
Can. J. Math., Vol. XXVIII, No. 3, 1976, pp. 523-532 

ON THE GENUS OF STRONG TENSOR PRODUCTS 
OF GRAPHS 

B. L. GARMAN, R. D. RINGEISEN AND A. T. WHITE 

1. I n t r o d u c t i o n a n d def in i t ions . The genus parameter for graphs has 
been studied extensively in recent years, with impetus given primarily by the 
Ringel-Youngs solution to the Heawood Map-coloring Problem [15]. This 
solution involved the determination of y(Kn), the genus of the complete 
graph Kn. I t has been natural to consider also the genus of graphs closely 
related to Kn: the complete n-partite graph G = KPI>P2 Pn has vertex set 
V(G) = U?=i V% (a disjoint union of nonempty sets) , with edge set E(G) = 
\viVj\vi G VuVj G Vj,i 9*j\] pi = \Vi\, 1 g i g n. If pi — m for each 
i = 1, 2, . . . , n, then G is regular and we write G = Kn{rn). T h u s Kn = Kn(i). 
Several genus results have been established for these families; see [12]. The 
existing techniques for imbedding graphs (see, for example, [6; 7; and 23]) 
are most readily applied for graphs which can be factored as a (possibly 
i terated) product of some kind (such as Qn and related graphs, see [20]) or 
for graphs which are Cayley graphs for some finite group (such as Kn(m)f see 
[24]). T h e situation is particularly nice where triangular imbeddings are 
produced, as they are necessarily minimal. In this paper we introduce a 
graphical product which iterates, under the proper conditions, to produce 
tr iangular imbeddings of many families of graphs, including some of the 
families Kn(m). 

The graphical product we introduce is related to both the tensor product 
and the cartesian product . Let graphs G\ and G2 have vertex sets V(Gi), 
V(G2) and edge sets E(Gi), E(G2) respectively. The tensor product G\ (x) G2 

has vertex set V(Gi) X V(G2) and edge set £(Gi(x) G2) = {(u1,u2)(vi,v2)\ 
utVi G E(Gi), i = 1,2}. The cartesian product G\ X G2 has vertex set V(G\) X 
V{G2) and edge set E(G\ X G2) = {(ui, u2)(vi,v2)\ui = V\ and u2v2 G E(G2) 
or u2 = v2 and U\V\ G E(Gi)}. F o r example, the n-cube Qn is defined by: 
Qi = K2} and Qn = Qn-i X K2, n ^ 2. For more information on the tensor 
and cartesian products, see [10; 17; and 18]. We now define the strong tensor 
product Gi ® G2 to have vertex set V(G\) X V(G2) and edge set E(G\ ® G2) = 
E(Gi ® G2) VJ {(ui, u2)(v1} v2)\ui = vi and u2v2 d E(G2)\. Thus Gi ® G2 = 
Gi® G2 + piG2, where pi = |F (Gi ) | , u + " denotes the " s u m " operation of 
[2], and p\G2 denotes p\ disjoint copies of G2, as in [9]. 

If G has components G\, G2, . . . , Gn, we will write G = U"=i Gu consistent 
with [9]. If Gi and G2 are isomorphic, we will write G\ = G2. As usual, x ( £ ) 
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will denote the chromatic number of G. If G is imbedded in a closed orientable 
2-manifold Sk, we let G* denote the dual pseudograph for this imbedding. 
We say that the imbedding has bichromatic dual if x(G*) = 2. The first Betti 
number of a connected graph G is given by 13(G) = q — p + 1, where 
q = \E(G)\ and p = |F(G)|. The closed orientable 2-manifold of genus n will 
be denoted by Sn, n = 0, 1, 2, ... . 

2. Basic properties of the strong tensor product. This product has 
interest in its own right, apart from genus considerations. In support of this 
contention, as well as for use in subsequent calculations, we offer the following 
elementary observations. Let G, G\, G2 have p, p\, pi vertices and q, q\, q2 

edges respectively. Let d(vt) be the degree of Vt in Gi} i = 1,2. 

PROPOSITION 1. The degree of (vlyv2) in Gi ® G2 is given by d(vi,v2) = 
d(v2)(d(v,) + 1). 

Using Proposition 1, we obtain 

PROPOSITION 2. For G = Gi (x) G2, p = p\pi and q = q2(pi + 2gi). 

Proof. The equality for p is obvious. For q, we note that 

2<z = S d(vuv2) = X d(»2)(d(»i) + 1) 

= Z d(»2) E 0(VO + !) = 2^2 (2gi + £i) 
02<EF(G2) ©iGVCGi) 

so that q = q2(px + 2qx). 

PROPOSITION 3. For G ^ K\, G ® H is connected if and only if G and H are 
both connected with H =̂  Kx. Moreover, if G = U7=i Gt and H = U*=i Hjy 

with no Hj = Kly then 

G®H= U Gi^Hj 

(where all unions are over components). 

PROPOSITION 4. x(Gi(g) G2) = x(G2). 

As a special case of Proposition 4, we have 

PROPOSITION 5. 7/ G2 is bipartite, then Gi ® G2 is bipartite. 

Moreover, we have 

PROPOSITION 6. If Gi is bipartite, then Gi g) K2 = Gi X i£2. 

Now define Gi = i£2 and Gn = G„_i ® K2 for w ̂  2; using Proposition 6 
and an easy induction argument, we have 

PROPOSITION 7. Gn = Q„. 
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Consistent with Proposition 4, we have the following: 

PROPOSITION 8. Km® KpltP2t„.tPn = Kmpi>mV2 mPn. 

Thus taking G\ = Km in the strong tensor product, with G2 complete 
w-partite, has the effect of multiplying the order of each partite set by m. In 
particular, 

PROPOSITION 9. Km (g) Knir) = Kn{mr)\for r = 1, we have Km® Kn = Kn{m). 

Propositions 8 and 9 will prove useful in subsequent genus computations. 
Since K2 = Klti, we can also apply Proposition 8 twice to see that 
K2 ® (K2 ® K2) = K,A. But, by Proposition 7, (K2 g) K2) ® K2 = 
Qz ?± i^4,4. Hence 

PROPOSITION 10. The strong tensor product operation is neither associative 
nor commutative. 

A special case of Proposition 3 gives Kp (g) G = pG (where Kp is the comple­
ment of Kp). Taking p — 1, we have K\® G = G. Thus 

PROPOSITION 11. The strong tensor product operation has K\ as a left identity. 

Because G\ ® G2 has pip2 vertices, Ki is also the only possible right identity. 
However, since G ® Ki = Kp, where p = V(G), we have 

PROPOSITION 12. The strong tensor product operation has no right identity. 

3. An imbedding technique. The strong tensor product is valuable not 
only for factoring graphs such as Qn and Kn(m) ; it is also amenable for the 
construction of triangular imbeddings of product graphs, given an appropriate 
triangular imbedding of one of the factors. 

THEOREM 1. Let G2 have a triangular imbedding in a closed orientable 2-
manifold Sh, with bichromatic dual. Let G\ be connected and bichromatic, with 
maximum degree at most two. Then G\ (x) G2 has a triangular imbedding in a 
closed orientable 2-manifold Sk1 with bichromatic dual. 

Proof. We regard Gi ® G2 as pxG2 + Gi(x) G2. Let Mt = Sh, i = 1, 2 , . . . ,pu 

be imbedded in R*, with Mt exterior to Mj for i 9e j . Begin with identical 
imbeddings of G2 on M\, M%} M5, . . . , each triangular and with bichromatic 
dual and (say) clockwise orientation. Now form the same imbeddings, but 
with counterclockwise orientation, of G2 on M2j MA, MQ, . . . ; thus these 
imbeddings are "mirror images" of those previously formed. Let regions 
Ri, Rz, . . . , i ^ - i be colored black and regions R2, R4} . . . , RT2 (where r2 is 
the number of regions for the imbedding of G2 on Sh) be colored white on 
each of Mi, M%, M5, . . . , in consonance with x(G2*) = 2. (Since the dual is 
bichromatic, the numbers of regions of the two colors agree—each is q2/S, 
since each edge of G2 appears in exactly one (triangular) region of each color.) 
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Let R/ be the mirror image of R{ (i = 1, 2, . . . , r2) on M2, M4, MQ, . . . . 
Color regions Ri, R% , . . . , RT2-i with white and regions R2' , R\ , . . • , i?r2 ' 
with black on each of M2, MA, Me, . . . . We mus t add the tensor product 
edges to form Gi ® C72 from P1G2. This will be accomplished by a t tach ing 
cylinders among the surfaces Mi so as to form Sk, and then t r iangulat ing the 
cylinders with these edges. We will see t h a t the resulting t r iangular imbedding 
of G\ ® G2 also has bichromatic dual . 

Consider Ri in Mi and Ri in M"2. Excise two open disks, Di and BÎ, from 
the interiors of i^i and RÎ respectively, as indicated in Figure 1. Let simple 
closed boundary curves d and CÎ bound D\ and D\ respectively. Let 7 \ be 
a topological cylinder, with simple closed boundary curves Bi and BÎ. Identify 
B\ with C\ and BÎ with C / . T h e edges xyf, xz\ yz', yx', zx', zy' can now be 
imbedded along 7 \ , as shown in Figure 1. Note t h a t six t r iangular regions are 
formed along 7 \ and t ha t these can be 2-colored consistently with the 2-color-
ings of Mi and M2- Now repeat this process, joining region Rt in Mi with 
R/ in M2 by cylinder Tt, i = 3, 5, . . . , r2 — 1, adding the six required tensor 
product edges along each cylinder. A t this stage we have added precisely 
6 ( r 2 /2 ) = 6(g 2 /3) = 2q2 edges and K2 ® G2 is t r iangularly imbedded on 
Mi U M2 (as altered by cylinder a t t a c h m e n t ) , with bichromatic dual . (Since 
each edge of G2 appears in exactly one ( tr iangular) region colored black in Mi, 
these 2ç2 edges are exactly those needed a t this stage.) 

We now repeat this process, joining Mt to Mi+i, i = 2, 3, . . . , pi — 1, by 
a t taching cylinders between mirror-image regions of opposite color. (Regions 
colored black in Mt are joined to their counterpar ts colored white in Mi&i.) 
At each stage we have a t r iangular imbedding, with bichromatic dual . We 
now note t ha t the hypotheses on Gi imply t h a t Gi is either a pa th or an even 
cycle. If Gi is a pa th , we are done. If Gi is an even cycle, then MPI is joined 
also to Mi, in the same fashion; a t r iangular imbedding of G\® C72, with 
bichromatic dual , again results. 

COROLLARY 1. Under the conditions of Theorem 1, where h = Y ( G 2 ) , 
y(Gi (x) G2) = k = pih + <2i((g2/3) — 1) + <5, where b = 0 if Gi is a path 
and Ô = I if Gi is an even cycle. 

Proof. Use Proposition 2 and the well-known fact t ha t if G is t r iangularly 
imbedded in Sn, then n = 1 — p/2 + q/6. Alternately, we observe t ha t we 
commenced our construction with pi disjoint copies of Sn, t h a t we constructed 
qi joins—each contr ibut ing q2/3 — 1 to the genus of Sk, and t ha t /3(Gi) = 8. 
(See [21].) 

We remark t h a t the construction of Theorem 1 fails if any one of the 
following occurs: 

(i) Gi has a vertex of degree 3 or more. 
(ii) Gi is not bichromatic. 

(iii) T h e imbedding of G2 is not tr iangular. 
(iv) T h e imbedding of G2 does not have bichromatic dual . 
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FIGURE 1 

https://doi.org/10.4153/CJM-1976-052-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-052-9


528 B. L. GARMAN, R. D. RINGEISEN AND A. T. WHITE 

Yet the conjunction of the four conditions (in their affirmative forms) occurs 
sufficiently often, as we will see in Section 5, so as not to detract from the power 
of the theorem. 

4. The main theorem. Let H0 = G2, and Hn = d® Hn-i, for n ^ 1. 
By Proposition 3 and a result of Battle, Harary, Kodama, and Youngs [1] 
that the genus parameter is additive over the components of a graph, we take 
G\ and G2 to be connected, without loss of generality. 

THEOREM 2. Let G2 have a triangular imbedding in a closed orientable 2-
manifold, with bichromatic dual. Let G\ be bichromatic with maximum degree 
at most two. Then 

y(Hn) = 1 + | (Pl + 2qi)
n - | 2 (Pi)n, » = 0, 1, 2, . . . . 

Proof. We apply Theorem 1 n times, to obtain a triangular imbedding of 
Hn. Let Hn have pn vertices and qn edges; then y(Hn) = 1 — pn/2 + qn/6. 
But easy induction arguments show that pn = p\p2 and (using Proposition 2) 
Qn = Q*(pi + 2(Zi)n. 

5. Applications to new genus results. In applying Theorem 2 (or the 
case n = 1 of Theorem 2, which is Theorem 1), we must choose G\ as the path 
Pm or an even cycle C2m. As the special case G\ = P 2 = K2 allows us to apply 
Propositions 8 and 9, this choice will often be productive. There are many 
possible choices for G2. Each such choice will lead to a family of genus for­
mulas, via Theorem 2. (We will not state specific formulas explicitly, unless 
we believe them to be of particular interest.) 

It is well-known (see, for example, [25]) that a connected planar graph G 
has bichromatic dual if and only if it is eulerian. Moreover, such a graph G 
triangulates the sphere if and only if it is maximal planar. Thus: 

THEOREM 3. A graph G triangulates the sphere, with bichromatic dual, if 
and only if it is maximal planar and eulerian. 

Using the fact that a maximal planar graph G has q = 3p — 6, we apply 
Theorem 1 to find a family of strong tensor products with genus asymptotic 
to the order of the second factor. 

THEOREM 4. / / G is maximal planar eulerian, then y(K2 (x) G) = p — 3. 

Unfortunately, the characterization of Theorem 3 does not extend to sur­
faces of positive genus. The graph G of Figure 2 triangulates the torus and 
is eulerian, yet its dual has chromatic number at least three, as indicated by 
the 7-cycle running vertically through the middle of the rectangle depicting 
the torus. It is easy to verify, however, that if G on Sk(k ^ 0) has x(G*) = 2, 
then G must be eulerian. 
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FIGURE 3 

We next produce an infinite collection of tr iangular imbeddings on the 
torus, each with bichromatic dual. We use the voltage graph construction 
introduced by Gross in [6], to imbed a variety of toroidal Cayley graphs (see 
[24]) as follows. Consider the voltage graph of Figure 3, imbedded in the 
torus. (Here the " g r a p h " is actually a loop graph H, bu t this is allowed by 
the theory.) Let T be any abelian group with generating set A = {a, b, a + b}, 
where A H A"1 = «(A" 1 = fô"1^ G A}). Then the "Kirchoff Voltage Law" 
holds around each region boundary, and the theory of voltage graphs guaran­
tees not only tha t the Cayley graph GA(T) covering H is tr iangularly imbed­
ded in S\ (among the surfaces Sk, only Si can cover Si] see [3]), bu t also t ha t 
the dual of G A (T) in Si is bichromatic—since the dual of H in Si is bichromatic. 

For example, if we take a = 1 and b = 2 in T = Zn (n ^ 7) , we get an 
infinite collection of Cayley graphs GA(ZH), each tr iangulating the torus with 
bichromatic dual. T h e first two cases are of special interest: GA(ZI) — K1} 

and GA(ZS) = i£4(2). Or, we can take a — (1 ,0 ) and b = (0, 1) for 

https://doi.org/10.4153/CJM-1976-052-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-052-9


530 B. L. GARMAN, R. D. RINGEISEN AND A. T. WHITE 

T = Zm + Zn (m, n ^ 3). The simplest case here gives GA(Z3 + Z3) = K^). 
Letting Gi = K2 and G2 = K7 in Theorem 2, we obtain the following 

formula for the genus of a class of 7-partite graphs. 

THEOREM 5. y(KU2^) = 1 + 7 • 2*~1(2* - 1), k ^ 0. 

Proof. The case & = 0 is 7(^7) = 1, since KTW = K7. For & > 0, apply 
Theorem 2 to compute y(Hk)\ now apply Proposition 8 repeatedly, to see 
that Hk = KU2k). 

It can in fact be shown that every minimal imbedding of Kn triangulates S\ 
with bichromatic dual, although we do not do so here. We do establish, 
however, a similar result for K^m). Recall that, for each natural number m, 
every minimal imbedding of KZ{m) is a triangulation (see [16] or [19]). The 
case m = 3 below has been verified independently by Figure 3. 

THEOREM 6. Let G = K^m) be minimally imbedded; then x(G*) = 2. 

Proof. Let V(G) = Vi U Vi U F3 be the partite set partition. Then every 
region is triangular and has an oriented clockwise boundary of exactly one 
of the two following forms: 

(a) vu V2, V3, vi 
(b) vu i>3, v2, vu 

where vt G Vu i = 1, 2, 3. Color each region of form (a) black, while coloring 
each of form (b) white. This provides a 2-coloring of the regions, as we can 
see by considering an arbitrary edge of G, say V\V2- This edge bounds two 
regions, colored as indicated in Figure 4. 

In [22] it has been shown that KP1 tP2 FP3 has an orientable triangular imbedding 
if and only if pi = p2 = pz. Thus among complete tripartite graphs, it is 
exactly those which are regular which can serve as the graph G2 in Theorem 2. 
Moreover, these can be taken with arbitrarity large genus. 

FIGURE 4 
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We next consider the family K^n). Ringel [13] conjectured in 1969 tha t 
y(Ki(n)) = (n — l ) 2 for all n. In 1973, Garman [4] affirmed this conjecture, 
for n = 2 ( m o d 4 ) . In 1974 Jungerman [11] affirmed the conjecture, for all 
w ^ 3 . Both solutions employ current graphs (see [7] or [8]), dual to voltage 
graphs. T h e current graphs of Garman [5] are bichromatic, and the theory 
of current graphs guarantees tha t the imbeddings of KAM (n = 2 (mod 4)) 
they produce have bichromatic dual. We can now show: 

T H E O R E M 7. K^n) has a triangular imbedding with bichromatic dual if and 
only if n is even. 

Proof. If n is odd, K^n) is regular of odd degree 3n and hence no dual can 
be 2-colored. If n = 2 (mod 4) , we are done by the remarks preceding the 
theorem. If n = 0 (mod 4) , we write n = 2s • m = 2s~l • 2m, where s ^ 2 
and m is odd; thus 2m = 2 (mod 4) . If m = 1, we take G2 = KH2) imbedded 
in 5 i as given by Figure 3 and G\ = K2 in Theorem 2 to get a tr iangular 
imbedding for K^2S) ; Theorem 1 guarantees tha t the dual is bichromatic. 
If m ^ 3, we take G2 = K^2m) imbedded in the manner described by Garman 
and G\ = K2\ again Theorems 1 and 2 give the desired result. 

Finally, we consider G2 = K\2r+z = i£(i2r+3)(i) and its t r iangular imbeddings 
as given by Ringel in [14] ; these all have bichromatic dual. Taking G\ = K2 in 
Theorem 2, we have the following: 

T H E O R E M 8. 

tVr v {mn - 3)(mn - 4) mn(m - 1) / 

y(Kn{m)) = ± ^ ^ , forn = Z (mod 12) 

and m = 2*, k è 0. 

For other values of m and n, the equali ty of Theorem 8 will hold if and 
only if Kn(m) has a tr iangular imbedding in some closed orientable 2-manifold. 
I t is well-known tha t Kn has an orientable triangular imbedding if and only if 
n = 0, 3, 4, 7 (mod 12). For n = 0, 4 (mod 12), Kn is not eulerian and hence 
the duals are not bichromatic. 

T h e case n = 3 is analyzed above. For n = 12r + 7, r ^ 1, the existing 
current graphs are not bichromatic, so t ha t the construction of Theorem 8 
is not yet known to apply. 

We give here a summary of the current knowledge about this problem; 
Kn(m) has an orientable triangular imbedding for 

(1) n = 2: no values of m (biparti te graphs have no odd cycles) 
(2) n = 3 and all m ([16] or [19]) 
(3) n = 4 if and only if m ^ 3 ([4] and [11]) 
(4) n = 7 and m = 2* (k ^ 0) (Theorem 5) 
(5) » SEE 3 (mod 12), m = 2* (fe ^ 0) (Theorem 8) 
(6) m = 1 if and only if n = 0, 3, 4, 7 (mod 12) ([15]) 
(7) m — 2 and w = 6, 7; ?z = 4 (mod 6), or n = 3 (mod 12) ([24, Theorem 5 

above, 7, Theorem 8 above, respectively]). 
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