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1. INTRODUCTION

A theory of limits to artificial selection in small populations was given by Robertson
(1960) in terms of single genes, and was extended to selection for a quantitative
character governed by many loci by ignoring linkage and epistatic interactions
between loci. In this paper we include the effect of linkage in a very simple situation,
that of two additive loci, though it is hoped to deal with more complex models in
further papers. No general algebraic solution to this problem has been found, so
that most of our information has come from Monte Carlo simulation on computers.
When there is no recombination between the two loci, an algebraic treatment has
been developed which will be described in a later paper.

Griffing (1960) investigated the effect of linkage on response to artificial selection
in infinitely large populations, assuming that gene effects were small enough that
changes in genetic parameters, other than the population mean, could be ignored.
Using a model of two loci in an infinite population, Nei (1963) and Felsenstein (1965)
have developed formulae for the effect of directional selection on changes in linkage
disequilibrium. But, in infinite populations, linkage cannot affect the selection
limit but only the rate of advance to that limit. Simulation by Monte Carlo methods
has shown that, though populations may initially be in linkage equilibrium, the
advance under selection can be reduced when genes are tightly linked, even with
no interactions between loci (Martin & Cockerham, 1960; Qureshi, 1963). These
workers used models in which the initial gene frequency of 0-5 and the effect on the
character under selection were the same for all loci. Latter (19656), using only two
loci, considered the consequences of varying the initial gene frequency though this
and the effect on the character under selection were the same for both loci. We shall
also restrict ourselves here to two loci with additive action, but shall not restrict
the effects of the loci on the character under selection or the initial gene frequency.
We will in general assume that the population is initially in linkage equilibrium.

2. BASIC THEORY

To give a framework for the theoretical consideration of the problem with two
loci, it will be useful to repeat some of Robertson's earlier conclusions on selection
in a finite population at a locus with additive gene action, which relied heavily on
a paper by Kimura (1957). The basic concept underlying this is the gene frequency
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distribution. This can be regarded as either that of the frequencies at equivalent
loci in one population or that at a single locus replicated in many equivalent
populations. Similarly, the chance of fixation when the selection limit is reached
can be considered either as the proportion of such loci fixed in the same direction in
a single line, or as the proportion of replicate lines in which the same allele is fixed.
The situation in which no further selection response can be made but in which not
all loci are fixed, due to heterozygote superiority or opposing natural selection, will
not be discussed.

At a locus at which there is additive action in selective advantage (as would be
brought about by artificial selection acting on a locus with additive effect on the
character under selection), the change in the distribution (<f>) of gene frequencies
with time can be described reasonably well by the diffusion equation

H \ £ % I a)3(t/N) idp*^ rir> 2 dp

where p is the gene frequency, t is the time in generations, N is the population size
and s is the difference in selective advantage between the two homozygotes. From
a given initial gene frequency, the pattern of the selection process is then entirely
determined by the parameter Ns on a time scale tjN. Kimura (1957) showed that
the chance of eventual fixation, u(po), of a gene with initial frequency po is then a
function only of Ns and is given explicitly by

1 _ g—2Nspo

(2)

Examination of equation (1) shows that any computer simulation of the selection
process need only be done at one population size as the above generalization allows
extrapolation to all values of N and s. In practice this is limited by the restriction
that s shall not be greater than unity. From equation (2) it can be shown that if
Ns is small ( < 0-5) then the expected change in gene frequency at the limit is 2JV
times the change in gene frequency in the first generation and that the time for the
gene frequency to change by half this amount is l-4iV generations. Under most
conditions, this value is an upper limit for the 'half-life' of the selection process.

When more than one locus segregates, the differential equation describing the
selection process can be written in terms of gametic frequencies in the general form
as follows (e.g. Kimura, 1955):

where <f>{Ji,fo...fn,t) is the density function of the distribution of gametic fre-
quencies, fj, at time t. The dimension (n) of the equation is the number of degrees
of freedom amongst the gametic frequencies. Thus for two loci, each with two
alleles, n = 3. From the multinomial distribution, the variance of change in gametic
frequency is given by

-ffll2N
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and the covariance of changes by

cov(8/,,8/t) = -fifk\2N

For the simplest model of two loci each with two alleles, let the frequencies of the
gametes, AB, Ab, aB and ah be/i, f%, fa and/4 respectively. Also let p and q be the
frequencies of the alleles A and B, and define linkage disequilibrium by the deter-
minant D =f1 fi — fz fz- Finally, assume that these loci have additive selective
values r and s, the differences in selective values between the homozygotes at loci A
and B respectively, and let c be the recombination fraction between these loci,
assumed to be the same for both sexes. Then

M(8fZ) = l/s[r(l -p) - eq\ - 8D (4)

and SD = -cD{l+i[r(l-2p)+s(l-2q)]} (5)

In equations (4) and (5), r and s are assumed small so that terms in the denominator
have been ignored. Also, for the diffusion equation to hold, r, s and c must be small
such that terms in their products can be ignored relative to 1/N. Thus we can take

8D = -cD

Multiplying (3) by N and inserting the above equations, we obtain for two
additive loci

d(f> 1 - ^ 3 2 1 - ^ -sr* d2

WIN) = i 2, ^L/KWjM-g ZZ ap

where, formally, in (6), p must be replaced by /1+/2, q by f\+fo and D by
fi{\—fi—f%—fz)—fzfs- Thus, on a time scale proportional to JV, the selection
process is described completely by the initial conditions po, qo and Do and the
parameters Nr, Ns, and Nc, and the chance of fixation at either locus is then a
function of these alone.

A general solution of (6) has not been obtained though some results for Nr,
Ns < 0-5 can be given specifically in algebraic terms and we shall present later some
results using matrix methods for u(po) when Nr < 0-5 but with no restriction on Ns.

Consider the rate of breakdown of linkage disequilibrium in small populations in
the absence of selection. The recurrence equation for the mean value of D is then

Dt = (l
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If c and 1/2N are small, so that their product can be ignored, we have

Dt = ( l -c - l /2 t f )A- i
= Do e-<

2Nc+1)tl2N approximately.

The half-life of the decline of the linkage disequilibrium coefficient to zero is given
approximately by t = l-4:NI(2Nc +1) generations. If Nr and Ns are small ( < 0-5)
it can be assumed that changes in the variance of gene frequency and in the dis-
equilibrium coefficient will occur mainly as a result of genetic sampling and crossing-
over and not as a result of selection. In any generation the expected change in p in
any line is given by

8p = rp(l-p)/2 + sDl2
and in q by

Sq = sq(l-q)/2+rDI2.

We may assume, following Robertson (1960), that the average value of p(l —p) will
decline by a proportion 1/2N each generation and that the average value of D will
similarly decline by a proportion (c + l/22V). We have then for the expected
total change in gene frequency

u(p0) = po + Nrpo(l-po) + NsDol(2Nc + l)

The expected change of gene frequency is then a linear expression in 2Ncj(2Nc + 1).
A linear relationship of change in gene frequency with this expression is in fact
found in computer runs over a much wider range of Nr and Ns than that used in
this derivation and this has very considerably simplified our discussion of the effect
of linkage. If linkage is not initially at equilibrium, then the expected change in
gene frequency may be greater or less than 2N times the change in the first genera-
tion, depending on the sign of the disequilibrium determinant.

Under the conditions of this derivation, segregation at a second locus has no effect
on the chance of fixation of the first if linkage is in equilibrium at the start. We shall
see later that, when we move to higher values of Nr and Ns, this is no longer true.

In most selection experiments, selection is for a quantitative character and
changes in gene frequency are not directly observable. The selective advantages
are then consequences of the effects of the loci on the character under selection. If
these are small, we have approximately r = ix, s = ifl, where i is the selection intensity
in standard units and a, j8 are the effects of the two loci on the metric character,
expressed as the difference between the two homozygous genotypes divided by the
phenotypic standard deviation, a. Latter (1965a) has investigated the errors
involved in this approximation. If considered in terms of the effect on changes in
gene frequency, the errors appear to be compensatory in that the expression used
above underestimates the selective advantage of genotypes with both positive and
negative deviations from the population mean. If ia and i/J are small, additive
action on the character under selection implies additive action on selective advan-
tage, though this breaks down to some extent under intense selection, as we shall
see later. The probable chance of fixation at the two loci can then be described in
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terms of Nix, Nij3 and Nc and the consequent total change, R, in the population
mean will be given by

R = {cc[u{p0)-p0]+P[u(qo)-qo]}o (7)

At any instant, the additive genetic variance can be expressed as

VA = o*{

This expression can be generalized to any number of loci with additive gene action
and is then interesting in showing that, in the prediction of immediate response to
artificial selection, the linkage disequilibrium need only be specified in terms of the
disequilibrium determinants between the loci taken in pairs.

3. THE MONTE CARLO SIMULATION PROCEDURE

The simulation process was carried out on a high-speed computer, the I.C.T.
Atlas. It was rather more abstract than that of other workers (Fraser, 1957; Martin
& Cockerham, 1960; Gill, 1965; Latter, 19656). Selection, recombination and
sampling were all done at the gametic level and gametes were never paired into
zygotes. Using the previous notation of gene effects, expressing all measurements
in terms of the phenotypie standard deviation and taking the mean value of the
genotype aabb as an arbitrary zero, the mean, m, of the population at any time is
given by m=p<x + qp. Changes in gametic frequency are given by (4) and (5) with
the selective values r and s replaced by ia. and if}, and these equations include both
the effect of selection and recombination. From the gamete frequencies so pro-
duced, the 2N gametes in the next generation were obtained by sampling from a
multinomial distribution with parameters fj by generating 2N uniform pseudo-
random numbers X, 0 <X < 1, and comparing each with the gametic frequencies.
If 0 < X </i, then a gamete AB was generated; if/i < X </ i +/2, then a gamete Ab
was generated, and so on. Each of the parameters, N, ia., i/3, c, and the initial
frequencies could be altered. In all runs, linkage equilibrium in the initial popula-
tion was assumed. At the start of any run, the first step was one of selection by
applying the above formulae to the initial frequencies, followed by the drawing of
a random sample of gametes.

Each replication was continued to fixation or for 6-25N generations, whichever
occurred first. After this time, at least 99-9% of the total response at a single locus
can be expected to be made if Nia Ss 4, 98-5% if Nix = 2, or 96-6% if Nia. = 1. The
average gene frequency at this time was then taken as the limit even if all lines had
not reached fixation. Usually 400 replicates were run for each set of parameters.
At fixation, the proportion of lines in which any allele is fixed is binomially dis-
tributed so that the standard error of the chance of fixation may easily be calculated.
The chance of fixation at one locus when there was no segregation at the other was
obtained by matrix iteration (Allan & Robertson, 1964), using the same population
size as in the Monte Carlo runs rather than by using (2). This avoids small differences
in the chance of fixation observed at a single locus when different population sizes
are used for the same Nia value (Ewens, 1963). These results for a single locus only
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must also apply when the second locus has no effect on the character under selection
or when Nc is very large, as in independent segregation of the two loci in a large
population. In a very small population, for example N = 8, when the maximum
biological value of Nc is 4, we have in fact detected some influence of independent
segregation at the second locus on the chance of fixation of the first.

4. RESULTS

The outcome of any particular run is affected by five independently varying
parameters, Nia. and^o referring to the first locus, Nifi and qo to the second, and Nc.
The output of any set of runs can be expressed in terms of the average chance of
fixation at the two loci, u(po) and u(qo), and the 'between line' disequilibrium
determinant, calculated from the observed frequencies of fixation of the four
gametes. It soon became clear to us that the results could be discussed most
meaningfully in terms of the influence of segregation at a second locus on the chance
of fixation at the first. The view of the results that we shall present here represents
the combination of the Monte Carlo results with the insights we could gain into them
by the application of algebra to the simpler situations.

We found no situations in which the chance of fixation at the first locus was
significantly increased by simultaneous segregation at the second. We found none
in which the between-line disequilibrium determinant was significantly positive at
fixation and very many in which it was significantly negative.

(i) The influence of the effect and initial frequency at the second locus

Figures 1-4 have been chosen to illustrate various general aspects of the results.
First we shall discuss the influence of changes in the parameters at the second locus.
Concentrating on those situations in which there is no crossing-over (Nc = 0),
segregation at the second has no detectable influence on the chance of fixation at
the first until its effect is greater than one-half that of the first and, even when the
gene effect is three-quarters that of the first, the influence on the chance of fixation
is very small. We have found these conclusions to apply quite generally. An
example is shown in Fig. 2. As the effect at the second increases further, the chance
of fixation at the first passes through a minimum and then increases again. Figure 1
shows that the reduction is very dependent on the initial frequency of the preferred
allele at the second locus. Clearly there has to be a minimum in this curve, as the
second locus will have no influence when its initial gene frequency is zero or unity.
The initial frequency at which segregation at the second produces the greatest
reduction is dependent on the magnitude of its gene effect. We have found
empirically that the minima in the chance of fixation «(po), when plotted either
against the gene effect or the gene frequency at the second locus, occur roughly
when Nij3qo = 0-8, whatever the parameters at the first. The chance of fixation of
the preferred allele at the second is then also approximately 0-8. At this minimum,
the reduction in the chance of fixation at the first increases as the gene effect
at the second increases.
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u(Po)

Fig. 1. The relationship between the chance of fixation at the first locus and the effect
and initial frequency of the second. No crossing over. Typical ranges, of length
two standard deviations, are shown.

(ii) The influence of recombination frequency

When Ni^ is small, the chance of fixation at the first locus is approximately linear
in 2Ncl(2Nc +1) and this is well illustrated in Figs. 2-4. This expression goes from
0 to 1 as c increases from zero to infinity and the values Nc = \ and 1 divide this
range into three equal intervals. Figure 4 shows that the curves for the three
different crossover values are in fact equally spaced for all values of qo, but, in Figs. 2
and 3, it will be seen that, although this prediction is reasonably satisfactory when
Nip is less than 12, it obviously breaks down at higher values when the effect of
increasing Nc from 0 is less than expected. In consequence, the value of Nip
at which the minimum occurs is not independent of Nc and increases as the
latter increases. At the high values of Nip the three curves become almost
indistinguishable.

Runs not shown in these diagrams were made with a wide range of parameter sets
(Po,qo = 0-05, 0-1, 0-3, 0-5 and 0-7; Niu. = 2,4,8 and 16, and either Nc = 1, \ and 0, or
Nc = 4,1, \, -fa and 0). For each set of the other four parameters, the linear regression
of u(po) against 2Nc/(2Nc +1) was calculated, the line being forced through the
matrix iteration result for Nc = oo. It was found that 97-4% of the variation in
u(po) between different Nc values could be removed by the linear regressions.
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Fig. 2. The relationship between the chance of fixation at the first locus and the effect
at the second, for various recombination values. Typical ranges, of length four
standard deviations if NiB s£ 8, or two standard deviations if NiB > 8 are shown.
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Fig. 3. As Fig. 2, but with the effect halved at the first locus. Typical ranges of length
two standard deviations are shown.
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Nevertheless the residual variation due to curvilinearity was highly significant in
many cases.

Figure 4 also shows the effect of altering population size in the computer runs for
fixed values of Nix, Nip and Nc. The curves for a population size of 8 are indis-
tinguishable from those with a population size of 16.

u(Po)

•2 I O

Fig. 4. The relationship between the chance of fixation at the first locus gene and the
initial frequency at the second for various recombination values. Estimates were
made at two levels of population size. Typical ranges, of length two standard
deviations, are shown.

(iii) Changes in the parameters at the first locus

Any discussion of the influence of changes in the parameters at the first locus is
complicated by the fact that in the absence of segregation at the second, variations
in these will affect the chance of fixation. We are then concerned to find a description
of the effects of this segregation on the chance of fixation which will be as far as
possible independent of the parameters at the first locus. Segregation at the second
reduces the chance of fixation at the first. This can be thought of as a reduction of
the effective selection intensity at the first locus. From each computer run, we

calculated from Kimura's formula (2) the effective value of Nioc (denoted Nix)
which, from the given initial gene frequency, would give the observed chance of
fixation if the first alone was segregating. Figure 5 gives examples of the use of this

U
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Fig. 5. The effective selection parameter, Nia/Nia, at the first locus as influenced by-
segregation at the second (Nc = 0).

transformation in evaluating the interaction oiNioc and po with the other variables.
Because the sampling variance becomes very high as u(po) approaches unity, no
points are plotted when the observed value exceeds 0-99. It is quite clear that the
effect of the segregation at the second locus, if expressed in this way, is almost
independent of the gene frequency at the first for values of Nioc up to about 4.
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However, this independence breaks down at low values of go> when Nix is reduced
as po increases.

It is a necessary consequence of the theoretical model of the process which will

be presented in a subsequent paper that NiajNix will be independent of both po
and Nix when Nice<0-5. However, it will be seen that as Nix increases, the

Table 1. The relationship between Nia/Nia and Nia for a model
with NijS = 16, qo = O-l, Nc = 0, averaged over a range of po from

0-05 to 0-8

Nia Nia/Nia.

0 0-56
2 0-49
4 0-37
8 0-24

16 0-32

observed value of NixjNioc declines. An example is given in Table 1. As Nia
increases still further to values greater than 2Nij3, when u(po) will cease to be

affected by the segregation at the second locus, NixjNix must obviously approach
unity.

(iv) The rate of selection advance

We have so far only discussed the final chance of fixation at the two loci. Typical
response curves are shown in Fig. 6, which give the smoothed averages of 3200
Monte Carlo replications with IV = 8 for Nc = l, J and 0 respectively. The results
for Nc = oo were obtained by iteration of the matrix of transition probabilities for
a single locus. Clearly in the first few (say, N/2) generations, linkage has little
influence on the rate of response, but then with tight linkage the latter rapidly
slows down. After about 2N generations, the response has almost ceased for both
Nc = 0 and Nc = oo but there is continued response for the two intermediate fre-
quencies of crossing over. Since the approach to the limit is asymptotic, Robertson
(1960) used the half-life of the selection process, the time taken for the mean gene
frequency to get half-way to the limit, as a measure of the time scale of the response.
Approximate half-lives for the example of Fig. 6 are shown in Table 2. It can be
seen that as it is only the response in later generations which is reduced by tight
linkage, the half-life is reduced at the lower values oiNc.

Latter (1966 a) gives further results for the case of equal initial frequencies and
selective advantages with two loci. He finds that while the half-life of the selection
process is reduced the time taken to obtain 95% of the total advance is usually
increased with intermediate recombination values, because of the prolonged period
of late response.
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Fig. 6. Response curves at the first locus as influenced by its effect and tightness of
linkage to the second. Time is measured in generations.

Table 2. Half-lives ( x N generations) of the selection process for
Po = qo = 0-1 and Ni/J = 8

Nc

Ha.

2
4
8

0 0

1-31
100
0-64

1

119
0-95
0-62

i
0-86
0-66
0-57

0

0-65
0-57
0-50

Another view of the effect of tight linkage is given in Fig. 7, in which the mean
value of p after varying numbers of generations is plotted against go- The effect of
the segregation at the second locus is seen as the depression of p at low values of go-
Before N/2 generations, this segregation has no effect on the gene frequency at the
first, but at N generations p, at the value of go which has maximum effect, is below
that at other values and there is little change in p after this point. The diagram
shows why the half-life of the process is reduced when the preferred allele at the
second locus is at its most effective frequency. Examination of the curves for
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Nip = 8 and 16 in Fig. 7 shows that at qo = 0-2, both the total response and the half-
life are greater for the higher value of Nip.

Figure 8, which is of the same kind as Fig. 7, shows the effect of variation in NifS
on the mean values of p at different times and includes curves for three values of Nc.
When Nip has its maximum effect on u(po) at the given initial frequency (Nip = 8)
there is again little effect of linkage in less than N/2 generations, but as Nip increased
further it will be seen that almost all the reduction in response due to tight linkage
now occurs in the earlier generations. This is to be expected since, for such high

o
z
LLJ

a
UJ

a

8 IO

Fig. 7. The average frequency at the first locus at various times during the selection
process, measured in generations, as influenced by the initial frequency and effect
at the second.

values of Nip, the second locus becomes fixed very quickly and only during this
period is there segregation at both loci. It can be shown, by iteration of the transi-
tion probability matrix, that for a single gene with Nip = 32 and qo = O-Z, 99% of
the expected change in gene frequency has been made in the first 0-33JV generations,
whereas for a gene with a much smaller effect (Nip < 0-5) it takes 4-611^ generations
for this point to be reached. When one locus goes to fixation so quickly it is clear
that crossing-over has very little time to affect the outcome. In Fig. 8 it can be seen
that at high values of Nip, no more progress is made with Nc = 1 than with Nc = 0.
With smaller values of Nip, however, there is more time for recombination to occur.
The shortened period of response when Nip is high then provides an explanation
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of the unexpectedly small effect of the relaxation of linkage at high Nift values in
Figs. 2 and 3.

• N c • N c = 1 Nc

-8

•7

z
UJ

O 6

P = 3, (j, =-3,Nio. = 4

16 32

Nij8

Fig. 8. The average frequency at the first locus at various times during selection, as
influenced by the effect and tightness of linkage with the second.

(v) The chance of fixation of the different gametes

We have so far considered only the chance of fixation of the individual alleles; we
shall now discuss their joint chance of fixation. Figure 9 shows, for po = qo = O-l,
Nioc = 8, the effect of variation in Nc and in Nip. Of these diagrams two are chosen
so that /? ^ a/2, one so that j3 is almost as large as a, and the final diagram shows the
case of equal effects. Data from these runs have also been seen in Fig. 2. In Fig. 9
the results are plotted against 2Nc/(2Nc + 1). As would be expected, at the lower
values of /? only the chance of fixation at the locus with the smaller effect is reduced
as linkage becomes tighter. When the two effects are equal, the chance of fixation
of the preferred alleles is reduced at both loci by tight linkage.

Latter (19656) has shown that with equal effects at the two loci the chance of
fixation of the unfavourable coupling gamete, ah, is not influenced by the degree of
recombination and we find in Fig. 9 that this result holds even when the effects are
unequal. The chance of fixation of the gamete aB is affected by linkage only as j8
approaches a. On the other hand, the chances of fixation of the gametes AB and
Ab are influenced by the tightness of the linkage in all the cases. When j8 ̂  a/2, the
favourable coupling gamete AB is less frequently fixed and the repulsion gamete

https://doi.org/10.1017/S0016672300010156 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300010156


Linkage and selection limits • 283

Ab more frequently fixed with tight linkage, in such a way that the sum of their
frequencies is not affected. So, if one gene has a much smaller effect than the other,
the reduction in its chance of fixation as linkage becomes tighter takes place only
amongst gametes in which the preferred allele at the other locus is fixed. This is
to be expected in view of the results in the previous section. The gametes ab and
aB are most likely to be fixed in the early generations of the selection process before
the tightness of the linkage much affects it.
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Fig. 9. The chance of fixation of the favourable alleles and the four gametic types

with initial frequencies po = go = 0' 1 •

We see in Fig. 9 that, as linkage becomes tighter, the chances of fixation of the
repulsion gametes Ab and aB either remain constant or increase, that of ab remains
constant and that of AB is reduced. As a consequence there is a negative dis-
equilibrium DL between lines at the limit, where

DL = u(AB)u{ab)-u(Ab)u{aB)

where u( —) is the chance of fixation of the specified gamete. In Fig. 9 with Nc = 0,
the values of DL are -0-0351, -0-0667, -0-1129 and -0-1383 when Nip = 2, 4, 7
and 8 respectively. In general in our computer runs we have found an excess of
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repulsion gametes at the limit. Of the 210 runs having 400 replicates with the wide
range of parameter sets mentioned earlier, DL was zero in 72 cases (because a par-
ticular allele was fixed in all replicates), it was negative in 130 and positive in only 8.
In none of the latter did DL differ significantly from zero at the 5 % level. Similarly,
the observation that the chance of fixation of the ab gamete was not altered by the
degree of linkage was found to hold at all levels of effects. Where the gene effects
differed by a factor of at least 2, it was generally found that the chance of fixation
of the repulsion gamete containing the unfavourable allele at the locus with the
larger effect was little affected by the tightness of linkage.

(vi) Change in the population mean under artificial selection

We have discussed the results so far in terms of the chance of fixation of the
individual gametes, but in a selection experiment for a quantitative character all
that can usually be observed is the change in the population mean. This is a function

Fig. 10. The total change in the population mean expressed as a proportion of that
expected from independent genes with the same effects and initial frequencies.

of the effects and changes in frequency at all loci contributing to the trait and in our
case will be given by (7). To compare results from different initial frequencies and
effects, we shall consider the response It observed for some parameter set as a
proportion of that expected from the same set with free recombination between the
loci. The greatest proportional reductions in B caused by tight linkage are found
when « and j8 are approximately equal. An example is shown in Fig. 10, in which
Nia. is kept constant and Ni{i is varied. The minimum of the curve of relative
response occurs when the effects are approximately equal at the two loci. This
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result could have been anticipated from the earlier data for, in a model in which
one locus has a much larger effect than the other, it has been shown that the change
in gene frequency at the former (which will contribute most to changes in the mean
of the population) is scarcely influenced by the smaller linked gene. Thus, the
response in the mean will not be much influenced by the tightness of linkage when
the genes have widely unequal effects on the quantitative trait.

The greatest reduction in response with tight linkage occurs when both genes
have a low initial frequency and large effect. There are two reasons for this. We
have to consider the same locus both as influencing the other one and being influ-
enced by it. We showed earlier that the effect of one locus on another can best be
expressed in terms of the proportional reduction in the effective value of Nioc, and
that this occurs when Nifiqo is in the region of 0-8, when the chance of fixation of the
B allele is itself about 0*8. For the effects to be perceptible, iVtjS should be greater
than 2. Now consider the sensitivity of the second locus to the segregation at the
first. We can consider this as the proportional change in advance under selection,
u(qo) — qo, for a given proportional change in JVtjS. If the values of Nift are suffi-
ciently large that we can ignore the denominator in equation (2), it can be shown
that the sensitivity is at a maximum when Nij3qo{l — qo) = \. When go = 0-2, the
maximum sensitivity will be achieved when the chance of final fixation (given by
Ni/3 = 3-125) is 0-71. As qo declines, the chance of fixation for maximum sensitivity
approaches the value of 0-64. Thus, for maximum influence we require a value of
u(qo) of 0-8 and for maximum sensitivity we require a value slightly more than 0-64.
It is not surprising then that Latter (19656) found, when investigating two loci
with equal effects and equal gene frequencies, that tight linkage had most effect on
the advance under selection when (u(qo) — gfo)/(l — <Zo) was in the region of 0-7.

I t is sometimes possible in artificial selection programmes to vary the effective
amount of crossing-over. One could, for instance, insert between each generation
of selection a generation of relaxation with a large number of parents. This would
effectively double the value of c in our equations. It is therefore of interest to know
what effect this would have on the selection advance. In the situation in which
linkage has its greatest effect (see Fig. 8) there appears to be an almost linear
regression of change in gene frequency on 2Nc/(2Nc + l) in that the values for
Nc = J and 1 are equally spaced between Nc = 0 and oo. With Nc = 0, about 30%
of the total advance is lost. Assuming the linear relationship on 2Nc/(2Nc +1) to
hold exactly, the expected responses with N = 20, expressed as a proportion of the
advance with free recombination, would be as follows:

Cross-over frequency c
1/160
1/80
1/40
1/20
1/10
1/2

Proportional advance
0-771
0-811
0-862
0-913
0-953
1-000
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Doubling the recombination fraction produces at most an increase of 6% in the
advance under selection. This occurs at 2Nc = 1, when the curve of 2Nc/(2Nc +1)
against logiVc has its greatest slope.

These results have some bearing on the intensity of artificial selection which
should be applied in order to maximize the advance. In a mass selection programme,
the number of individuals that can be measured in any generation (T) can be
regarded as fixed. If selection affects only a single locus, or several independently
segregating loci, it can be shown that the advance will be a function of Ni, where N
is the number of animals selected to be used as parents and i is the selection intensity
in standard units. This is at a maximum when the proportion of individuals
selected is 0-5 (Dempster, 1955; Robertson, 1960), and the advance is symmetrical
for variation about this value in the proportion selected. When two linked loci are
under selection it might be expected that for two values of the proportion selected
(say, 0-4 and 0-6) which give the same value of Ni, the selection advance would be
greater for that with the lesser intensity of selection because Nc will then be greater.
The advance under selection will no longer be symmetrical about NjT = 0-5. In
Table 3 we have therefore chosen for consideration a situation in which this effect
should be most easily detected, i.e. two loci with equal effects on the character under
selection at initial frequencies chosen so that the effect of linkage will be at its
maximum and the linkage distance chosen so that the advance will be most sensitive
to changes in Nc (^ = 40, a=/? = 0-5, po = qo = O-l, and c = 0-025). Figure 10 shows
that in this situation the advance is almost linear on 2Nc/(2Nc + l). We have
therefore used this relationship for interpolation of our Monte Carlo data.

Table 3. Chance of fixation of an additive gene when 40 individuals (T) are
recorded, a. =/? = 0-5 and po = qo = 0-1

Proportion selected

No linkage
c = 0-025
c = 0

0 0 5
0-34
0-31
0-30

0-1
0-51
0-46
0-45

0-25
0-71
0-61
0-52

0-4
0-78
0-66
0-60

0-5
0-80
0-70
0-61

0-6
0-78
0-70
0-60

0-75
0-71
0-65
0-52

0-9
0-51
0-49
0-45

0-95
0-34
0-33
0-30

Both when the genes are segregating independently and when there is no recombina-
tion, the expected selection advance will be proportional to Ni and will be sym-
metrical about NIT = 0-5. The second line of the table shows that, when c = 0-025,
the maximum in the chance of fixation, considered as a function of NjT, is only
slightly shifted and occurs when N/T is about 0-55. Considerations of linkage
should not greatly influence the intensity of selection to be practised if only two
loci are involved. However, more drastic effects might be found with more than two.

5. DISCUSSION

There may appear to have been some contradiction between our earlier theoretical
discussion and the Monte Carlo results. We stated that, when both Nia. and Nifi
were small, the expected advance under selection could be specified in terms of the
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initial gene frequencies and the initial disequilibrium determinant and the distance
between the two loci appeared only in the term containing the latter. Nevertheless,
in the Monte Carlo studies it appeared that, even though we start with linkage
initially at equilibrium, the advance under selection is dependent on the tightness
of linkage between the two loci. How has this come about?

Felsenstein (1965) has presented a discussion of the effect of selection on linkage
in infinite populations. He points out that if the genes concerned affect fitness in a
multiplicative manner (i.e. if w\, wi, wz and 104, are the relative fitnesses of the
AB, Ah, aB and ab gametes and W1W4—W2W3) then an infinite population in initial
linkage equilibrium will remain in equilibrium during selection. He points out that
truncation selection on a metric character will generally lead to immediate linkage
disequilibrium. Nei (1963) showed that a large population initially in linkage
equilibrium exposed to truncation selection has in the first generation a dis-
equilibrium determinant given in our terminology by

Dl= -Ii2«pp(l-p)q(l-q)

This formula assumes that the genes are acting additively on the character under
selection. It is in fact only an approximation and inclusion in the expressions for
selective advantages of squared terms in the gene effects leads to the expression

where x is the truncation point in standard units. Since ix — i2 is always negative,
a negative disequilibrium will be set up and the rate of response will therefore be
reduced by tight linkage. In our case we have assumed an additive combination
of the genes at the different loci in their effect on the fitness of the four gametes.
Such selection will certainly lead to some negative disequilibrium in a large popula-
tion and we decided to investigate whether this was responsible for the effect of
linkage on selection limits in our case. We therefore set up for some values of the
parameter sets a system of multiplicative selective advantage of the gametes. Such
a modification is not as simple as it sounds, as starting from a given initial gene
frequency, we wish to have the same chance of fixation in both cases with free
recombination between the loci. A comparison of the additive and multiplicative
model was run for a total of 80 different parameter sets and the results showed little,
if any, difference in chance of fixation with tight linkage in the two models. The
differences between the additive and multiplicative models obviously depend on
the range of variation in the selective values of the different gametes. Although we
used values for ix and ifi as large as one (a magnitude which would very rarely be
encountered in practice) no differences were obtained between the two models. We
therefore conclude that the reductions in chance of fixation with our model are not
due to any great extent to a build-up of negative disequilibrium due to selection
alone, predicted by Felsenstein's equation.

The solution to this problem comes from an examination of the effect of multipli-
cative selection when the disequilibrium determinant is not zero. It can then easily
be shown that
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where k± and &2 are functions of the gene frequencies and selection coefficients and
are always positive. If we now consider the joint effect of genetic sampling and
multiplicative selection, we see that in the first finite samples taken from the
population initially at equilibrium, D will be distributed about a mean of zero with
a variance depending on the sample size. After multiplicative selection, in which
the D distribution will be modified according to the above formula, the average
value will now be negative. A consideration of our computer runs would suggest
that, even with multiplicative action, the mean negative disequilibrium deter-
minant decreases as the square of time in the early generations, passes through a
minimum and then rises to zero at final fixation.

We have not found the analysis of this process in terms of the development of the
disequilibrium determinant during selection particularly illuminating and have
come rather to a view of the situation in terms of the effective population size in
which gene frequency changes at the locus with the smaller effect take place. This
view will be given a mathematical treatment in a subsequent paper, but we may
well sketch it out here for tight linkage. Consider a situation in which the B allele
is at low frequency in the initial population but in which the selection process is
such that, if in the initial sample there is a gamete containing B, it will almost
certainly be fixed. There will then be two kinds of initial samples. In the first, no
gametes containing B will be present and the expected change in p will be that
calculated from equation (2). The other kind of initial sample will contain very few
gametes containing the B allele. These will spread rapidly through the population
under selection. With tight linkage, the change in frequency of the A allele in such
lines has to take place within a population of gametes which may be very small in
the early generations though, of course, as B becomes fixed it will approach 2JV,
We may then expect that the average change of gene frequency at the A locus will
be less in those lines in which the B gene becomes fixed and that tight linkage will
therefore reduce the overall chance of fixation of A. As the initial frequency of B
decreases, we have two opposing effects which lead to the minimum in the curve
in Fig. 1. The first consequence will be a reduction of the number of B alleles in the
initial sample (thus reducing the chance of fixation of A) until this effect is overcome
by an increase in the proportion of initial samples contain no B alleles at all (so
increasing the chance of fixation of A).

From this way of visualizing the problem, we can also obtain insight into some
of the other surprising results. We have said that when segregation at the second
locus has its greatest influence, only the changes of gene frequency at the first locus
among gametes containing the desirable allele at the second are of importance in
determining the final chance of fixation. The number of such gametes may be very
small in the early generations of the selection process. Consider the situation in
which almost all initial samples contain at least one gamete with the desirable allele
at the second locus. If we then double the effect at the second locus, such gametes
will increase in frequency more rapidly and as a consequence, the effective popula-
tion size within which frequency changes at the first locus have to take place will
be small for a shorter period of time. The expected change in gene frequency at the
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first locus is then increased by increasing the effect at the second locus. We have
here then an explanation of the minima in the curve of u(po) plotted against Nif3,
which we showed in Figs. 2, 3 and 4.

Now consider the effect of an increase in the gene effect at the first locus. Table 2
then shows that a greater part of the advance under selection will take place in the
early generations but it is precisely in these early generations that the effective
population size, with respect to changes in gene frequency at the first locus, is at its
smallest. It then follows that the relative effect on the chance of fixation at the
first locus will be greater as its own effect increases. This will hold until the latter
approaches the same size as the effect at the second locus. This then provides us

with a satisfactory explanation of the minimum value of Nix/Nix found in Table 1.
Latter (19666) has discussed in some detail the interaction of linkage intensity

and population size, using computer simulation with two additive loci with equal
gene effects and initial gene frequency. He concentrated attention on the situation
in which he had found that the restrictive effect of linkage was greatest, i.e. when,
under free recombination, u(po)—po = 0-70(l —po)- We were interested to see to
what extent the interactions might be removed when linkage intensity was measured
on the scale 2^0/(2^0+1). At his lower population sizes (N = 5 and 10) the re-
gression of response in the transformed linkage value was reasonably linear but
this was clearly not so for the higher values (JV = 20 and 40). There was then a
higher chance of fixation for intermediate values of c than would be expected from
a linear relationship, i.e. the curve was concave downwards. This is opposite to the
curvilinearity we found for high values of Nifl when /3><x (see Fig. 3).

Latter's experiments at the higher two population sizes correspond in our
notation to runs with Nix = Nifi = 18, >̂o = g'o = O"O35 and Nix —Nip = 36,
po = qo = 0-017 respectively, somewhat higher values of Ns than we have dealt with.
However, it is interesting that the curve of the chance of fixation of the AB gamete
is concave downwards in our Fig. 9 when Nix = Nifi = 8, po = qo = O-l, our most
comparable experiment. In his theoretical treatment of the results, Latter lays
particular stress on that phase of such selection runs in which only the equivalent
gametes Ab and aB are segregating, a phase in which no selection is taking place
even though the original Nix = Ni{$ values were high. This phase is ended either by
random fixation of one of the two or by the production of an AB gamete by crossing-
over.

We would suggest that such a situation is a very special case due to the equality
of gene effects at the two loci. With two alleles segregating and low selection
pressures, it is known that the half-life of the process is 1-4N generations. Selection
reduces this by a factor which is dependent on Ns, where s is the difference in
selective advantage between the two. Figure 11 (an extension of Fig. 3 in Robertson
(I960)) shows the magnitude of this reduction. At higher values oiNs, the half-life
at a given initial frequency is proportional to 1/Ns. In the nomenclature of this
paper, Ns is equal to Ni(oc—/J). If a value of Ni(x—j8) of four can greatly reduce the
period of joint segregation of the Ab and aB alleles, when Nix and Nifi are of the
order of 40, we would suggest that we are here dealing with a very special case which
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would be much altered at the higher population size by a relative difference of only
10% between the gene effects at the two loci. This should perhaps suggest caution
in generalizing too much from selection simulation studies on models in which all
loci have equal effects.

Fig. 11. The half-life of the selection process when two alleles are segregating
at one locus.

We should now turn to some of the assumptions and limitations of this study.
From the diffusion equation, it was argued that computer runs need only be made
at one level of population size but the parameters ix, if} and c used were frequently
much larger than those required for the diffusion approximation to hold. Neverthe-
less our results, including those of Fig. 4, indicate that the use of Nix, Nifi and Nc
as sufficient parameters is highly robust against departures from the underlying
assumptions. Again, some approximations were made in the simulation procedure,
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partly to reduce computing time. In particular, the algebra developed for infinite
populations which was used to simulate selection and recombination entirely in
terms of gametes, assumes that Hardy-Weinberg equilibrium holds and also that
there is no distinction between the sexes and that self-fertilization is permitted.
Errors introduced by these approximations will become smaller, the larger the
population size used, but small N values were usually run to minimize computation.
A similar kind of inaccuracy was introduced in the definition of the selective
advantage in terms of the effects of the genes on the character under selection, which
are precise only for genes of small effect. Strictly speaking, second and higher order
terms in effects should have been included but then we could not have generalized
to populations of different sizes.

The selective values ia. and i/3 of the favourable alleles have been kept constant
throughout the selection process and here two important assumptions have been
made. Firstly, the gene effects a. and /? have been denned as the difference in
genotypic value between the homozygotes at the two loci as a proportion of the
phenotypic standard deviation, cr. Thus, for the selective values to remain constant
during selection, a itself must remain unchanged. As selection proceeds, it would be
expected that the genetic variance at other loci would decline although at the same
time the environmental variance might increase as the level of homozygosity rises.
We may perhaps be encouraged by the general agreement of our results with those
of Latter (19656) on selection effects at two additive loci within the restrictions that
he imposed on the gene effects and frequencies, in that there were less assumptions
.made in his approach. Finally, we have taken no account of natural selection,
which might be expected to alter the effective selective values of genes having
correlated effects on fitness as the gene frequencies move away from their initial
equilibrium values.

This work is to be continued to include more than two loci segregating simul-
taneously as well as non-additive gene effects. There have been several Monte Carlo
studies with many loci but these have all been restricted to equal gene effects with
all initial gene frequencies at one-half. Using only two loci, we have been able to
analyse the interactions of the parameters at the two loci more clearly than we
could have done with many loci segregating at the same time. In this restricted
study, we have been able to draw attention to a situation in which linkage is likely
to be important which may be of fairly general occurrence, i.e. a desirable allele in
the initial population at a low frequency but with a sufficiently large effect on the
character under selection that its chance of fixation is high.

Although we have succeeded in finding a reasonably simple model to explain our
results, they are nevertheless a little disappointing from one point of view. Even
in this simplest of all situations, we find not only curvilinearity of effects but
minima in the curves. It would therefore seem rather unlikely that any general
theory could be constructed to be useful in the more complex situations which must
exist in practice.

A further restriction of the results, but one which can easily be removed, is that
we have dealt only with populations in initial linkage equilibrium. Mather (1943)
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has argued that natural selection will favour a balance between alleles at linked loci
with similar effects on the character under selection, but Wright (1952) has shown
that selection values have to be large and linkage very tight for such equilibrium
to be maintained. In general, if loci have no epistatic effects on fitness, an un-
selected closed random-mating population would be expected to remain in equilib-
rium (Lewontin & Kojima, 1960). On the other hand, our results show that linkage
disequilibrium (in the form of an excess of repulsion gametes) is likely in populations
derived from crosses between selected lines or between selected lines and unselected
populations. These situations need further investigation, for they have particular
relevance to problems of breaking through selection limits in artificial selection.

SUMMABY

(i) A computer simulation study has been made of selection on two linked loci
in small populations, where both loci were assumed to have additive effects on the
character under selection with no interaction between loci. If N is the effective
population size, i the intensity of selection in standard units, a and /} measure the
effects of the two loci on the character under selection as a proportion of the pheno-
typic standard deviation and c is the crossover distance between them, it was shown
that the selection process can be completely specified by Nix, Nif3 and Nc and the
initial gene frequencies and linkage disequilibrium coefficient. It is then easily
possible to generalize from computer runs at only one population size. All computer
runs assumed an initial population at linkage equilibrium between the two loci.
Analysis of the results was greatly simplified by considering the influence of segre-
gation at the second locus on the chance of fixation at the first (defined as the
proportion of replicate lines in which the favoured allele was eventually fixed).

(ii) The effects of linkage are sufficiently described by Nc. The relationship
between chance of fixation at the limit and linkage distance (expressed as
2Ncj(2Nc +1)) was linear in the majority of computer runs.

(iii) When gene frequency changes under independent segregation were small,
linkage had no effect on the advance under selection. In general, segregation at the
second locus had no detectable influence on the chance of fixation at the first if the
gene effects at the second were less than one-half those at the first. With larger
gene effects at the second locus, the chance of fixation passed through a minimum
and then rose again. For two loci to have a mutual influence on one another, their
effects on the character under selection should not differ by a factor of more than two.

(iv) Under conditions of suitable relative gene effects, the influence of segregation
at the second locus was very dependent on the initial frequency of the desirable
allele. The chance of fixation at the first, plotted against initial frequency of the
desirable allele at the second, passed through a minimum when the chance of
fixation at the second locus was about 0-8.

(v) A transformation was found which made the influence of segregation at the
second locus on the chance of fixation at the first almost independent of initial gene
frequency at the first and of gene effects at the first locus when these are small.
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(vi) In the population of gametes at final fixation, linkage was not at equilibrium
and there was an excess of repulsion gametes.

(vii) The results were extended to a consideration of the effect of linkage on the
limits under artificial selection. Linkage proved only to be of importance when the
two loci had roughly equal effects on the character under selection. The maximum
effect on the advance under selection occurred when the chance of fixation at both
of the loci was between 0-7 and 0-8. When the advance under selection is most
sensitive to changes in recombination value, a doubling of the latter in no case
increased the advance under selection by more than about 6%. The proportion
selected to give maximum advance under individual selection (O5 under inde-
pendent segregation) was increased, but only very slightly, when linkage is
important.

(viii) These phenomena could be satisfactorily accounted for in terms of the time
scale of the selection process and the effective size of the population within which
changes of gene frequency at the locus with smaller effect must take place.
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