
11 Functors

Up until now, we've seen OCaml's modules play an important but limited role. In

particular, we've used modules to organize code into units with speci�ed interfaces.

But OCaml's module system can domuchmore than that, serving as a powerful tool for

building generic code and structuring large-scale systems. Much of that power comes

from functors.

Functors are, roughly speaking, functions from modules to modules, and they can

be used to solve a variety of code-structuring problems, including:

Dependency injection Makes the implementations of some components of a system

swappable. This is particularly useful when you want to mock up parts of

your system for testing and simulation purposes.

Autoextension of modules Functors give you a way of extending existing modules

with new functionality in a standardized way. For example, you might want to

add a slew of comparison operators derived from a base comparison function.

To do this by hand would require a lot of repetitive code for each type, but

functors let you write this logic just once and apply it to many di�erent types.

Instantiating modules with state Modules can contain mutable states, and that

means that you'll occasionally want to have multiple instantiations of a par-

ticular module, each with its own separate and independent mutable state.

Functors let you automate the construction of such modules.

These are really just some of the uses that you can put functors to. We'll make no

attempt to provide examples of all of the uses of functors here. Instead, this chapter

will try to provide examples that illuminate the language features and design patterns

that you need to master in order to use functors e�ectively.

11.1 A Trivial Example

Let's create a functor that takes a module containing a single integer variable x and

returns a new module with x incremented by one. This is intended to serve as a way

to walk through the basic mechanics of functors, even though it's not something you'd

want to do in practice.

First, let's de�ne a signature for a module that contains a single value of type int:
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# open Base;;
# module type X_int = sig val x : int end;;
module type X_int = sig val x : int end

Now we can de�ne our functor. We'll use X_int both to constrain the argument to

the functor and to constrain the module returned by the functor:

# module Increment (M : X_int) : X_int = struct
let x = M.x + 1

end;;
module Increment : functor (M : X_int) -> X_int

One thing that immediately jumps out is that functors are more syntactically heavy-

weight than ordinary functions. For one thing, functors require explicit (module) type

annotations, which ordinary functions do not. Technically, only the type on the input

is mandatory, although in practice, you should usually constrain the module returned

by the functor, just as you should use an mli, even though it's not mandatory.

The following shows what happens when we omit the module type for the output of

the functor:

# module Increment (M : X_int) = struct
let x = M.x + 1

end;;
module Increment : functor (M : X_int) -> sig val x : int end

We can see that the inferred module type of the output is now written out explicitly,

rather than being a reference to the named signature X_int.

We can use Increment to de�ne new modules:

# module Three = struct let x = 3 end;;
module Three : sig val x : int end

# module Four = Increment(Three);;
module Four : sig val x : int end

# Four.x - Three.x;;
- : int = 1

In this case, we applied Increment to a module whose signature is exactly equal to

X_int. But we can apply Increment to any module that satis�es the interface X_int, in

the same way that the contents of an ml �le must satisfy the mli. That means that the

module type can omit some information available in the module, either by dropping

�elds or by leaving some �elds abstract. Here's an example:

# module Three_and_more = struct
let x = 3
let y = "three"

end;;
module Three_and_more : sig val x : int val y : string end

# module Four = Increment(Three_and_more);;
module Four : sig val x : int end

The rules for determining whether a module matches a given signature are similar

in spirit to the rules in an object-oriented language that determine whether an object

satis�es a given interface. As in an object-oriented context, the extra information that

doesn't match the signature you're looking for (in this case, the variable y) is simply

ignored.
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11.2 A Bigger Example: Computing with Intervals

Let's consider a more realistic example of how to use functors: a library for computing

with intervals. Intervals are a common computational object, and they come up in

di�erent contexts and for di�erent types. You might need to work with intervals of

�oating-point values or strings or times, and in each of these cases, you want similar

operations: testing for emptiness, checking for containment, intersecting intervals, and

so on.

We can use functors to build a generic interval library that can be used with any

type that supports a total ordering on the underlying set.

First we'll de�ne a module type that captures the information we'll need about the

endpoints of the intervals. This interface, which we'll call Comparable, contains just

two things: a comparison function and the type of the values to be compared:

# module type Comparable = sig
type t
val compare : t -> t -> int

end;;
module type Comparable = sig type t val compare : t -> t -> int end

The comparison function follows the standard OCaml idiom for such functions,

returning 0 if the two elements are equal, a positive number if the �rst element is larger

than the second, and a negative number if the �rst element is smaller than the second.

Thus, we could rewrite the standard comparison functions on top of compare.

compare x y < 0 (* x < y *)
compare x y = 0 (* x = y *)
compare x y > 0 (* x > y *)

(This idiom is a bit of a historical error. It would be better if compare returned a

variant with three cases for less than, greater than, and equal. But it's a well-established

idiom at this point, and unlikely to change.)

The functor for creating the interval module follows. We represent an interval with a

variant type, which is either Empty or Interval (x,y), where x and y are the bounds of

the interval. In addition to the type, the body of the functor contains implementations

of a number of useful primitives for interacting with intervals:

# module Make_interval(Endpoint : Comparable) = struct

type t = | Interval of Endpoint.t * Endpoint.t
| Empty

(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false
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(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
create (max l1 l2) (min h1 h2)

end;;
module Make_interval :

functor (Endpoint : Comparable) ->

sig

type t = Interval of Endpoint.t * Endpoint.t | Empty

val create : Endpoint.t -> Endpoint.t -> t

val is_empty : t -> bool

val contains : t -> Endpoint.t -> bool

val intersect : t -> t -> t

end

We can instantiate the functor by applying it to a module with the right signature.

In the following code, rather than name the module �rst and then call the functor, we

provide the functor input as an anonymous module:

# module Int_interval =
Make_interval(struct
type t = int
let compare = Int.compare

end);;
module Int_interval :

sig

type t = Interval of int * int | Empty

val create : int -> int -> t

val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

end

If the input interface for your functor is aligned with the standards of the libraries

you use, then you don't need to construct a custom module to feed to the functor. In

this case, we can directly use the Int or String modules provided by Base:

# module Int_interval = Make_interval(Int);;
module Int_interval :

sig

type t = Make_interval(Base.Int).t = Interval of int * int | Empty

val create : int -> int -> t
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val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

end

# module String_interval = Make_interval(String);;
module String_interval :

sig

type t =

Make_interval(Base.String).t =

Interval of string * string

| Empty

val create : string -> string -> t

val is_empty : t -> bool

val contains : t -> string -> bool

val intersect : t -> t -> t

end

This works because many modules in Base, including Int and String, satisfy an

extended version of the Comparable signature described previously. Such standardized

signatures are good practice, both because theymake functors easier to use, and because

they encourage standardization that makes your codebase easier to navigate.

We can use the newly de�ned Int_interval module like any ordinary module:

# let i1 = Int_interval.create 3 8;;
val i1 : Int_interval.t = Int_interval.Interval (3, 8)

# let i2 = Int_interval.create 4 10;;
val i2 : Int_interval.t = Int_interval.Interval (4, 10)

# Int_interval.intersect i1 i2;;
- : Int_interval.t = Int_interval.Interval (4, 8)

This design gives us the freedom to use any comparison function we want for

comparing the endpoints. We could, for example, create a type of integer interval with

the order of the comparison reversed, as follows:

# module Rev_int_interval =
Make_interval(struct
type t = int
let compare x y = Int.compare y x

end);;
module Rev_int_interval :

sig

type t = Interval of int * int | Empty

val create : int -> int -> t

val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

end

The behavior of Rev_int_interval is of course di�erent from Int_interval:

# let interval = Int_interval.create 4 3;;
val interval : Int_interval.t = Int_interval.Empty

# let rev_interval = Rev_int_interval.create 4 3;;
val rev_interval : Rev_int_interval.t = Rev_int_interval.Interval (4,

3)

Importantly, Rev_int_interval.t is a di�erent type than Int_interval.t, even
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though its physical representation is the same. Indeed, the type system will prevent us

from confusing them.

# Int_interval.contains rev_interval 3;;
Line 1, characters 23-35:

Error: This expression has type Rev_int_interval.t

but an expression was expected of type Int_interval.t

This is important, because confusing the two kinds of intervals would be a semantic

error, and it's an easy one to make. The ability of functors to mint new types is a useful

trick that comes up a lot.

11.2.1 Making the Functor Abstract

There's a problem with Make_interval. The code we wrote depends on the invariant

that the upper bound of an interval is greater than its lower bound, but that invari-

ant can be violated. The invariant is enforced by the create function, but because

Int_interval.t is not abstract, we can bypass the create function:

# Int_interval.is_empty (* going through create *)
(Int_interval.create 4 3);;

- : bool = true

# Int_interval.is_empty (* bypassing create *)
(Int_interval.Interval (4,3));;

- : bool = false

To make Int_interval.t abstract, we need to restrict the output of Make_interval

with an interface. Here's an explicit interface that we can use for that purpose:

# module type Interval_intf = sig
type t
type endpoint
val create : endpoint -> endpoint -> t
val is_empty : t -> bool
val contains : t -> endpoint -> bool
val intersect : t -> t -> t

end;;
module type Interval_intf =

sig

type t

type endpoint

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

end

This interface includes the type endpoint to give us away of referring to the endpoint

type. Given this interface, we can redo our de�nition of Make_interval. Notice that we

added the type endpoint to the implementation of the module to match Interval_intf:

# module Make_interval(Endpoint : Comparable) : Interval_intf = struct
type endpoint = Endpoint.t
type t = | Interval of Endpoint.t * Endpoint.t

| Empty
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(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false

(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
create (max l1 l2) (min h1 h2)

end;;
module Make_interval : functor (Endpoint : Comparable) ->

Interval_intf

11.2.2 Sharing Constraints

The resulting module is abstract, but it's unfortunately too abstract. In particular, we

haven't exposed the type endpoint, which means that we can't even construct an

interval anymore:

# module Int_interval = Make_interval(Int);;
module Int_interval :

sig

type t = Make_interval(Base.Int).t

type endpoint = Make_interval(Base.Int).endpoint

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

end

# Int_interval.create 3 4;;
Line 1, characters 21-22:

Error: This expression has type int but an expression was expected of

type

Int_interval.endpoint
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To �x this, we need to expose the fact that endpoint is equal to Int.t (or more

generally, Endpoint.t, where Endpoint is the argument to the functor). One way of

doing this is through a sharing constraint, which allows you to tell the compiler to

expose the fact that a given type is equal to some other type. The syntax for a simple

sharing constraint is as follows:

<Module_type> with type <type> = <type'>

The result of this expression is a new signature that's beenmodi�ed so that it exposes

the fact that type de�ned inside of the module type is equal to type' whose de�nition
is outside of it. One can also apply multiple sharing constraints to the same signature:

<Module_type> with type <type1> = <type1'> and type <type2> = <type2'>

We can use a sharing constraint to create a specialized version of Interval_intf

for integer intervals:

# module type Int_interval_intf =
Interval_intf with type endpoint = int;;

module type Int_interval_intf =

sig

type t

type endpoint = int

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

end

We can also use sharing constraints in the context of a functor. The most common

use case is where you want to expose that some of the types of the module being

generated by the functor are related to the types in the module fed to the functor.

In this case, we'd like to expose an equality between the type endpoint in the

new module and the type Endpoint.t, from the module Endpoint that is the functor

argument. We can do this as follows:

# module Make_interval(Endpoint : Comparable)
: (Interval_intf with type endpoint = Endpoint.t)

= struct

type endpoint = Endpoint.t
type t = | Interval of Endpoint.t * Endpoint.t

| Empty

(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false
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(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
create (max l1 l2) (min h1 h2)

end;;
module Make_interval :

functor (Endpoint : Comparable) ->

sig

type t

type endpoint = Endpoint.t

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

end

Now the interface is as it was, except that endpoint is known to be equal to

Endpoint.t. As a result of that type equality, we can again do things that require that

endpoint be exposed, like constructing intervals:

# module Int_interval = Make_interval(Int);;
module Int_interval :

sig

type t = Make_interval(Base.Int).t

type endpoint = int

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

end

# let i = Int_interval.create 3 4;;
val i : Int_interval.t = <abstr>

# Int_interval.contains i 5;;
- : bool = false

11.2.3 Destructive Substitution

Sharing constraints basically do the job, but they have some downsides. In particular,

we've now been stuck with the useless type declaration of endpoint that clutters up

both the interface and the implementation. A better solution would be to modify the
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Interval_intf signature by replacing endpointwith Endpoint.t everywhere it shows

up, and deleting the de�nition of endpoint from the signature. We can do just this

using what's called destructive substitution. Here's the basic syntax:

<Module_type> with type <type> := <type'>

This looks just like a sharing constraint, except that we use := instead of =. The

following shows how we could use this with Make_interval.

# module type Int_interval_intf =
Interval_intf with type endpoint := int;;

module type Int_interval_intf =

sig

type t

val create : int -> int -> t

val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

end

There's now no endpoint type: all of its occurrences have been replaced by int. As

with sharing constraints, we can also use this in the context of a functor:

# module Make_interval(Endpoint : Comparable)
: Interval_intf with type endpoint := Endpoint.t =

struct

type t = | Interval of Endpoint.t * Endpoint.t
| Empty

(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false

(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
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create (max l1 l2) (min h1 h2)

end;;
module Make_interval :

functor (Endpoint : Comparable) ->

sig

type t

val create : Endpoint.t -> Endpoint.t -> t

val is_empty : t -> bool

val contains : t -> Endpoint.t -> bool

val intersect : t -> t -> t

end

The interface is precisely what we want: the type t is abstract, and the type of the

endpoint is exposed; so we can create values of type Int_interval.t using the creation

function, but not directly using the constructors and thereby violating the invariants of

the module.

# module Int_interval = Make_interval(Int);;
module Int_interval :

sig

type t = Make_interval(Base.Int).t

val create : int -> int -> t

val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

end

# Int_interval.is_empty
(Int_interval.create 3 4);;

- : bool = false

# Int_interval.is_empty (Int_interval.Interval (4,3));;
Line 1, characters 24-45:

Error: Unbound constructor Int_interval.Interval

In addition, the endpoint type is gone from the interface, meaning we no longer need

to de�ne the endpoint type alias in the body of the module.

It's worth noting that the name is somewhat misleading, in that there's nothing

destructive about destructive substitution; it's really just a way of creating a new

signature by transforming an existing one.

11.2.4 Using Multiple Interfaces

Another feature that we might want for our interval module is the ability to serialize,

i.e., to be able to read and write intervals as a stream of bytes. In this case, we'll do this

by converting to and from s-expressions, which were mentioned already in Chapter 8

(Error Handling). To recall, an s-expression is essentially a parenthesized expression

whose atoms are strings, and it is a serialization format that is used commonly in Base.

Here's an example:

# Sexp.List [ Sexp.Atom "This"; Sexp.Atom "is"
; Sexp.List [Sexp.Atom "an"; Sexp.Atom "s-expression"]];;

- : Sexp.t = (This is (an s-expression))
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Base is designed to work well with a syntax extension called ppx_sexp_conv

which will generate s-expression conversion functions for any type annotated with

[@@deriving sexp]. We can enable ppx_sexp_conv along with a collection of other

useful extensions by enabling ppx_jane:

# #require "ppx_jane";;

Now, we can use the deriving annotation to create sexp-converters for a given type.

# type some_type = int * string list [@@deriving sexp];;
type some_type = int * string list

val some_type_of_sexp : Sexp.t -> some_type = <fun>

val sexp_of_some_type : some_type -> Sexp.t = <fun>

# sexp_of_some_type (33, ["one"; "two"]);;
- : Sexp.t = (33 (one two))

# Core.Sexp.of_string "(44 (five six))" |> some_type_of_sexp;;
- : some_type = (44, ["five"; "six"])

We'll discuss s-expressions and Sexplib in more detail in Chapter 21 (Data Seri-

alization with S-Expressions), but for now, let's see what happens if we attach the

[@@deriving sexp] declaration to the de�nition of t within the functor:

# module Make_interval(Endpoint : Comparable)
: (Interval_intf with type endpoint := Endpoint.t) = struct

type t = | Interval of Endpoint.t * Endpoint.t
| Empty

[@@deriving sexp]

(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false

(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
create (max l1 l2) (min h1 h2)

https://doi.org/10.1017/9781009129220.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.013


11.2 Using Multiple Interfaces 203

end;;
Line 4, characters 28-38:

Error: Unbound value Endpoint.t_of_sexp

The problem is that [@@deriving sexp] adds code for de�ning the s-expression

converters, and that code assumes that Endpoint has the appropriate sexp-conversion

functions for Endpoint.t. But all we know about Endpoint is that it satis�es the

Comparable interface, which doesn't say anything about s-expressions.

Happily, Base comeswith a built-in interface for just this purpose called Sexpable.S,

which is de�ned as follows:

sig
type t
val sexp_of_t : t -> Sexp.t
val t_of_sexp : Sexp.t -> t

end

We can modify Make_interval to use the Sexpable.S interface, for both its input

and its output. First, let's create an extended version of the Interval_intf interface that

includes the functions from the Sexpable.S interface. We can do this using destructive

substitution on the Sexpable.S interface, to avoid having multiple distinct type t's

clashing with each other:

# module type Interval_intf_with_sexp = sig
include Interval_intf
include Sexpable.S with type t := t

end;;
module type Interval_intf_with_sexp =

sig

type t

type endpoint

val create : endpoint -> endpoint -> t

val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

val t_of_sexp : Sexp.t -> t

val sexp_of_t : t -> Sexp.t

end

Equivalently, we can de�ne a type t within our new module, and apply destructive

substitutions to all of the included interfaces, Interval_intf included, as shown in

the following example. This is somewhat cleaner when combining multiple interfaces,

since it correctly re�ects that all of the signatures are being handled equivalently:

# module type Interval_intf_with_sexp = sig
type t
include Interval_intf with type t := t
include Sexpable.S with type t := t

end;;
module type Interval_intf_with_sexp =

sig

type t

type endpoint

val create : endpoint -> endpoint -> t
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val is_empty : t -> bool

val contains : t -> endpoint -> bool

val intersect : t -> t -> t

val t_of_sexp : Sexp.t -> t

val sexp_of_t : t -> Sexp.t

end

Now we can write the functor itself. We have been careful to override the sexp

converter here to ensure that the data structure's invariants are still maintained when

reading in from an s-expression:

# module Make_interval(Endpoint : sig
type t
include Comparable with type t := t
include Sexpable.S with type t := t

end)
: (Interval_intf_with_sexp with type endpoint := Endpoint.t)

= struct

type t = | Interval of Endpoint.t * Endpoint.t
| Empty

[@@deriving sexp]

(** [create low high] creates a new interval from [low] to
[high]. If [low > high], then the interval is empty *)

let create low high =
if Endpoint.compare low high > 0 then Empty
else Interval (low,high)

(* put a wrapper around the autogenerated [t_of_sexp] to enforce
the invariants of the data structure *)

let t_of_sexp sexp =
match t_of_sexp sexp with
| Empty -> Empty
| Interval (x,y) -> create x y

(** Returns true iff the interval is empty *)
let is_empty = function
| Empty -> true
| Interval _ -> false

(** [contains t x] returns true iff [x] is contained in the
interval [t] *)

let contains t x =
match t with
| Empty -> false
| Interval (l,h) ->
Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

(** [intersect t1 t2] returns the intersection of the two input
intervals *)

let intersect t1 t2 =
let min x y = if Endpoint.compare x y <= 0 then x else y in
let max x y = if Endpoint.compare x y >= 0 then x else y in
match t1,t2 with
| Empty, _ | _, Empty -> Empty
| Interval (l1,h1), Interval (l2,h2) ->
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create (max l1 l2) (min h1 h2)
end;;

module Make_interval :

functor

(Endpoint : sig

type t

val compare : t -> t -> int

val t_of_sexp : Sexp.t -> t

val sexp_of_t : t -> Sexp.t

end)

->

sig

type t

val create : Endpoint.t -> Endpoint.t -> t

val is_empty : t -> bool

val contains : t -> Endpoint.t -> bool

val intersect : t -> t -> t

val t_of_sexp : Sexp.t -> t

val sexp_of_t : t -> Sexp.t

end

Finally, we can use that sexp converter in the ordinary way:

# module Int_interval = Make_interval(Int);;
module Int_interval :

sig

type t = Make_interval(Base.Int).t

val create : int -> int -> t

val is_empty : t -> bool

val contains : t -> int -> bool

val intersect : t -> t -> t

val t_of_sexp : Sexp.t -> t

val sexp_of_t : t -> Sexp.t

end

# Int_interval.sexp_of_t (Int_interval.create 3 4);;
- : Sexp.t = (Interval 3 4)

# Int_interval.sexp_of_t (Int_interval.create 4 3);;
- : Sexp.t = Empty

11.3 Extending Modules

Another common use of functors is to generate type-speci�c functionality for a given

module in a standardized way. Let's see how this works in the context of a functional

queue, which is just a functional version of a FIFO (�rst-in, �rst-out) queue. Being

functional, operations on the queue return new queues, rather than modifying the

queues that were passed in.

Here's a reasonable mli for such a module:

type 'a t

val empty : 'a t

(** [enqueue q el] adds [el] to the back of [q] *)
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val enqueue : 'a t -> 'a -> 'a t

(** [dequeue q] returns None if the [q] is empty, otherwise returns
the first element of the queue and the remainder of the queue *)

val dequeue : 'a t -> ('a * 'a t) option

(** Folds over the queue, from front to back *)
val fold : 'a t -> init:'acc -> f:('acc -> 'a -> 'acc) -> 'acc

The signature of the fold function requires some explanation. It follows the same

pattern as the List.fold function we described in Chapter 4.4 (Using the List Module

E�ectively). Essentially, Fqueue.fold q ~init ~f walks over the elements of q from

front to back, starting with an accumulator of init and using f to update the accumu-

lator value as it walks over the queue, returning the �nal value of the accumulator at

the end of the computation. fold is a quite powerful operation, as we'll see.

We'll implement Fqueue using the well known trick of maintaining an input and an

output list so that one can both e�ciently enqueue on the input list and dequeue from

the output list. If you attempt to dequeue when the output list is empty, the input list is

reversed and becomes the new output list. Here's the implementation:

open Base

type 'a t = 'a list * 'a list

let empty = ([],[])

let enqueue (in_list, out_list) x =
(x :: in_list,out_list)

let dequeue (in_list, out_list) =
match out_list with
| hd :: tl -> Some (hd, (in_list, tl))
| [] ->
match List.rev in_list with
| [] -> None
| hd :: tl -> Some (hd, ([], tl))

let fold (in_list, out_list) ~init ~f =
let after_out = List.fold ~init ~f out_list in
List.fold_right ~init:after_out ~f:(fun x acc -> f acc x) in_list

One problem with Fqueue is that the interface is quite skeletal. There are lots of

useful helper functions that one might want that aren't there. The Listmodule, by way

of contrast, has functions like List.iter, which runs a function on each element; and

List.for_all, which returns true if and only if the given predicate evaluates to true

on every element of the list. Such helper functions come up for pretty much every

container type, and implementing them over and over is a dull and repetitive a�air.

As it happens, many of these helper functions can be derived mechanically from

the fold function we already implemented. Rather than write all of these helper

functions by hand for every new container type, we can instead use a functor to add

this functionality to any container that has a fold function.

We'll create a new module, Foldable, that automates the process of adding helper
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functions to a fold-supporting container. As you can see, Foldable contains a module

signature Swhich de�nes the signature that is required to support folding; and a functor

Extend that allows one to extend any module that matches Foldable.S:

open Base

module type S = sig
type 'a t
val fold : 'a t -> init:'acc -> f:('acc -> 'a -> 'acc) -> 'acc

end

module type Extension = sig
type 'a t
val iter : 'a t -> f:('a -> unit) -> unit
val length : 'a t -> int
val count : 'a t -> f:('a -> bool) -> int
val for_all : 'a t -> f:('a -> bool) -> bool
val exists : 'a t -> f:('a -> bool) -> bool

end

(* For extending a Foldable module *)
module Extend(Arg : S)
: (Extension with type 'a t := 'a Arg.t) =

struct
open Arg

let iter t ~f =
fold t ~init:() ~f:(fun () a -> f a)

let length t =
fold t ~init:0 ~f:(fun acc _ -> acc + 1)

let count t ~f =
fold t ~init:0 ~f:(fun count x -> count + if f x then 1 else 0)

exception Short_circuit

let for_all c ~f =
try iter c ~f:(fun x -> if not (f x) then raise Short_circuit);
true
with Short_circuit -> false

let exists c ~f =
try iter c ~f:(fun x -> if f x then raise Short_circuit); false
with Short_circuit -> true

end

Nowwe can apply this to Fqueue. We can create an interface for an extended version

of Fqueue as follows:

type 'a t
include (module type of Fqueue) with type 'a t := 'a t
include Foldable.Extension with type 'a t := 'a t

In order to apply the functor, we'll put the de�nition of Fqueue in a submodule

called T, and then call Foldable.Extend on T:
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include Fqueue
include Foldable.Extend(Fqueue)

Base comes with a number of functors for extending modules that follow this same

basic pattern, including:

• Container.Make : Very similar to Foldable.Extend.
• Comparable.Make : Adds support for functionality that depends on the presence of a

comparison function, including support for containers like maps and sets.

• Hashable.Make : Adds support for hashing-based data structures including hash

tables, hash sets, and hash heaps.

• Monad.Make : For so-called monadic libraries, like those discussed in Chapters Chap-
ter 8 (Error Handling) and Chapter 17 (Concurrent Programming with Async).

Here, the functor is used to provide a collection of standard helper functions based

on the bind and return operators.

These functors come in handy when you want to add the same kind of functionality

that is commonly available in Base to your own types.

We've really only covered some of the possible uses of functors. Functors are

really a quite powerful tool for modularizing your code. The cost is that functors are

syntactically heavyweight compared to the rest of the language, and that there are some

tricky issues you need to understand to use them e�ectively, with sharing constraints

and destructive substitution being high on that list.

All of this means that for small and simple programs, heavy use of functors is

probably a mistake. But as your programs get more complicated and you need more

e�ective modular architectures, functors become a highly valuable tool.
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