pnA.

Then the direct limit lim
−→

(A/pnA, πmn ) can be naturally identified with A⊗Z Qp/Zp.

Proof. For n > 1, define λn : A/pnA → A⊗Z Qp/Zp by a+ pnA 7→ a⊗ (p−n + Zp). As

pna⊗ (p−n + Zp) = a⊗ (1 + Zp) = 0 in A⊗Z Qp/Zp,

this map is well-defined. Furthermore, for n > m we have

λm(a+ pmA) = a⊗ (p−m + Zp) = pn−ma⊗ (p−n + Zp) = λn(πmn (a+ pmA)),

so the λm assemble into a (surjective) homomorphism

λ : lim
−→

(A/pnA, πmn ) −→ A⊗Z Qp/Zp.

To construct the inverse map, we start with a map

A×Qp/Zp −→ lim
−→

(A/pnA, πmn ), (a, p−nb+ Zp) 7→ ba+ pnA (where b ∈ Z, n > 1),

and check that this map is well-defined and bilinear. This yields a homomorphism

A⊗Z Qp/Zp −→ lim
−→

(A/pnA, πmn )

which is easily seen to be the inverse of λ. 2

As usual, for an Abelian group A and n ∈ N, we write nA = {a ∈ A | na = 0}. Furthermore,
for a prime p, we write p∞A = {a ∈ A | pna = 0 for some n > 1}. If p 6= char k, then we set

Qp/Zp(d) = lim
−→

µ⊗dpn .

Taking the direct limits of the diagrams (A.1) over all n > m and using Lemma A.2, we obtain
the following exact sequence

0 → Pic(C)⊗Z Qp/Zp −→ H2(C,Qp/Zp(1)) −→ p∞ Br(C) → 0, (A.2)

which leads to our first injectivity result.
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Lemma A.3. For a prime p 6= char k, if Pic(C)⊗ZQp/Zp = 0 (in particular, if Pic(C) is torsion),
then the canonical map H2(C,Qp/Zp(1)) −→ p∞ Br(C) is an isomorphism.

In particular, if k is a finite field and C is affine, then Pic(C) is finite, and we obtain the
following.

Corollary A.4. If k is a finite field and C is affine, then for any prime p 6= char k, the canonical
map

H2(C,Qp/Zp(1)) −→ Br(C)

is injective.

The second injectivity result that we need is the following well-known consequence of the
truth of the Bloch–Kato conjecture (cf. [Jan16, p. 3]).

Lemma A.5. Let p be a prime 6= char k. Then for all n > 1, the map

H`(k, µ
⊗(`−1)
pn ) −→ H`(k,Qp/Zp(`− 1))

induced by the natural embedding µ
⊗(`−1)
pn ↪→ Qp/Zp(`− 1) is injective for any ` > 2.

A.2 The fundamental sequence and unramified cohomology
Let k be a field equipped with a discrete valuation v, with valuation ring Ov and residue field
k(v). Fix a prime p 6= char k(v). Given a smooth geometrically integral affine curve C over k, we
let C̃ denote the smooth geometrically integral projective curve over k that contains C as an
open subset. We will assume there exist models C ⊂ C̃ of these curves over Ov such that the

associated reductions C(v) ⊂ C̃
(v)

are smooth, geometrically integral and satisfy

|C̃(k̄)\C(k̄)| = |C̃
(v)

(k(v))\C(v)(k(v))|.

Then the specialization map defines an isomorphism of the maximal pro-p quotients of the
fundamental groups:

π1(C ⊗k k̄)(p) −→ π1(C(v) ⊗k(v) k(v))(p) (A.3)

(with a compatible choice of base points); see [SGA1, ch. XIII].
As in our previous discussion, let ṽ be the extension of v to K = k(C) defined by C. We say

that an element of H`(C, µ⊗dpm) is unramified at v if its image in H`(K,µ⊗dpm) is unramified at ṽ
in the usual sense.

Now, set

Mm(p) = H1(C ⊗k k̄, µ⊗2
pm) for m > 1 and M(p) = lim

−→
Mm(p) = H1(C ⊗k k̄,Qp/Zp(2)).

Considering the fundamental sequences (2) in § 4 for d = 2, ` = 3 and n = pm (m > 1) and taking
their direct limit, we obtain a map

H3(C,Qp/Zp(2))
ω2,3
k (p)
−→ H2(k,M(p)).

Similarly, we obtain a map

H2(C(v),Qp/Zp(1))
ω1,2

k(v)
(p)

−→ H1(k(v),M (v)(p)) where M (v)(p) = H1(C(v) ⊗k(v) k(v),Qp/Zp(1)).
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The isomorphism (A.3) enables us to identify

M (v)(p) = Hom(π1(C(v) ⊗k(v) k(v)),Qp/Zp(1))

with Hom(π1(C⊗k k̄),Qp/Zp(1)), which in turn, according to (3), can be identified with the twist
M(p)(−1). In the sequel (in particular, in the proof of Proposition A.6), we will routinely use
the identification of M(p)(−1) with M (v)(p) as Galois modules compatible with the canonical
identification of the decomposition group of v with the absolute Galois group of k(v). Furthermore,
in view of the isomorphism (A.3), the inertia group of v acts trivially on Mm(p), hence on M(p).
We thus have the residue map

∂M(p)
v : H2(k,M(p)) −→ H1(k(v),M(p)(−1))

(obtained by taking the direct limit of the residue maps for allMm(p)). Our goal in this subsection
is to prove that ω2,3

k (p) takes unramified classes to unramified ones. More precisely, we have the
following.

Proposition A.6. Let p be a prime 6= char k(v) and assume that Pic(C(v)) ⊗Z Qp/Zp = 0. If

x ∈ H3(C,Qp/Zp(2)) is unramified at v in the sense specified above, then ω2,3
k (p)(x) is also

unramified at v (i.e. ∂
M(p)
v (ω2,3

k (p)(x)) = 0).

The proof critically depends on the existence of certain analogues of residue maps with nice
properties in the étale cohomology of curves. Namely, let n be an integer that is invertible in
Ov. Combining the localization sequence with absolute purity, one obtains the following ‘residue
map’:

ρ`v : H`(C, µ⊗bn ) → H`−1(C(v), µ⊗(b−1)
n )

(see [Col95, § 3.2] and [Rap19] for the details). It should be noted that this approach in
fact enables one to recover the usual residue maps in Galois cohomology, at least up to sign
(cf. [JSS14]). We need the following properties of the above maps.

Theorem A.7 [Rap19]. For every ` > 2, we have commutative diagrams

H`(C, µ⊗bn )
ωb,`
k //

ρ`v
��

H`−1(k,H1(C ⊗k k, µ⊗bn ))

∂`−1
v
��

H`−1(C(v), µ
⊗(b−1)
n )

ωb−1,`−1

k(v) // H`−2(k(v), H1(C(v) ⊗k(v) k(v), µ
⊗(b−1)
n ))

(A.4)

and

H`(C, µ⊗bn )
νb,`k //

ρ`v
��

H`(k(C), µ⊗bn )

δ`v
��

H`−1(C(v), µ
⊗(b−1)
n )

νb−1,`−1

k(v) // H`−1(k(v)(C(v)), µ
⊗(b−1)
n )

(A.5)

where νb,`k and νb−1,`−1

k(v)
are the natural maps induced by passage to the generic point, and the

maps ∂`−1
v and δ`v coincide up to sign with the usual residue maps in Galois cohomology.
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Proof of Proposition A.6. Taking the direct limits of diagrams (A.4) and (A.5) above, we obtain
the following commutative diagrams

H3(C,Qp/Zp(2))
ω2,3
k (p)

//

ρv(p)
��

H2(k,M(p))

∂2v(p)
��

H2(C(v),Qp/Zp(1))
ω1,2

k(v)
(p)
// H1(k(v),M(p)(−1))

(A.6)

(here we use the identification of M (v)(p) with M(p)(−1) mentioned earlier), and

H3(C,Qp/Zp(2))
ν2k(p)

//

ρv(p)
��

H3(k(C),Qp/Zp(2))

δ3v(p)
��

H2(C(v),Qp/Zp(1))
ν1
k(v)

(p)
// H2(k(v)(C(v)),Qp/Zp(1))

(A.7)

where, up to sign, ∂2
v(p) coincides with ∂

M(p)
v , and δ3

v(p) with the residue map in Galois
cohomology. As C(v) is smooth (so that Br(C(v)) injects into Br(k(v)(C(v)))), Lemma A.3 and
our assumption that Pic(C(v))⊗ZQp/Zp = 0 imply that ν1

k(v)
(p) is injective. On the other hand,

because x is unramified at v, using the commutativity of (A.7), we obtain

δ3
v(p)(ν

2
k(p)(x)) = 0 = ν1

k(v)
(p)(ρv(p)(x)).

Thus, we conclude that ρv(p)(x) = 0. The commutativity of (A.6) then implies

∂2
v(p)(ω2,3

k (p)(x)) = ω1,2

k(v)
(p)(ρv(p)(x)) = 0,

and the required fact follows. 2

A.3 The unramified cohomology of M(p)
Now let k be a number field and let V ⊂ V k

f be a cofinite set of (finite) places that does not
contain any places lying above p and such that C has good reduction at all v ∈ V . Then, as we
discussed above, for every v ∈ V one has the residue map

∂M(p)
v : H2(k,M(p)) −→ H1(k(v),M(p)(−1)).

We then define the (second) unramified cohomology of M(p) by

H2(k,M(p))V = {x ∈ H2(k,M(p)) | ∂M(p)
v (x) = 0 for all v ∈ V }.

The following proposition is crucial for the proof of Theorem A.1.

Proposition A.8. For any m > 1, the group pmH
2(k,M(p))V is finite.

We begin with the following elementary statement.

Lemma A.9. Let T be a torus over an arbitrary field k and p be a prime 6= char k. Then:

(1) for any i > 2, the natural map H i(k, p∞T (k̄)) → p∞H
i(k, T ) is an isomorphism;

(2) for i = 1, we have an exact sequence

0 → T (k)⊗Z Qp/Zp −→ H1(k, p∞T (k̄)) −→ p∞H
1(k, T ) → 0.
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Proof. Let T (p) = p∞T (k̄). The exact sequence

1 → T (p) −→ T (k̄) −→ T (k̄)/T (p) → 1

for any i > 1 gives rise to the following exact sequence

p∞Hi−1(k, T ) −→ p∞Hi−1(k, T (k̄)/T (p)) −→ p∞Hi(k, T (p)) −→ p∞Hi(k, T ) −→ p∞Hi(k, T (k̄)/T (p)).

On the other hand, the quotient T (k̄)/T (p) is a uniquely p-divisible group, implying that

p∞H
i(k, T (k̄)/T (p)) = 0 for all i > 1,

and our claim for i > 2 follows. To consider the case i = 1, we need to show that the cokernel of
the map

H0(k, T ) = T (k)
α−→ H0(k, T (k̄)/T (p))

is isomorphic to T (k)⊗Z Qp/Zp. It is easy to see that H0(k, T (k̄)/T (p)) = T (p)0/T (p), where

T (p)0 = {t ∈ T (k̄) | tpm ∈ T (k) for some m > 1}.

Thus, Cokerα ' T (p)0/T (p)T (k). However, the map(
t,
n

pm

)
7→ tn/p

m · T (p)T (k) for t ∈ T (k), n ∈ Z

extends to an isomorphism T (k)⊗Z Z[1/p]/Z ' T (p)0/T (p)T (k), and assertion (2) follows. 2

We now describe the structure of M(p). Let C̃ be the smooth projective curve over k that
contains C as an open subset. We then have the following localization sequence (cf. [Jan89–90,
p. 126]):

0 −→ H1(C̃ ⊗k k̄,Qp/Zp(2)) −→ H1(C ⊗k k̄,Qp/Zp(2)) −→⊕
x∈C̃\C

Indkk(x)(Qp/Zp(1))
tr−→ Qp/Zp(1) −→ 0. (A.8)

Let us recall that given a finite collection `1, . . . , `d of finite separable extensions of an arbitrary
field k, the k-torus

T = Ker

( d∏
i=1

R`i/k(Gm)
N−→ Gm

)
,

where N is the product of the norm maps N`i/k for the extensions `i/k, i = 1, . . . , d, is called

the multi-norm torus associated with `1, . . . , `d. Henceforth, we assume that for each x ∈ C̃\C,
the residue field k(x) is a separable extension of k, which of course is automatically true if k is
perfect (recall that in Theorem A.1, k is a number field). Then (A.8) gives rise to the following
exact sequence of Galois modules

0 → A(p) −→ M(p) −→ T (p) → 0, (A.9)

where A(p) = H1(C̃ ⊗k k̄,Qp/Zp(2)) and T (p) = p∞T (k̄), with T being the multi-norm torus

associated with the field extensions k(x)/k for x ∈ C̃\C.
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Let T be a torus over a field K that is complete with respect to a discrete valuation v. We
call an element x ∈ H i(K, T ) unramified if it lies in the image of the inflation map

H i(Kur/K, T (O(Kur))) −→ H i(K, T ),

where Kur is the maximal unramified extension of K with the valuation ring O(Kur), and
T (O(Kur)) is the (unique) maximal bounded subgroup of T (Kur). It follows from [GMS03,
ch. II, § 7] that for a finite unramified Gal(K/K)-module M whose order is prime to the residue
characteristic charK(v), an element x ∈ H i(K,M) is unramified as defined in § 2 if and only if
it lies in the image of the inflation map H i(Kur/K,M) −→ H i(K,M). Thus, for a finite Galois
submodule M⊂ T (Kur) of order prime to charK(v), the natural map H i(K,M) →H i(K, T ) takes
unramified classes to unramified ones. In addition, if the splitting field of T is unramified over
K, then any finite subgroup M ⊂ T (K) of order prime to charK(v) is automatically contained in
T (O(Kur)). More generally, for a torsion Galois submodule M of T (O(Kur)) that does not contain
elements of order divisible by the residue characteristic, an element x ∈ H i(K,M) is unramified
if it comes from an unramified element in H i(K,M′) for some finite Galois submodule M′ of M.

Now, if T is a torus defined over an arbitrary field k with a discrete valuation v, then
x ∈ H i(k, T ) is defined to be unramified at v if its image in H i(kv, T ) is unramified in the sense
specified above. Furthermore, for a set V of discrete valuations of k, we let H i(k, T )V denote the
subgroup of H i(k, T ) consisting of elements that are unramified at all v ∈ V . We will use these
remarks to prove the following.

Lemma A.10. Let k be a number field, let `1, . . . , `d be finite extensions of k and let T be the
multi-norm torus associated with these extensions. Suppose p is a prime and let V ⊂ V k

f be a

cofinite set of places such that char k(v) is prime to p for all v ∈ V . Then for any m > 1, the
group

pmH
2(k, T (p))V

is finite.

Proof. By shrinking V if necessary, we may assume that the extensions `1, . . . , `d are unramified
at all v ∈ V . Then it follows from the above discussion that the map H2(k, T (p)) → H2(k, T )
takes unramified classes at v ∈ V to unramified ones. In addition, according to Lemma A.9, this
map is injective. Thus, it is enough to show that for any n > 1, the group nH

2(k, T )V is finite.
We have an exact sequence of k-tori

1 → T −→ T0
N−→ Gm → 1, where T0 =

d∏
i=1

R`i/k(Gm). (A.10)

As H1(k,Gm) = 1 by Hilbert’s Satz 90, the cohomological sequence associated with (A.10)
shows that the natural map H2(k, T ) → H2(k, T0) is injective. Thus, it is enough to establish
the finiteness of nH

2(k, T0)V , for which we only need to consider the case of T0 = R`/k(Gm) for
some finite (separable) extension `/k. As above, we may assume that every v ∈ V is unramified in
`/k. Let V ′ be the set of all extensions to ` of places in V . Then the restriction of the isomorphism
H2(k, T0) ' H2(`,Gm) yields an isomorphism H2(k, T0)V ' H2(`,Gm)V ′ . Thus,

nH
2(k, T0)V ' nH

2(`,Gm)V ′ = nBr(`)V ′ ,

the V ′-unramified part of the n-torsion in the Brauer group of `, which is known to be finite
(cf. [CRR16a, 3.5]). 2
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Remark A.11. Using the fact that the unramified Brauer group nBr(k)V is finite for any finitely
generated field k of characteristic prime to n and a divisorial set of places V (cf. [CRR16a]), one
easily generalizes Lemma A.10 to any finitely generated field k of characteristic 6= p.

Proof of Proposition A.8. The exact sequence (A.9) gives rise to the following exact sequence of
cohomology groups

H1(k, T (p))
α−→ H2(k,A(p))

β−→ H2(k,M(p))
γ−→ H2(k, T (p)).

Clearly, γ(pmH
2(k,M(p))V ) ⊂ pmH

2(k, T (p))V , and the latter is finite by Lemma A.10. Thus, it
remains to show that the intersection

Imβ ∩ pmH2(k,M(p))

is finite. Pick m0 > 0 so that pm0 annihilates p∞H
1(k, T ); note that the latter has finite exponent

dividing the degree [` : k], where ` is the minimal splitting field of T . It follows from the exact
sequence in Lemma A.9(2) that then the group pm0 ·H1(k, T (p)) is p-divisible.

Now, let x ∈ H2(k,A(p)) be such that pm · β(x) = 0. Then pmx = α(y) for some
y ∈ H1(k, T (p)), and consequently letting d = m+m0 we have pdx = α(pm0y). The divisibility
of pm0 ·H1(k, T (p)) implies that one can find z ∈ H1(k, T (p)) satisfying

pm0y = pdz.

Then
pd(x− α(z)) = 0 and β(x− α(z)) = β(x).

This proves the inclusion

β(pdH
2(k,A(p))) ⊃ Imβ ∩ pmH2(k,M(p)),

and it remains to show that pdH
2(k,A(p)) is finite. However, according to statement (1)

on [Jan89–90, p. 127], the map

H2(k,A(p)) −→
⊕
v∈V k

H2(kv, A(p))

is an isomorphism. On the other hand, H2(kv, A(p)) = 0 for any v /∈ S′ = S ∪ V k
∞, where S is

the set of points of bad reduction for C̃ (see [Jan89–90, statement (5) on p. 131]). Thus,

pdH
2(k,A(p)) '

⊕
v∈S′

pdH
2(kv, A(p)).

However, for any v, the group pdH
2(kv, A(p)) is a quotient of H2(kv, pdA(p)), which is finite

because pdA(p) is finite and kv is a finite extension of Qq for some q (cf. [Ser97, ch. II, § 5,
Proposition 14]), completing the argument. 2

(Note that while we actually prove the finiteness of Imβ ∩ pmH2(k,M(p)), for the proof of
Proposition A.8 it would be sufficient to prove the finiteness of Imβ ∩ pmH2(k,M(p))V .)

A.4 Proof of Theorem A.1
First, it is enough to consider the case where n = pm with p a prime and m > 1. Second, deleting
a finite number of places from V1 if necessary, we may assume that any v ∈ V1 satisfies the
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assumptions made in the beginning of § A.2 (recall that char k(v) is prime to p by the assumptions
made in the statement of the theorem). Consider the following commutative diagram

H3(C, µ⊗2
pm)V

α //

β

��

H3(C,Qp/Zp(2))

δ
��

H3(k(C), µ⊗2
pm)V

γ // H3(k(C),Qp/Zp(2))

(A.11)

As γ is injective (Lemma A.5), it is enough to establish the finiteness of γ(H3(k(C), µ⊗2
pm)V ).

As we pointed out in § 4.2, the natural map H3(C, µ⊗2
pm) → H3(k(C), µ⊗2

pm)V0 is surjective,
implying that β in (A.11) is also surjective. Thus,

γ(H3(k(C), µ⊗2
pm)V ) = δ(α(H3(C, µ⊗2

pm)V )),

and it is enough to prove the following.

Proposition A.12. The image of α : H3(C, µ⊗2
pm)V −→ H3(C,Qp/Zp(2)) is finite.

Proof. We will use the following exact sequence

H3(k,Qp/Zp(2))
ι2,3k (p)
−→ H3(C,Qp/Zp(2))

ω2,3
k (p)
−→ H2(k,M(p))

obtained by taking the direct limit of the sequences (2) from § 4.2. By Poitou–Tate (cf. [Ser97,
ch. II, 6.3]), for any n > 1, the natural map

H3(k, µ⊗2
n ) −→

∏
v∈V k

real

H3(kv, µ
⊗2
n ),

where V k
real is the set of all real places of k, is an isomorphism. Complex conjugation acts on µn

by inversion, hence acts trivially on µ⊗2
n . It follows that H3(kv, µ

⊗2
n ) is trivial if n is odd, and

H3(kv, µ
⊗2
2 ) = H1(kv, µ

⊗2
2 ) = {±1}

for any v ∈ V k
real. Thus, H3(k,Qp/Zp(2)) is trivial if p > 2 and isomorphic to (Z/2Z)r for p = 2,

where r = |V k
real|. In any case, it is finite. Thus, to prove that α has finite image, it is enough to

show that
∆ := ω2,3

k (p)(α(H3(C, µ⊗2
pm)V ))

is finite. Clearly, ∆ ⊂ pmH
2(k,M(p)). Now, because the residue field k(v) is finite and the curve

C is affine, we have PicC(v) ⊗Z Qp/Zp = 0 (Corollary A.4). Thus, applying Proposition A.6, we
obtain that ∆ is contained in H2(k,M(p))V , and therefore in fact ∆ ⊂ pmH

2(k,M(p))V . As the
latter is finite by Proposition A.8, the required fact follows. 2
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Math. Ann. 244 (1979), 105–134.

CSS83 J.-L. Colliot-Thélène, J.-J. Sansuc and C. Soulé, Torsion dans le groupe de Chow de
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