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ABSTRACT 
While the causes of failures in complex engineered systems are often clear in hindsight, it can be 
challenging to predict failures proactively during the design of novel engineered products or systems. 
Identifying patterns can be useful for capturing common characteristics that may lead to failure. In this 
paper, we present a methodology for identifying patterns of failure from NASA’s publicly available 
Lessons Learned Information System (LLIS). We apply an ontology development and clustering 
approach to identify representative patterns leading to failures in historical lessons learned. A joint 
inductive-deductive approach reveals the key themes in lessons that lead to failure, which are formalized 
and recorded as an ontology of complex systems failure causes. Documents from the LLIS are manually 
tagged with relevant characteristics from the ontology. From the tagged set, clustering is used to capture 
co-occurring sets of characteristics that lead to failure. The primary contribution of this work is a method 
for extracting a set of generic failure patterns in complex engineered systems and characteristics for 
these patterns that can be identified at design time, knowledge of which can be used to plan mitigation 
strategies. 
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1 INTRODUCTION 

In spite of rigorous analysis and testing, complex engineered systems are often prone to unexpected 

failures. As a result, it is often challenging to fully specify a complex system (including all 

subsystems, interactions, and necessary external factors in sufficient detail) in a way that enables 

complete predictions of failure behavior. While the causes of failures are often clear in hindsight, it 

can be challenging to predict failures proactively during the design of complex engineered systems. To 

combat this, expert input alongside a formal approach to identifying failures is typically performed. 

Expert analysis can be aided by a process such as Diogenes (Bahill, 2012), but human analysts (while 

invaluable) are subject to bounded rationality (Gurnani & Lewis, 2008) and biases. Formal approaches 

including function-based failure assessment methods (Stone et al., 2005) can reduce these biases, but 

are nonetheless limited by the imagination of the analyst. 

When enumerating likely failures for a system under development, it is often useful to reference 

existing and related knowledge available. Some approaches abstract prior knowledge into ontologies 

or formalizations of common templates describing phenomena. Failure taxonomies present one format 

in which similar, known failures can be grouped (O'Halloran et al., 2012). Patterns of failure in 

complex systems can be expressed in several formats. A well-known format is system dynamics 

archetypes, which can be applied to specific needs such as system safety (Marais et al., 2006) or 

represented more generically (Wolstenholme, 2003). Such resources can be referenced to aid expert 

analysis of likely failures in a new system under development. However, one shortcoming is that it is 

labour intensive to compile and update these artifacts. Complex system designs that use novel 

technologies for which knowledge may only be gained or updated rapidly after deployment further 

increase labour intensity. 

A possible solution is the application of text mining and machine learning approaches to extract failure 

patterns from knowledge repositories. Knowledge repositories are valuable tools to aid experts in 

identifying likely failures in a system. NASA's Lessons Learned Information System (LLIS) (NASA, 

n.d.), for instance, stores a rich history of failures, their causes, and recommendations for preventing 

these failures in the future, which can aid such processes. Knowledge management is one such way in 

which this knowledge can be leveraged to reduce the space of "unknown knowns'' in system design. 

Such a system may include knowledge discovery tools, which help a user discover meaningful and 

useful knowledge in a dataset. As a part of knowledge discovery, it is useful to understand the major 

characteristics in the data. While there are automated or semi-automated ways to extract themes from 

documents (Andrade & Walsh, 2022), it is typically useful for an analyst to have familiarity with the 

dataset before applying such techniques (e.g., if an analyst is required to label documents to train a 

machine learning model, familiarity with the dataset is required). To this end, characterizing themes in 

documents provides a means to explore and gain familiarity with the dataset as well as provide 

guidance on feature extraction for machine learning tasks. Documents can be characterized based on 

specific low-level characteristics present as well as which characteristics tend to co-occur, i.e., higher-

level patterns that emerge. While useful for the knowledge discovery process as discussed, these 

results can be useful on their own as descriptions of failures documented in NASA's LLIS.  

In this paper, we build a taxonomy of characteristics leading to failure in complex engineered systems 

and identify failure patterns in a large set of documents describing lessons learned in complex engineered 

systems. Specifically, we identify failure characteristics in NASA’s publicly available LLIS. We apply a 

taxonomy development and a clustering approach to identify representative patterns leading to failures in 

historical lessons learned. A joint inductive-deductive approach reveals the key themes in lessons that 

lead to failure, which are formalized and recorded as a taxonomy of complex systems failure causes. A 

subset of LLIS documents is manually reviewed multiple times during this process in order to both 

develop the taxonomy and label the documents according to which ontological elements they describe. A 

clustering approach is then applied to capture co-occurring sets of characteristics that lead to failure. The 

results provide a description of common trends in complex systems failures, which can be identified at 

design stage and can be used to plan appropriate mitigation strategies. 
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2 BACKGROUND 

As an initial step in many analyses, including and especially natural language processing, it is important 

for an analyst to be familiar with the dataset. Moreover, when performing any sort of document labelling, 

an analyst must follow logical conventions that are consistent with the literature and empirical evidence 

available. Domain-independent entities (date, person, place, etc.) generalize well, but any application that 

uses domain-dependent entities must often be carefully defined and developed. The biomedical domain 

especially is increasingly recognizing the importance of developing appropriate ontologies for such tasks 

(Wang et al., 2021), in addition to increasing recognition in software-specific named entity recognition 

(Ye et al., 2016). In engineering design, there is some precedent for using Failure Modes and Effects 

Analysis (FMEA)-style labels (Andrade & Walsh, 2022). Cause, failure, effect, and other common labels 

from an FMEA-style analysis are useful in many contexts for organizing common failures; however, 

ontologies in a style more similar to that of Wang et al (2021), which expresses common sources of 

failure causes such as those related to the organization, development process or operator, may be needed 

for to characterize non-technical factors that contribute to failure. 

More broadly, ontological representations of existing design knowledge have been used to support 

decision-making (Sarkar, 2016; Ming et al., 2018; Zhang et al., 2018). Other relevant ontologies include 

the taxonomy of error types proposed by (Sutcliffe & Rugg, 1998), which covers operator errors as well 

as those stemming from social/organizational challenges and design errors, and the taxonomy of 

information technology project failures proposed by Al-Ahmad et al. (2009). Another example of 

taxonomy usage in engineering design is for information retrieval (Li et al., 2014), which can also be 

useful as part of a knowledge management system. Such techniques can utilize relationships between 

entities and may be constructed using machine learning based techniques (Shi et al., 2017).  

In addition to developing ontologies of characteristics leading to failure, identifying patterns in 

characteristics can be useful. For instance, Weking et al. (2020) document archetypal blockchain 

business models using literature review and cluster analysis. Similarly, Hermes et al. (2020) used 

qualitative cluster analysis to understand platform envelopment. In the design literature, guidelines 

have been extracted and classified for disassembly knowledge (Favi et al., 2016). This research 

synthesizes these ideas to demonstrate into a method to extract a taxonomy for complex systems 

failures. 

3 METHODOLOGY 

The methodology is divided into two parts: (1) taxonomy development and (2) clustering. A joint 

inductive-deductive approach is used to obtain the taxonomy. During this process, documents are 

manually labelled according to the ontological elements (characteristics) present. Clustering is used to 

find common patterns of failure in the corpus based on characteristics in the documents. 

3.1 NASA lessons learned information system 

NASA’s Lessons Learned Information System (LLIS) is used as the source of documents in this study. 

The LLIS contains documents describing lessons learned in NASA projects. The LLIS provides a 

suitable corpus for this study because it describes a wide variety of projects as well as issues occurring 

throughout system design, development, and operation. The earliest entries date to the 1970s and entries 

are continually added today. Documents are semi-structured in that there are sections such as Abstract, 

Lesson(s) Learned, and Recommendation(s), but the text is unstructured within these sections. Which 

sections are filled, and to what extent, depends on the discretion of the contributors. In previous work, 

we used a term frequency-inverse document frequency (TF-IDF) classifier to filter out lessons that are 

not relevant to failure analysis (Andrade & Walsh, 2022); this abbreviated set containing 1639 relevant 

lessons is also used in this study. From this abbreviated set, a subset of one-hundred-fifty lessons is 

randomly selected. These are read and evaluated in full by a human analyst. Because of the filtering 

approach, the lessons studied discuss a failure, but the range of issues covered in the dataset are varied. 

Topics covered in the LLIS have been extensively covered by Andrade and Walsh (2022).   
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3.2 Taxonomy development 

To develop the taxonomy, we use an approach inspired by content analysis and the method of Nickerson et 

al. (2013), which alternates inductive (empiricism) and deductive (conceptualization) approaches to 

taxonomy development while applying the concepts of meta-characteristics, which ensure the taxonomy is 

consistent with its intended purpose, and ending conditions, which ensure the taxonomy is sufficiently 

mature. This approach has been applied widely, including in blockchain systems (Sai et al., 2021), smart 

machines in the mechanical engineering industry (Scharfe & Wiener, 2020), digital twins (Mazzurco et al., 

2018), to name a few examples. We also tune the taxonomy development process specifically to 

conventions of failure taxonomies in the literature, which is noted throughout the methodology. 

3.2.1 Meta-characteristics 

Two concepts must be defined before beginning the taxonomy development process: the meta-

characteristic and ending conditions. The meta-characteristic should be consistent with the purpose of the 

taxonomy and all discovered characteristics should be derivable from this meta-characteristic. The 

purpose of our taxonomy under development is to describe complex systems failure characteristics in a 

way that is useful to system designers. The intended users of this taxonomy are system designers during 

the early stages of system development. We do not want the taxonomy to be specific to any single 

system or even domain, so it is desirable that characteristics are not domain specific. However, we want 

to characterize specific sources of failure, such as those that are organizational or due to operator error, 

rather than simply specifying a cause versus an effect of failure (as in an FMEA-style analysis). Given 

this stated purpose and audience, we select the following meta-characteristic: characteristics of the 

system architecture, operation, environment, or development process that introduce a hazard. 

3.2.2 Inductive approach 

Either the deductive or inductive approach may be used to start, depending on factors such as the 

analyst's familiarity with the data set (Nickerson et al., 2013). The entire set of selected documents is 

used for each iteration. In this work, we started with the inductive approach because there is significant 

data available but few existing formal frameworks describing complex systems failure characteristics 

(that are appropriate for our stated purpose). The inductive approach follows the outline of conventional 

content analysis. This approach derives the key themes from a knowledge base; themes are learned from 

the data, rather than through existing theory or literature. The general steps for a conventional content 

analysis are as follows (Hsieh & Shannon, 2005): (1) read all documents to gain an understanding of the 

information captured; (2) highlight parts of text that appear to capture the key themes; and (3) make 

notes of initial thoughts and analysis. Repeat Steps 1-3 until an initial coding scheme emerges. 

At this point, the coding scheme can be matured by grouping similar themes or organizing them 

hierarchically depending on the content and goals of the analysis. Nickerson et al. specify that 

characteristics proposed to describe documents must be logical consequences of the meta-characteristics 

of the taxonomy. Additionally, Nickerson et al. specify that these characteristics must not apply to all 

documents, as the purpose of the characteristics is to enable distinguishing features of certain documents. 

Groupings are also established, as in conventional content analysis. Nickerson et al. call these groupings 

"dimensions'', although they have constraints in addition to containing similar characteristics. In 

Nickerson et al.’s taxonomy definition, characteristics in each dimension must be "mutually exclusive'' 

(avoiding overlap) and "collectively exhaustive'' (documents have one characteristic in each dimension). 

3.2.3 Deductive approach 

In the deductive approach, the researcher begins with their notions of the taxonomy’s characteristics 

which, as with the inductive approach, must be logical consequences of the meta-characteristics 

(Nickerson et al., 2013). In this approach, once characteristics have been proposed, the researcher 

examines documents and determines whether there are documents that are described by these 

characteristics. Dimensions must follow the same rules as in the inductive approach (Nickerson et al., 

2013). At the termination of the deductive or inductive approach, the researcher checks whether the 

ending conditions are met - if the ending conditions are met, the taxonomy is complete; if not, the 

researcher switches to the alternate (inductive or deductive) approach (Nickerson et al., 2013).  
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3.2.4 Ending conditions 

Ending conditions define when the taxonomy is sufficiently mature to terminate the development 

process. The first ending condition, common to all taxonomy development, is that there must be 

"dimensions'' with mutually exclusive and conceptually complete characteristics (Nickerson et al., 

2013). There are eight additional objective ending conditions proposed by Nickerson et al., some of 

which were first described by Sowa and Zachman (1992). These are summarized as follows: (1) all 

documents (or a representative sample of documents) have been examined; (2) within the most recent 

iteration, no document merges or splits have occurred; (3) each characteristic is described in at least 

one document; (4) in the most recent iteration, no new characteristics have been added; (5) within the 

most recent iteration, no grouping or characteristic merges or splits have occurred; (6) each grouping 

is unique; (7) each characteristic is unique within its grouping; and (8) each combination of 

characteristics is unique. Application-specific conditions may be added as well.  

Subjective ending conditions include that the taxonomy is concise, robust, comprehensive, extendable, 

and explanatory (Nickerson et al., 2013). The method is intended to produce a taxonomy that is useful, 

but not necessarily optimal (Nickerson et al., 2013). Depending on the ending conditions chosen by 

the researcher, different, valid ontologies may be produced by different researchers. For this study, we 

apply all objective and subjective ending conditions provided. Because lessons learned documents do 

not typically describe all dimensions of the system that did not lead to failure, a lack of discussion of a 

dimension is assumed to mean that dimension did not substantively contribute to the failure. A 

characteristic that describes this situation is defined for each dimension. For the clustering approach, 

only those characteristics that contribute to failure are considered. 

3.3 Clustering 

Clustering is performed to find failure patterns in the LLIS based on the ontological characteristics 

identified and developed in this work. After applying multiple clustering algorithms in the sklearn package 

in Python, the spectral clustering method is selected due to resulting in the highest quality clusters. Spectral 

clustering has roots in graph theory and utilizes the eigenvalues of a similarity matrix of the data in order to 

reduce its dimensionality prior to clustering. A clustering algorithm such as k-means can then be used to 

cluster the data (Pedregosa et al., 2011). Spectral clustering often outperforms more conventional methods 

and is relatively simple to implement (von Luxburg, 2007). Spectral clustering is especially useful for data 

that has non-convex clusters, making it a useful point of comparison to a standard k-means approach 

(Pedregosa et al., 2011). The number of clusters must be specified.  

In this case, and in many clustering problems, we do not have a ground truth for the correct clustering, 

so evaluation metrics, e.g., those based on similarity of clusters, are used. The quality of the clusters 

can be evaluated using silhouette coefficient, s, which measures how well each sample fits into its 

assigned cluster. Higher values of s indicate higher quality clusters, specifically how well each sample 

matches its own cluster and how different it is from other clusters. Silhouette coefficient is calculated 

per sample, where a is the mean intra-cluster distance and b is the mean nearest-cluster distance, as in 

Eq. 1 (Pedregosa et al., 2011). The average and standard deviation of silhouette coefficient across 

samples can also be used to assess the overall performance of the clustering algorithm. 

𝑠 =
𝑏−𝑎

max(𝑎,𝑏)
   (1) 

4 RESULTS 

We present the developed taxonomy in Table 1. The process requires five full iterations of the 

taxonomy development process to reach the ending conditions. One-hundred-fifty documents from the 

LLIS are examined in detail by a human analyst to build the taxonomy. To show the relative 

importance of characteristics within the LLIS, we provide the total number of characteristics labelled 

in the dataset in a column of Table 1. The three most influential characteristics according to frequency 

of occurrence are Analysis: Development Process Missing Standard Analysis, System Environment: 

Interaction with Environment, and Subsystem Behaviour: Coupling between Subsystems. Monitoring: 

Failure of Monitor has the lowest count followed by Timing of Action: Delayed Action and Timing of 

Action: Premature Action. All counts being greater than zero means the condition from the taxonomy 
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development method in which each characteristic must be present in at least one document studied is 

satisfied. All dimension totals being equal to the total document count means the collectively 

exhaustive criterion is satisfied. 

Table 1. Taxonomy of failure in complex engineered systems, derived from the LLIS.  

Dimension Characteristic Definition Example Count 

Analysis Development 

Process Missing 

Standard Analysis 

An analysis that is widely 

considered standard is not 

performed 

"departures from the… 

robust design practices" 

48 

Standard Analysis 

Not Performed on 

Final Configuration 

Analysis is performed, but 

too early, so the final 

configuration is not 

analysed 

"change in weld 

penetration warranted the 

need to perform a second 

round of fatigue analysis" 

16 

Analysis is 

Adequate for System 

Operation 

Standard analysis is 

performed at an 

appropriate time in design 

Not available 86 

Decision-

Making 

Structure 

Too Centralized Single decision-maker 

does not communicate 

sufficiently 

"stress analysis team was 

not made aware of the 

change" 

23 

Too Decentralized Multiple decision-makers 

are not well coordinated 

"issues … team having 

common understanding of 

individual roles" 

20 

Decision-Making 

Structure is 

Effective 

Decision-maker(s) and 

communications are suited 

to decision 

Not available 107 

Human-

System 

Relationship 

Inadequate Human 

Factors 

Human factors not 

adequately considered in 

design 

"control panel height being 

placed too low" 

12 

Adequate Human 

Factors 

Human factors adequately 

considered in design 

Not available 138 

Monitoring Failure of Monitor Monitor is present, but 

failed 

"…technology is … 

ineffective in providing 

gas leak detection" 

1 

Omission of Monitor Monitor is needed, but not 

present 

"assure sufficient 

downlink telemetry to 

ascertain their health" 

8 

Monitors Adequate 

and Functional 

Monitor is either not 

needed or present and 

functional 

Not available 141 

Procedures Intrusion or 

Replacement of 

Procedure 

Addition of new procedure 

or replacement of a correct 

step with an incorrect step 

"battery was deep charged 

while mounted in the 

robot, without a BMS, 

instead of on the test 

stand" 

7 

Omission of 

Procedure 

Operator skips a step or 

procedure 

"ground support crew did 

not follow all of the steps" 

14 

Procedures 

Adequate and 

Appropriate 

Only correct procedures 

are followed if any are 

required 

Not available 129 

Safety 

Equipment 

Inadequate Safety 

Equipment 

Safety equipment or 

safeguards are inadequate 

"issues like… use of 

protective goggles" 

6 

Adequate Safety 

Equipment 

Safety equipment or 

safeguards are adequate 

Not available 144 
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Table 1. Taxonomy of failure in complex engineered systems, derived from the LLIS, 
continued.  

Subsystem 

Behaviour 

Coupling between 

Subsystems 

Small deviation in one 

subsystem affects another 

subsystem 

"potential failure scenarios 

of other subsystems that 

interface with…" 

30 

Isolated Subsystems Subsystems difficult to 

integrate 

"developed solution cannot 

be transitioned to other 

similar hardware" 

8 

Subsystem 

Interaction Effective 

Subsystem interaction is 

effective 

Not available  112 

System 

Behaviour 

Unaccounted for 

Non-Linear 

Behavioural 

Relationships 

A small deviation or fault 

has large impacts on 

system-level behaviour 

"small errors in the on-

board model of local 

gravity… can cause GN&C 

to induce unintended 

accelerations" 

10 

Accounted for 

Behavioural 

Relationships 

If non-linear relationships 

exist, they are accounted 

for in design or operation 

Not available 140 

System 

Environment 

Unaccounted for 

Interaction with 

Environment 

Interactions between the 

system and its environment 

are not adequately isolated 

or protected 

"radiation-induced 

damage" 

31 

Accounted for 

Interaction with 

Environment 

Interactions between the 

system and its environment 

are adequately isolated or 

protected 

Not available 119 

Timing of 

Action 

Premature Action An action in design or 

operation is made 

prematurely 

"Do not prematurely reduce 

the scope and depth of post 

flight … assessment" 

5 

Delayed Action An action in design or 

operation is made late 

"if mock-up activities had 

begun earlier … problems 

could have been addressed 

sooner" 

2 

Action Appropriately 

Timed 

An action in design or 

operation is made at the 

correct time if one is 

needed 

Not available 123 

 

The clustering method yields clusters with an average silhouette score of 0.7704 and a standard deviation 

of 0.3969. The largest cluster contains twenty-five lessons, while the majority of clusters contain five or 

fewer lessons. The distribution is skewed, with much larger clusters being present but uncommon. These 

larger clusters represent more common patterns of failure since they occur in more lessons in the LLIS. 

Clusters are defined by, and can be characterized according to, common dimensions. We show the top 

ten (by size) failure patterns (clusters) identified in Table 2 from a total of twenty-seven. We provide the 

dimension(s) present in the cluster as well as text from a lesson from that cluster that describes the 

dimension in order to provide a real example of that dimension in the dataset. These are selected at 

random from the documents in which the characteristics are detected. The Analysis dimension is 

prominent in the failure patterns. This is likely due to the negative characteristics of the Analysis 

dimension having relatively high counts, and therefore the overall dimension score being high. The 

clusters contain between one and six characteristics. In most cases, all or a large majority of lessons 

within a cluster contain the same characteristics. In some cases, a small number of lessons within a 

cluster contained an additional characteristic. In these cases, when the additional characteristic is in a 

minority (<50%) of lessons within the cluster, the characteristic is not included in the cluster description. 
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Table 2. Top ten clusters (failure patterns) in the LLIS. 

No. Size Lesson Characteristics 

1 25 26703 (1) Analysis: "Knowledge of the 1-g physics of large bubbles in the condenser 

legs would have allowed the limits of ground testing to be better understood." 

2 23 24503 (1) Decision-Making Structure: "flight software has been developed by a 

consortium… The definition of the software coding standards was non-specific." 

3 15 24403 (1) System Environment: "Bird strikes are known hazards during aircraft takeoff 

and landing operations." 

4 9 28101 (1) Analysis: "the redundancy and failure analysis for LRS was incomplete", (2) 

Subsystem Relationships: "include all relevant interfacing subsystems" 

5 9 27003 (1) Subsystem Relationships: "have been found to have sensitivity to noise that 

could lead to inadvertent firing" 

6 6 27701 (1) Analysis: "robust design practices and integrated set of engineering checks 

and balanced that may have prevented…", (2) System Environment: "radiation-

induced damage" 

7 5 1710 (1) Procedures: "did not follow all of the steps in a complex checklist", (2) 

Decision-Making Structure: "Less than adequate communications between…", 

(3) Human-System Relationship: "…caused the pilot to mismanage the UAV's 

energy" 

8 4 28105 (1) Subsystem Relationships: "propulsion subsystem should ensure positive 

isolation of…" 

9 4 4999 (1) Procedures: "active leveling should be employed to accommodate center of 

gravity offsets" 

10 4 28202 (1) Analysis: "warranted the need to perform a second round of fatigue analysis", 

(2) Decision-Making Structure: "stress analysis team was not made aware of the 

change" 

 

5 DISCUSSION 

The proposed method for defining a failure taxonomy captures failure cases as they are described by 

contributors. Since only the factors that are expressed by the contributors can be captured in the 

method, there may be failure causes or contributing factors that are missed. Increasing the size of the 

data set can offset this problem. Compared to existing ontologies, the taxonomy developed in this 

paper shares characteristics, providing a measure of validity to the results, but with differing scope and 

structure. For instance, the taxonomy from Sutcliffe et al. (1998) includes timing delays and premature 

actions taken by operators as well as procedural errors, such as omissions and intrusion. Other portions 

Sutcliffe and Rugg's taxonomy are lower level than what is characterized in our taxonomy and fall 

broadly under the Human-System Relationship characteristic. Al-Ahmad et al. (2009) proposed an 

information technology project failure taxonomy which includes several of the top-level themes 

present in our taxonomy, including complexity factors, management factors, organizational factors, 

and process factors (decomposed differently in our taxonomy as Analysis, Decision-Making 

Structures, Procedures, Subsystem Behavior, System Behavior, and System Environment). Because 

our taxonomy has a unique set of aims and scope compared to other ontologies and is developed from 

a finite set of documents, it is expected that it may not capture all factors addressed in other 

ontologies. By increasing the size of the document set as well as using multiple ontologies, a more 

complete model of the factors contributing to failure in complex systems may be developed. 

6 CONCLUSIONS AND FUTURE WORK 

This work identified twenty-seven patterns of failure in the subset of lessons examined in the LLIS and a 

taxonomy for characterizing complex systems failures. The failure patterns were derived by clustering 

labelled lessons in the LLIS. The database contents exhibited a moderate to strong cluster structure 

(s=0.7704). The results will guide further exploration of the dataset and provide a conceptual model to 

guide labelling processes for training natural language processing (NLP) models for tasks such as named 

entity recognition. The method can be applied to other datasets to characterize failures and failure 
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characteristics in other domains. This represents an important step in supporting developing efforts for 

improving knowledge management and fully utilizing knowledge repositories available to designers to 

prevent failure in early design. The goal is to reduce the space of unknown knowns, improving designers' 

ability to anticipate issues before they cause safety issues or require expensive and time-consuming 

redesign. Future work will apply the taxonomy development method to other datasets to test its 

extensibility and improve the breadth of failures characterized. Finally, while the purpose of this research 

is to develop the method for extracting the taxonomy and finding failure patterns using automatic 

clustering, the broader project will require interpretation of results by domain experts. Multiple experts 

will likely be required to interpret failure patterns from a dataset as broad as the LLIS. 
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