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ON DISCRETE GENERALISED TRIANGLE GROUPS

by M. HAGELBERG, C. MACLACHLAN and G. ROSENBERGER
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A generalised triangle group has a presentation of the form

where R is a cyclically reduced word involving both x and y. When R=xy, these classical triangle groups have
representations as discrete groups of isometries of S2, R2, H2 depending on

In this paper, for other words R, faithful discrete representations of these groups in Isom + H 3 = PSL(2,C) are
considered with particular emphasis on the case /? = [x, y] and also on the relationship between the Euler
characteristic x and finite covolume representations.

1991 Mathematics subject classification: 20H15.

1. Introduction

In this article, we consider generalised triangle groups, i.e. groups F with a
presentation of the form

where R(x,y) is a cyclically reduced word in the free product on x,y which involves
both x and y. These groups have been studied for their group theoretical interest
[8, 7, 13], for topological reasons [2], and more recently for their connections with
hyperbolic 3-manifolds and orbifolds [12, 10].

Here we will be concerned with faithful discrete representations p:T-*PSL(2,C) with
particular emphasis on the cases where the Kleinian group p(F) has finite covolume. In
Theorem 3.2, we give necessary conditions on the group F so that it should admit such
a faithful discrete representation of finite covolume.

For certain generalised triangle groups where the word R(x,y) has a specified form,
faithful discrete representations as above have been constructed by Helling-Mennicke-
Vinberg [12] and by the first author [11]. In this paper, the cases where R(x,y) is the
commutator of x, y are considered in detail. Starting with Coxeter [3] the study of these
groups has a long history. We determine completely when these groups have faithful
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discrete representations, which have finite covolume (Theorem 2.1 and Corollary 3.3)
and when they are arithmetic (Theorem 4.2).

2. Commutator case

In this section let

r = r(fc,/;m) = <x,j;|x* = y = [x,y]"=l> (1)

where [x,y] = xyx~1y~1. Furthermore, we assume that 2^fc^/^oo and 2gwigoo. In
the cases where k,l,m is oo then there is no corresponding relation. In the Euler
characteristic formulae that appear later, we assume that if i = oo then l/i = 0.

Theorem 2.1. Let F be as defined at (1) above.

(i) F has a faithful discrete representation p:F->PSL(2,C) if and only if (k,l;m)^
(2,3; 2), (3,3; 2), (2,3; 3), (2,4; 2).

(ii) //(/c,/;m)=(3,3;3),(4,4;2),(3,4;2) then F has a faithful discrete representation of
finite covolume and in all other cases given in (i), F has a faithful discrete
representation of infinite covolume.

Notation. Throughout, we will use r(X) to denote the trace of X e SL(2, C).

Proof. First let us recall some results on traces. If X, YeSL{2, C) and <x = x(X),
P = t(Y) and y = x(XY) then

x\_X, r\=<x2 + p2 + y2-oiPy-2. (2)

Also, any two-generator non-elementary subgroup <X, Y} of SL(2, C) is determined up
to conjugacy by a,fl,y.

We now deal with the four exceptional cases excluded in (i). These groups have been
investigated in [15] (see also [3,5]) and the groups F(2,3;2), F(3,3;2) are finite of
orders 24, 288 respectively while the groups F(2,3; 3), F(2,4; 2) are infinite and solvable.
We see immediately that the second group cannot have a faithful discrete representation
in PSL(2,C). Now let p:F(2,3;2)-»PSL(2,C) be a homomorphism with p(x) = PX, of
order 2 and p(y) = PY of order 3. (Here P denotes the natural projection
P:SL(2,C)-*PSL{2,Q)- Then from (2), 0 = x[X,Y] = y2-l. Thus p{xy) = PXY has order
3. But then p(F) is A^ and cannot have order 24, so that p cannot be faithful. A similar
argument rules out the remaining two groups.

Note that the group F(2,2;m) is dihedral of order Am and has a faithful discrete
representation in PSL(2, C). This remains true if w = oo.

In all other cases where k, l,m are finite, equation (2) admits a solution with
a = 2cosnjk, P = 2cosn/l, x[X, 7 ]= — 2cosn/m and yeC\R and a corresponding homo-
morphism p:F(k,l,m)-*PSL{2,C) can be constructed (see [11]). This remains true if any
of k, I, m become infinite if we choose the corresponding matrices to be parabolic.
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Now suppose

U I + 1>1 and UU±*1
k k m I I m

so that, in addition to the five cases discussed above, we have (3,3; 2), (4,4; 2), (3,4; 2).
The triangle subgroups rx = <^x,yx'1y'1}, y~lrxy = (y~1xy,x~1}, ry = (y,xy'lx'1),
x iTyx = (x lyx,y '> are spherical or Euclidean. Under the representation p, these
triangle groups have fixed points, denoted Ox,p(y l)Ox,Oy,p(x l)Oy, either in H3 or
on 5H3, which form the vertices of a tetrahedron [10] (see also [12] and Section 4).
This tetrahedron has finite volume and checking face identifications and the angle sum
at edge cycles establishes that it is a fundamental region for p(Y), so that, by Poincare's
Theorem, we have a faithful representation of F. Thus for these groups (i) and the first
part of (ii) are established.

Now suppose that the triangle subgroups are not all spherical or Euclidean. Suppose
that Tx is hyperbolic, which, we note, occurs precisely when y~lTxy is hyperbolic. In
that case, one can regard Ox as being an "ideal" vertex lying outside H3. More precisely,
there exists a unique geodesic plane intersecting the axes of the rotations p(xyx~ly~i),
p(x~lyxy~1), p(x)ep(Tx) orthogonally in points A,B,C respectively. Similarly, there
will be a plane intersecting the axes of p(x), p(y~ix~lyx), p(xy~lx~ly)ep{y~lTxy) in
the points D,E,F. (See Figure 1). Furthermore, it can be shown that these two planes
do not intersect, nor do they intersect the opposite faces of the tetrahedron [11]. We are
assuming in this case, that Ty is spherical or Euclidean. (The abandoning of the order
k^l is unimportant here). Let F be the group generated by p(x) = £,p{y) = r\,pi,p2

where pup2 are the reflections in the planes ABC, DEF, so that £, is a rotation of order
k around the axis CD and r\ a rotation about the axis Oy£,~lOr Using the same
procedure as in the finite volume case above, we obtain that the "tetrahedron" truncated
at the two "ideal" vertices, by the planes ABC and DEF is a fundamental region for f
Finally, let F + denote the orientation-preserving subgroup of F. Now F + is of index 2
in F and is generated by i,r],p1t}pl,pip2. Thus two copies of the truncated tetrahedron
obtained by reflecting one across the face DEF as shown in Figure 1 form a
fundamental region for F+ .

The face identifications are given by the following

ABC £2*1+ p2Ap2Bp2C

PiCDCB^-^yEp^-^.PiB _£_> p2CDCA0yFp20yp2A

Cl0y0yEF -JL^£-lOyOyBA

and consequently we have the following cycles of edges

(a) Cp2C-L^Cp2C

(b) O.r'O.-^O.r'O,
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A

(b') p 2 0 , p 2 Z - l 0 y y

(c) EClOy-L->FOy-l->AOy JZ\BClOySl.EC1Oy

(c') Ep2r
l0y-L^Fp20yf2£i p2Ap20y HUp2Bp2r

lOy ^C^ Ep2C
lOy

(d) AB JLl+FE £™X p2Ap2B £1£L> AB

(e) AC Sl+BC £±£Up2Bp2C -L^p2Ap2C £1ZL>AC

The conditions of Poincare's theorem (see [16]) can be shown to hold and the group
F + has the presentation
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This abstract group then has a faithful discrete representation in PSL(2,C) with finite
covolume.

Using now the last relation r2rl=y~1r2yr2 to eliminate this generator and setting
6 = r2yr2 we get

0' = [x ,0 ] m = l , | > - \ }> - 1 0 ] = l>. (3)

Now the group T(k, l;m) can be embedded in F + . Setting 8 = y we obtain F(/c, l;m) as
a factor group. Therefore the subgroup generated by x and y in F + is isomorphic to
F(/c, /; m). This group is of infinite index, since setting x = 1 yields the factor group
Z, * Z,. So finally we obtain a faithful representation of F(/c, /; m) as a discrete subgroup
of PSL(2, C) with infinite covolume.

In the cases where

1
k

1
r ";—

k

1
m

I and
1

7 H
l

—7 ~
I

l

all four vertices of the tetrahedron are "ideal" and so are truncated by planes. Using
similar notation and methods to those given above, the orientation preserving subgroup
f+ of the group f is again generated by the same £,,*], py and p2, with additionally, in
this case, the two reflections p3 and p4 in the planes GHK and LMN, respectively. In
this way, a fundamental domain of finite volume (see Figure 2) was constructed in [11].

For this polyhedron the faces are identified in the following way

ABC p:""> p2Ap2Bp2C

GHK f2£l+ PlGp2Hp2K

LMN £2£±> p2Lp2Mp2N

p2CDCBNMEp2Mp2Np2B _L_> p2CDCAKGFp2Gp2Kp2A

HLMEFG -l-> HLNBAK

p2Hp2Lp2MEFp2G
 P2"P2> p2Hp2Lp2Np2Bp2Ap2K.

From these identifications we deduce the following cycles of edges

(a) Cp2C * >Cp2C

(b)

(b')

(c) EM-L+FG-JUAK-Ll+BN

(c') Ep2M -L-*Fp2G £™3, p2Ap2K JlL>p2Bp2N ^ " ^ Ep2M
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A K

(d) AB ""' ,FE £™j. p2Ap2B "i(>\AB

(e) AC *"' ,BC £I£L>p2Bp2C -J-,p2Ap2C £l£L>AC

(g) KH "~',GH P2P3, p2Gp2H
 p2"p2> p2Kp2H

 P3P2,

(h) KG -Ll+NM £3£l+p2Np2M —L^.p2Kp2G I1£1+KG

Again by the theorem of Poincare the group T+ has the presentation

and so has a faithful discrete representation in PSL(2, C) with finite covolume.
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We are now in a position to eliminate the generators r2yr2 and r2r^ using the last
two relations. Setting additionally 63 = r2r3 and Q^ = r2r^. we get

Note that r2yr2 = 9^lyQ^ and r2r1=y~l9^iyd4.
Setting now 03 = 04= 1 we get as before F(/c,l;m) as a factor group of f+ and so the

group F(/c,i,m) can be embedded in f+. Therefore again the subgroup generated by x
and y in f+ is isomorphic to V(k, l;m). This group is again of infinite index, since setting
y = 1 and 04 = 1 we obtain the factor group Zk * Z. So finally we obtain a faithful
representation of F(k,l;m) as a discrete subgroup of PSL(2,C) with infinite covolume.
This deals with the cases where k, I, m are all finite.

If m is infinite, or both k, I are infinite, then r has a discrete faithful representation as
a Fuschian group. Now fix the finite values of k and m. Let G be the abstract group
obtained from the presentations at (3) or (4), depending on the values of k and m, by
omitting the relations yl=l and 0'=1. Then for / large enough, we have a sequence of
representations p,:G->PSL(2,C) whose images are the groups T+ or f+ and so have
finite covolume. In each case, the representation depends on the parameter y defined at
(2) for fixed k,m. As /-KX>, the representations p, converge algebraically to p, whose
parameter value is 2. Since the representations are discrete of finite covolume, algebraic
convergence implies geometric convergence [24], and so p(G) is discrete. Now suppose
that for some WeG, p{W) = \. Then p,(W) converges to 1. But by a compactness
argument in the geometric topology, there is a lower bound on d(p,(W)x,x) for xeH3.
Thus for large enough / we must have pl(W) = \, which will be a consequence of the
defining relations in F + or F+. But since this is true for all large /, we must have W= 1,
so that p is faithful. As before F(k,co;m) can be embedded as a subgroup of infinite
index in p(G) and the proof is complete.

Remarks 1. Note that Theorem 2.1(ii) does not quite give necessary and sufficient
conditions for the existence of faithful discrete representations of finite covolume. This
will be pursued farther in Corollary 3.3.

2. In [14] it is shown that, if a discrete group G = G(k,l;m) is generated by two
primitive elliptic elements of orders k, I whose axes do not intersect and such that the
two planes spanned by the common perpendicular to the two axes and each axis in
turn, intersect orthogonally, and whose commutator is elliptic of order m, then the
triples (k,i,m) satisfy precisely the conditions given in Theorem 2.1(i) and furthermore,
that such groups exist for all these triples. Thus these groups G(k,l;m) satisfy the
relations at (1). For the triples given in Theorem 2.1(ii), which give rise to lattices, the
method of proof in [14] using Poincare's theorem, indicates further that (1) is a set of
defining relations for G(k,l;m). Thus by rigidity, these groups will be conjugate in
PSL(2,C) to the groups F(k,l;m). Thus in Theorem 2.1, in these cases, the groups can
be generated by elements whose axes satisfy the orthogonality condition of [14] (see
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Section 4). It is not clear, that for other finite covolume generalised triangle groups, this
geometric condition need hold.

3. Euler characteristic conditions

In the examples considered in Theorem 2.1, the groups F(k, l;m) which have finite
covolume representations satisfy

k I m

Also, in the cases considered in [12] where R(x,y) = xyx~iyxy~l, the groups which
have finite covolume representations satisfy

k I m

In this section, we consider the necessity of this condition for generalised triangle
groups. Thus let

;m) = <x,y\xk = y' = Rm(x,y)=iy (5)

with 2^/crg/^oo, 2^mgoo, R{x,y) is a cyclically reduced word which is not a proper
power in the free product on x and y and involves both x and y.

In the cases where R(x,y) is a product of conjugates of elements of finite order, like
those discussed in Section 2, a representation may give rise to elliptic elements with
intersecting axes. In these cases we make repeated use of the following result (see [17]).

Theorem 3.1. Let x,y be elliptic elements of orders n,m, where n^m, which generate a
discrete subgroup of PSL(2, C). Suppose that the axes of x and y intersect in a point in H3.
Then one of the following must occur: (i) n = 2,m^.2, (ii) (n,m) = (3,3), (iii) (n,m)=(3,4),
(iv) (n,m) = (3,5), (v) (n,m) = (4,4), (vi) («,m) = (5,5).

Theorem 3.2. Let F be as at (5) above. Suppose, further, that one of the following
conditions holds.

(i) m^4.
(ii) m = 3 and the word R(x, y) does not involve an element of order 2.

If F has a faithful representation p:F->PSL(2,C) such that p(T) is a Kleinian group of
finite covolume, then

1 1 1 . ,
k I m
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Proof. Note, if k = l = 2 then (6) holds. Thus we assume / ^ 3 . Now assume that r is a
Kleinian group of finite covolume.

In this argument we have to distinguish generalised triangle groups which have the
following property which we refer to as

Property E: R(x,y) is conjugate in the free product on x,y to a word uv for some
elements u, v of orders p, q( ̂  2) respectively with

p q m

Suppose (ii) holds or m^4 and F does not have Property E. In these cases, it is
shown in [9] that F has a rational Euler characteristic x(H and

k I m

But if T has finite covolume, then x(F)^C). (See e.g. [20]) and so (6) holds.
It remains to consider the cases where m ^ 4 and F does have Property E. Without

loss of generality, we may assume that, for some word t in the free product on x, y we
have either

P\l or(a) u

(b) u

(c) u

= x",v = tyh~1

= x",v = txpt~1

= y*,v = typt~i

k, I finite,

k finite, 1

/ finite, 1

l ^ a < / c ,

[^<xj<k,

^OL,B<1,

«l
a

al

fc, 1
\k or

/.

(a). R(x,y) = uv = x"tyft~l. Since the subgroup ^xa,tyfit~1} is finite, it has a fixed
point in H3. Consequently, the axes of xa and tyft~i intersect and hence so do the axes
of x,tyt~K Since T has Property E and m ^ 4 , it follows from Theorem 3.1 that
(/c,/) = (2,/),(3,4),(4,4). Furthermore, the above argument shows that (xtyt~i)n= 1 for
some finite integer n and this relation must be a consequence of the relations of the
group as given at (5).

Case /. (/c,/) = (2,/). N o w / ^ 3 andoc=l. From

1 1 1 ,
- + - + - > 1 ,
2 q m

we must have q = 2 or q = 3 and m = 4 or 5. Now if z = R(x,y) = xty0t~i then

Now / ^ 3 , m^4 , q\l so the same argument as above using Theorem 3.1 implies that
(/,m) = (3,4),(3,5),(4,4). In all cases (6) holds.

Case 2. (k,l)=(3,4). Then a = 1 and since we must have

1 1 1 .
-+-+->1
p q m
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then

Now we can assume that T X = 1 , xy = s/l. Let x(xtyt~l) = n. Then x{xty2t~i)
sj2\i — 1 = ±J2. But this implies that xtyf1 has infinite order.

Case 3. {k, I) = (4,4) and we have

Now the axes of x2 and tyt~l intersect and so (x2tyt~1)" = 1. Let ix = x(x2tyt~1). So
x(x2ty2t~1) = y/2fi= ±yjl. Thus \i= +1 and « = 3. Now consider the factor group of T
obtained by setting x2=y2 = l to obtain Z2*Z2, from which the relation y3 = l must
follow. This is clearly a contradiction.

(b). R(x,y) = uv = x"txfit~1. Using the subgroup (xVx^t"1) we see, as before, that a
relation of the form (xtxt~ ')"= 1 must be a consequence of the others.

We first show that k = 2. Suppose that fc = 3 so that <x=l, /?=±1 and p = q = k = 3.
This violates the inequality on p,q,m. Thus if fc#2, then fe^4. Again using Theorem 3.1,
we must have (k, m) = (4,4) and

with / ^ 4 . Arguing as above we obtain r(x2txt"1)= + 1. Now let x{xtxt~l) = n so that
j — yj2= ± 1 from which we deduce that xtxt"1 has infinite order. Thus k = 2.

(c). The argument just given shows that this case cannot arise since / ̂  3.

(d). Returning to the last case where k = 2 so that p = q = 2 and

with 3^/goo and 4^m:goo. If a = y and b = xyx~l then N = (a,b} has index 2 in T
and so is also a finite covolume Kleinian group. By the Reidemeister-Schreier method,
N has a presentation

where S{a, b) is a cyclically reduced word, not a proper power in the free product on a, b
which involves both a and b. But then

1 1 1 ,
T + T + - < 1 .
/ / m

This contradiction completes the proof of the Theorem.
We can now complete the special case considered in Theorem 2.1.
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Corollary 3.3. Let

with 2^/c^/^oo and 2^m^oo. Then F has a finite covolume faithful discrete
representation p:r->PSL(2,C) if and only i/(/c,/;m)=(3,3;3),(3,4;2),(4,4;2).

Proof (a). If w^4, then by Theorem 3.2, k = 2. But in this case, F contains a
subgroup of index 2 with presentation (a,b\al = bl = (ab)m= 1>. This group is either
Fuchsian or dihedral and so does not have a finite covolume representation.

(b). Let m = 3. If /c^3 then / ^ 3 and so [*,}>] does not contain a subword which is an
element of order 2. Thus, by Theorem 3.2, for a finite volume representation the only
solution is (3,3; 3). If k = 2, then using the subgroup of index 2 as above, and Theorem
2.1, gives no finite covolume representations.

(c). m = 2. When o o > / ^ 5 , there is, by Theorem 2.1, a faithful discrete representation
of F, which we identify with F, with infinite covolume, in which a. = zx = 2 cos n/k,
P = xy = 2cosn/l. The two possible values of i(xy) dictated by the equation (2)
correspond to the choices of generators x,y and x~l,y so that F is uniquely determined.
We show that this implies that, in F, the elements O ' , / ] where l^t^k/2,1 ^ s ^ / / 2 ,
(t,k)= \,{s,l) = \,t,s not both 1, have infinite order. For, from [22]

T[X', / ] - 2 = <j?(Tx)of(xy)(T\;x, j>] - 2) (7)

where ar{z) is the Tschebycheff polynomial where

ffo(z) = 0 fft(z)=l and ffr(z) = 2crr_1(z)-CTr_2(z) r ^ 2 .

Recall that

/-. i, •> sin rnlk
a r(2 cos nk = - '—.

sin n/k

Thus in the case above, af(a)ff^(p)^2 and r[x,_y] = 0. Thus T ^ ' , / ] ^ — 2 and the
element [x'.y5] has infinite order.

Now suppose that F has a faithful discrete representation p of finite covolume, so that
necessarily, either rp(x)jt ±2 cos n/k or ip(>>)# ±2cosn/l. Choose x,,)', such that
Tp(x1) = 2cos7r//c and Tp(j>1) = 2cos7r//, x = x\, y = y\ where lgt^fc/2, l^s^l/2 with
(t,fe)=l, (s,/) = l and s,t not both 1. Again using (7), we obtain T[p(x1),p(y1)]e(0,2).
But then [p(x1),p(>'1)] is elliptic, necessarily of finite order, which is a contradiction.

This argument does not cover the cases / = oo. If k = co, the group will be Fuchsian
and so cannot have a finite covolume representation. If fc = 2, the subgroup of index 2 is
Fuchsian. For 3^/c<oo, F is easily seen to have a subgroup N of index k with
presentation
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N = <a,, a2,..., ak \ (ai+1 a,"' )2 = 1, i = 1,2,..., k (mod /c)>.

Choosing as generators {al,a2ai1,a3a2~
 l,...,akak~\] we see that N'^7L*Nl where

yV = < a 1 , a 2 , . . . , a t _ i | a ? = l , i = l , 2 , . . . , f c - l (a 1 a 2 . . . a k _ 1 ) 2 = 1>.

Now x{N) = x(Nl) — 1 and so this group cannot have a finite covolume representation.
Noting that, if m = 2 and / <5 , all these cases were considered in Theorem 2.1 and the

proof of the Corollary is now complete.

4. Arithmeticity

We now consider the arithmeticity of the groups given by (1). By Corollary 3.3, since
arithmetic groups have finite covolume, we need only consider the groups so defined in
Theorem 2.1.

We first recall some general results on arithmetic Kleinian groups F (see e.g. [25, 1].
Let k be a number field with one complex place and A a quarternion algebra over k
which is ramified at all real places. Then, if G is an order in A and p:A-*M2(C) a
representation, then Pp(Ol) is a finite covolume Kleinian group and F must be
commensurable with some such group. (Here (9l denotes the elements in 0 of reduced
norm 1.) Indeed if T is arithmetic and

then r<2)cPp(C1) for some order (9 in A, [23,1]. Furthermore for arithmetic groups
Vl,T2, then, up to complex conjugation, Fx is commensurable with a conjugate of F2 in
PSL(2,C) if and only if the related quaternion algebras A{,A2 are isomorphic [18].

With any finite covolume Kleinian group F let r = P"'(F) where P:SL(2,C)->
PSL(2,C). Define the field /cF by /cF = Q(T>>|yeT) and the quaternion algebra AT over
krby

The field /cF<2) and the quaternion algebra AF(2) are invariants of the commensurability
class of the group F [19].

In the cases where F is generated by two elements x = PX, y = PY with, as before,
a = TX, P = zY, y = xXY then

Furthermore, provided x, y are not of order 2 then

(e.g. [23, 18]).
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Among finite covolume Kleinian groups, one can identify those which are arithmetic
[18]:

Theorem 4.1. Let V be a finite covolume Kleinian group. Then F is arithmetic if and
only if

(i) /cF(2> has one complex place and

(ii) T(F<2)) consists of algebraic integers, and

(iii) the quaternion algebra AF{2) is ramified at all real places.

In the arithmetic cases, kF<2) and AF{2) coincide with the defining field and quaternion
algebra.

Consider again the groups defined by (1) where (fc, /;m) = (3,3; 3), (4,4; 2), (3,4; 2).
A. (k, /;m) = (3,3; 3). Note that in this case r(2) = r . From equation (2) we have that

a = /?=l and y = exp( + 7ii/3). Thus the defining field is Q(y/— 3), (ii) of Theorem 4.1 is
satisfied and (iii) is vacuously true. By (8)

Thus F is commensurable with the Bianchi group PSL(2,O3) and so is non-cocompact.
Furthermore since there is only one conjugacy class of maximal orders in M2(Q(X/—3)),
F is conjugate to a subgroup of PSL(2,03).

Note that in this case, the trace equation (2) admits a solution with T | \ 4 , B ] = + 1.
This forces the element P(AB) to be of order 5 so that this representation is not faithful.

B. (/c,/;m) = (4,4;2). Now a = P = Jl and y= 1 ±i. Thus /cF(2) = Q(i) and

Thus T is arithmetic and commensurable with PSL(2, Ox).
C. (M;ro) = (3,4;2). In this case a = l , $ = Jl and y=(l+i)/N/2. Thus again fcF(2) =

Q(i) and /4F(2)=;M2(Q(i)).

Theorem 4.2. The groups F(k,I;m) defined at (I) with (k,I;m) = (3,3;3),(4,4;2),(3,4;2)
are arithmetic. F(3,3;3) is conjugate to a subgroup of finite index in PSL(2,O3). The
groups F(4,4;2) and F(3,4;2) are commensurable (up to conjugation) with PSL(2,Ot) and
hence with each other.

We now investigate these group more closely using the construction in Theorem 2.1.
A. (k, /;m) = (3,3; 3). Under suitable normalisation we obtain

0 exp(-7ii/3) •(-: i>
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The four triangle subgroups described in Theorem 2.1 have fixed points at 0, oo,exp(27ti/3),
exp( — 2ni/3). The fundamental region is then a tetrahedron with all four vertices on
<9H3 and dihedral angles 2n/3, n/6, n/6. Thus if Li denotes the Lobachevski function, then
this tetrahedron has volume

Li(2n/3) + 2Li(n/6) = 2Li(n/3) w 0.676628

(see e.g. [24]). The figure 8 knot complement has volume 6Li(n/3) and its fundamental
group is of index 12 in PSL(2,O3). Note that F, as defined above, already has its entries
in O3 and so we have [PSL(2,03):r]=4. Now PSL(2,O3) = <a,t,/> where

0 l) \ 0 exp(-ni/3)

using the notation and results in [6]. The subgroup F turns out to be the subgroup
generated by / and ta.

B. (fc,/;m) = (4,4;2). In this case we can take

/exp(7n/4) 0 \

\ 0 exp(-ni/4)J \~Vy/2 0

The vertices of the tetrahedron here are 0, oo, — 1+j. The dihedral angles are thus n/2,
n/A, 7t/4 and hence its volume is approximately 0.9159654. This is one of the Coxeter
tetrahedra with vertices on <3H3 such that the group generated by reflections in its faces
is discrete. One readily calculates the generalised index to be (see e.g. [21])

[PSL(2,O1):r(4,4;2)] = 3.

In this case [ r : r ( 2 ) ] = 4 and one easily checks that r(2)cPSL(2,O1) so that it is a
subgroup of index 12.

C. (fc,/;m) = (3,4;2). Here

/exp(7u/3) 0 y = N

\ 0 exp(-7ri/3)j V

Note that in this case the fixed points of two of the triangle subgroups are in H3 while
the other two are on dH3. These vertices are exp(2;ti/3), exp( — 2ni/3), s/2j/(yj3+l),
yj2jl{sJZ—\). The dihedral angles at the last vertex are 2n/3,n/4,n/4 and the opposite
dihedral angles are K/2, n/4, n/4. This tetrahedron admits a symmetry of order 2 in the
plane through the two finite vertices and the mid-point of the opposite edge so that it is
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a union of two copies of the Coxeter tetrahedron T(3,2,2; 2,4,4) (e.g. [21]) and so its
volume is approximately 0.3053218. The generalised index in this case is 1. We have
(T:r<2)] = 2, so that some conjugate of F(2) is a subgroup of index 2 in PSL(2, OJ. Now
PSL(2,O,) is generated by the elements a,l,t,u where

-°) - ' ( J o - ' ( ; ; )
See [6]. Now the subgroup <l,ta,ua) is isomorphic to T<2) and so r(2) will be conjugate
to this subgroup.
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