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Abstract

The connection between Residual Neural Networks (ResNets) and continuous-time control systems (known as
NeurODE:s) has led to a mathematical analysis of neural networks, which has provided interesting results of
both theoretical and practical significance. However, by construction, NeurODEs have been limited to describ-
ing constant-width layers, making them unsuitable for modelling deep learning architectures with layers of variable
width. In this paper, we propose a continuous-time Autoencoder, which we call AutoencODE, based on a modifica-
tion of the controlled field that drives the dynamics. This adaptation enables the extension of the mean-field control
framework originally devised for conventional NeurODE:s. In this setting, we tackle the case of low Tikhonov regu-
larisation, resulting in potentially non-convex cost landscapes. While the global results obtained for high Tikhonov
regularisation may not hold globally, we show that many of them can be recovered in regions where the loss function
is locally convex. Inspired by our theoretical findings, we develop a training method tailored to this specific type of
Autoencoders with residual connections, and we validate our approach through numerical experiments conducted
on various examples.

1. Introduction

In recent years, the field of artificial intelligence has witnessed remarkable progress across diverse
domains, including computer vision and natural language processing. In particular, neural networks have
emerged as a prominent tool, revolutionising numerous machine learning tasks. Consequently, there is
an urgent demand for a robust mathematical framework to analyse their intricate characteristics. A deep
neural network can be seen as map ¢ : R% — R%u obtained as the composition of L >> 1 applications
¢=¢,0...0¢,, where, forevery n=1,..., L, the function ¢, : R% — Ré%+! (also referred as the n-th
layer of the network) depends on a trainable parameter 6, € R™. The crucial process of choosing the
values of the parameters 6, . . ., 6, is known as the training of the network. For a complete survey on
the topic, we recommend the textbook [24].

Recent advancements have explored the link between dynamical systems, optimal control and deep
learning, proposing a compelling perspective. In the groundbreaking work [29], it was highlighted how
the problem of training very deep networks can be alleviated by the introduction of a new type of layer
called ‘Residual Block’. This consists in using the identity map as skip connection and after-addition
activations. In other words, every layer has the following form:

Xn+1 = ¢n(Xn) :Xn + y(Xn’ 9,1), (11)
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where X, ,; and X, are, respectively, the output and the input of the n-th layer. This kind of architecture
is called Residual Neural Network (or ResNet). It is important to observe that, in order to give sense to
the sum in (1.1), in each layer, the dimension of the input should coincide with the dimension of the
output. In the practice of Deep Learning, this novel kind of layer has turned out to be highly beneficial,
since it is effective in avoiding the ‘vanishing of the gradients’ during the training [5], or the saturation
of the network’s accuracy [28]. Indeed, before [29], these two phenomena had limited for long time the
large-scale application of deep architectures.

Despite the original arguments in support of residual blocks being based on empirical considera-
tions, their introduction revealed nevertheless a more mathematical and rigorous bridge between residual
deep networks and controlled dynamical systems. Indeed, what makes ResNets particularly intriguing is
that they can be viewed as discretized versions of continuous-time dynamical systems. This dynamical
approach was proposed independently in [18] and [26], and it was greatly popularised in the machine
learning community under the name of NeurODEs by [13]. This connection with dynamical systems
relies on reinterpreting the iteration (1.1) as a step of the forward-Euler approximation of the following
dynamical system:

X(H) = F(X(),0()), (1.2)

where f+— 6(¢) is the map that, instant by instant, specifies the value of the parameter 8. Moreover,
the training of these neural networks, typically formulated as empirical risk minimisation, can be
reinterpreted as an optimal control problem. Given a labelled dataset {(X}, Y))}, of size N > 1, the
depth of the time-continuous neural network (1.2) is denoted by 7 > 0. Then, training this network
amounts to learning the control signals 8 € L*([0, T], R™) in such a way that the terminal output Xi of
(1.2) is close to it corresponding label Yé foralli=1,...,N, with respect to some distortion measure
£(-,+) € C'. A typical choice is £(x, y) := |x — y|?, which is often referred to as the squared loss function
in the machine learning literature. Therefore, it is possible to formulate the following optimal control
problem
1IVKX"T Y(T T@ *d
EPIGRE )+ [ e
inf  JVB):= . _ .
0eL2([0.T]; R™) ! X'()=%(,X(),00)), Y'(r)=0,

(X0, Y0)|_, = (X Y), iefl,....N},

where, differently from (1.2), we admit here the explicit dependence of the dynamics on the time vari-
able. Notice that the objective function also comprises Tikhonov regularisation, tuned by the parameter
A, which plays a crucial role in the analysis of this control problem. The benefit of interpreting the train-
ing process in this manner results in the possibility of exploiting established results from the branch
of mathematical control theory, to better understand this process. A key component of optimal control
theory is a set of necessary conditions, known as Pontryagin Maximum Principle (PMP), that must be
satisfied by any (local) minimiser 6. These conditions were introduced in [37] and have served as inspi-
ration for the development of innovative algorithms [33] and network structures [12] within the machine
learning community.

This work specifically addresses a variant of the optimal control problem presented above, in which
the focus is on the case of an infinitely large dataset. This formulation gives rise to what is commonly
known as a mean-field optimal control problem, where the term “mean-field” emphasises the descrip-
tion of a multiparticle system through its averaged effect. In this context, the focus is on capturing the
collective behaviour of the system rather than individual particle-level dynamics, by considering the pop-
ulation as a whole. As a consequence, the parameter 6 is shared by the entire population of input-target
pairs, and the optimal control is required to depend on the initial distribution r,(x, y) € (R x RY)
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of the input-target pairs. Therefore, the optimal control problem needs to be defined over spaces of
probability measures, and it is formulated as follows:

T
/ anwduﬂnw+xj1wmﬁm,
R2d

0

inf  J(0):=
L) {8,,u,(x, V)4 Ve (F (x5, 0)m(x, ) =0 1€[0,T],
S.t.

Mli=o(x, ¥) = po(x, y),

This area of study has gained attention in recent years, and researchers have derived the corresponding
Pontryagin Maximum Principle in various works, such as [19] and [8]. It is worth mentioning that there
are other types of mean-field analyses of neural networks, such as the well-known work [36], which
focuses on mean-field at the parameter level, where the number of parameters is assumed to be infinitely
large. However, our approach in this work takes a different viewpoint, specifically focusing on the control
perspective in the case of an infinitely large dataset.

One of the contributions of this paper is providing a more accessible derivation of the necessary
conditions for optimality, such as the well-known Pontryagin Maximum Principle. Namely, we charac-
terise the stationary points of the cost functional, and we are able to recover the PMP that was deduced
in [8] under the assumption of large values of the regularisation parameter A, and whose proof relied
on an infinite-dimensional version of the Lagrange multiplier rule. This alternative perspective offers a
clearer and more intuitive understanding of the PMP, making it easier to grasp and apply it in practical
scenarios.

In addition, we aim at generalising the applicability of the results presented in [8] by considering a
possibly non-convex regime, corresponding to small values of the parameter A > 0. As mentioned earlier,
the regularisation coefficient A plays a crucial role in determining the nature of the cost function. Indeed,
when A is sufficiently large, the cost function is convex on the sublevel sets, and it is possible to prove
the existence and uniqueness of the solution of the optimal control problem that arises from training
NeurODEs. Additionally, in this highly-regularized scenario, desirable properties of the solution, such
as its continuous dependence on the initial data and a bound on the generalisation capabilities of the
networks, have been derived in [8].

However, in practical applications, a large regularisation parameter may cause a poor performance
of the trained NeurODE on the task. In other words, in the highly-regularized case, the cost functional
is unbalanced towards the L*-penalization, at the expenses of the term that promotes that each datum
Xi is driven as close as possible to the corresponding target Y. This motivated us to investigate the
case of low Tikhonov regularisation. While we cannot globally recover the same results as in the highly-
regularized regime, we find interesting results concerning local minimisers. Moreover, we also show that
the (mean field) optimal control problem related to the training of the NeurODE induces a gradient flow
in the space of admissible controls. The perspective of the gradient flow leads us to consider the well-
known minimising movement scheme and to introduce a proximal stabilisation term to the cost function
in numerical experiments. This approach effectively addresses the well-known instability issues (see
[14]) that arise when solving numerically optimal control problems (or when training NeurODEs) with
iterative methods based on the PMP. It is important to note that our stabilisation technique differs from
previous methods, such as the one introduced in [33].

1.1. From NeurODE:s to AutoencODEs

Despite their huge success, it should be noted that NeurODEs (as well as ResNets, their discrete-time
counterparts) in their original form face a limitation in capturing one of the key aspects of modern
machine learning architectures, namely the discrepancy in dimensionality between consecutive layers.
As observed above, the use of skip connections with identity mappings requires a ‘rectangular’ shape
of the network, where the width of the layers are all identical and constant with respect to the input’s
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dimension. This restriction poses a challenge when dealing with architectures that involve layers with
varying dimensions, which are common in many state-of-the-art models. Indeed, the inclusion of lay-
ers with different widths can enhance the network’s capacity to represent complex functions and to
capture intricate patterns within the data. In this framework, Autoencoders have emerged as a funda-
mental class of models specifically designed to learn efficient representations of input data by capturing
meaningful features through an encoder-decoder framework. More precisely, the encoder compresses
the input data into a lower-dimensional latent space, while the decoder reconstructs the original input
from the compressed representation. The concept of Autoencoders was first introduced in the 1980s in
[39], and since then, it has been studied extensively in various works, such as [30], among many others.
Nowadays, Autoencoders have found numerous applications, including data compression, dimensional-
ity reduction, anomaly detection and generative modelling. Their ability to extract salient features and
capture underlying patterns in an unsupervised manner makes them valuable tools in scenarios where
labelled training data is limited or unavailable. Despite their huge success in practice, there is currently
a lack of established theory regarding the performance guarantees of these models.

Prior works, such as [20], have extended the control-theoretic analysis of NeurODEs to more gen-
eral width-varying neural networks. Their model is based on an integro-differential equation that was
first suggested in [34] in order to study the continuum limit of neural networks with respect to width
and depth. In such an equation the state variable has a dependency on both time and space since the
changing dimension over time is viewed as an additional spatial variable. In [20, Section 6] the contin-
uous space-time analogue of ResNets proposed in [34] has been considered and discretized in order to
model variable width ResNets of various types, including convolutional neural networks. The authors
assume a simple time-dependent grid, and use forward difference discretization for the time derivative
and Newton-Cotes for discretizing the integral term, but refer to more sophisticated moving grids in
order to possibly propose new types of architectures. In this setting, they are also able to derive some
stability estimates and generalisation properties in the overparametrized regime, making use of turnpike
theory in optimal control [22]. In principle, there could be several different ways to model width-varying
neural networks with dynamical systems, e.g., forcing some structure on the control variables, or for-
mulating a viability problem. In this last case, a possibility could be to require admissible trajectories
to visit some lower-dimensional subsets during the evolution. For an introduction to viability theory,
we recommend the monograph [4], while we refer to [7, 9] for recent results on viability theory for
differential inclusions in Wasserstein spaces.

In contrast, our work proposes a simpler extension of the control-theoretical analysis. It is based on
a novel design of the vector field that drives the dynamics, allowing us to develop a continuous-time
model capable of accommodating various types of width-varying neural networks. This approach has
the advantage of leveraging insights and results obtained from our previous work [8]. Moreover, the
simplicity of our model facilitates the implementation of residual networks with variable width and
allows us to test their performance in machine learning tasks. In order to capture width-varying neu-
ral networks, we need to extend the previous control-theoretical framework to a more general scenario,
in particular, we need to relax some of the assumptions of [8]. This is done in Subsection 2.2, where
we introduce discontinuous-in-time dynamics that can describe a wider range of neural network archi-
tectures. By doing so, we enable the study of Autoencoders (and, potentially, of other width-varying
architectures) from a control-theoretic point of view, with the perspective of getting valuable insights
into their behaviour.

Furthermore, we also generalise the types of activation functions that can be employed in the net-
work. The previous work [8] primarily focused on sigmoid functions, which do not cover the full range
of activations commonly employed in practice. Our objective is to allow for unbounded activation func-
tions, which are often necessary for effectively solving certain tasks. By considering a broader set of
activation functions, we aim to enhance the versatility and applicability of our model.

Furthermore, in contrast to [8], we introduce a stabilisation method to allow the numerical resolution
of the optimal control problem in the low-regularized regime, as previously discussed. This stabilisation
technique provides the means to test the architecture with our training approach on various tasks: from
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low-dimensional experiments, which serve to demonstrate the effectiveness of our method, to more
sophisticated and high-dimensional tasks such as image reconstruction. In Section 5, we present all
the experiments and highlight noteworthy behaviours that we observe. An in-depth exploration of the
underlying reasons for these behaviours is postponed to future works.

The structure of the paper is the following: Section 2 discusses the dynamical model of NeurODEs
and extends it to the case of width-varying neural networks, including Autoencoders, which we refer
to as AutoencODEs. In Section 3, we present our mean-field analysis, focusing on the scenario of
an infinitely large dataset. We formulate the mean-field optimal control problem, we derive a set of
necessary optimality conditions, and we provide a convergence result for the finite-particles approxi-
mation. At the end of this section, we compare our findings with the ones previously obtained in [8].
Section 4 covers the implementation and the description of the training procedure, and we compare
it with other methods for NeurODEs existing in the literature. Finally, in Section 5, we present the
results of our numerical experiments, highlighting interesting properties of the AutoencODEs that we
observe.

1.2. Measure-theoretic preliminaries

Given a metric space (X, dx), we denote by .#(X) the space of signed Borel measures in X with finite
total variation, and by &?(X) the space of probability measures, while Z.(X) C &(X) represents the
set of probability measures with compact support. Furthermore, 22" (X) C Z2.(X) denotes the subset
of empirical or atomic probability measures. Given u € #(X) and f : X — Y, with f p—measurable,
we denote with fyu € Z(Y) the push-forward measure defined by f,u(B) = u(f~'(B)) for any Borel set
B C Y. Moreover, we recall the change-of-variables formula

fg(y)d(ﬂvlt)(y)=/g0f(X) dp(x) (1.3)

whenever either one of the integrals makes sense.
We now focus on the case X =R? and briefly recall the definition of the Wasserstein metrics of
optimal transport in the following definition, and refer to [2, Chapter 7] for more details.

Definition 1. Ler 1 <p < 0o and Z2,(R?) be the space of Borel probability measures on R with finite
p-moment. In the sequel, we endow the latter with the p-Wasserstein metric

Wh(p, v) = inf{/ lz— 2 dr(z,2) | w € H(p, V)} ,
R2d

where T1(u, v) denotes the set of transport plan between p and v, that is the collection of all Borel
probability measures on RY x R? with marginals p and v in the first and second component respectively.

It is a well-known result in optimal transport theory that when p=1 and u, v € 2. (R?), then the
following alternative representation holds for the Wasserstein distance

Wi(u, v) = sup {/ p(x) d(p —v)(x) | € Lip(RY), Lip(p) < 1} , (1.4)
R

by Kantorovich’s duality [2, Chapter 6]. Here, Lip(R?) stands for the space of real-valued Lipschitz-
continuous functions on RY, and Lip(¢) is the Lipschitz constant of a mapping ¢ defined ad

. lox) — Wi
Lip(p):= sup —W
x,yeRd xz£y ”-x - y”
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2. Dynamical model of NeurODEs
2.1. Notation and basic facts

In this paper, we consider controlled dynamical systems in R?, where the velocity field is prescribed by
a function .% : [0, T] x R? x R™ — R that satisfies these basic assumptions.

Assumption 1. The vector field F : [0, T] x R x R™ — R satisfies the following:
(i) For every x € RY and every 0 € R™, the map t— .Z(t, x, 0) is measurable in t.
(ii) For every R > 0, there exists a constant Ly > 0 such that, for every 60 € R", it holds
|.Z(t, x1,0) — F(t, x,0)| < Lg(1 4+ 10|)|x; — x,|, fora.e. t€[0, T] and every x;, x, € Br(0),
from which it follows that |.% (t, x, 0)| < Lg(1 + |x])(1 + |0|) for a.e. t € [0, T].
(iii) For every R > 0, there exists a constant Ly > 0 such that, for every 0,,0, € R", it holds
|.Z(t,x,0,) — F(t,x,0,)| < Lg(1+16,] +16,])16, — 65|, fora.e. t € [0, T] and every x € Bg(0).

The control system that we are going to study is

i) = Zt,x(1),0()), ae.inl0,T],
2.1)
x(0) = xo,

where 6 € L*([0, T],R™) is the control that drives the dynamics. Owing to Assumption 1, the classical
Carathéodory Theorem (see [27, Theorem 5.3]) guarantees that, for every 6 € L*([0, T], R™) and for
every x, € R?, the Cauchy problem (2.1) has a unique solution x : [0, T] — R?. Hence, for every (¢, 0) €
[0, T] x L*([0, T],R™), we introduce the flow map @, : R” — R? defined as

@) (xo) := x(0), 2.2)

where f +— x(t) is the absolutely continuous curve that solves (2.1), with Cauchy datum x(0) = x, and
corresponding to the admissible control # — 8(¢). Similarly, given 0 <s <t < T, we write <I>fm ‘R —
R? to denote the flow map obtained by prescribing the Cauchy datum at the more general instant s > 0.
We now present the properties of the flow map defined in (2.2) that describes the evolution of the system:
we show that is well-posed, and we report some classical properties.

Proposition 2.1. For everyt € [0, T] and for every 6 € L*([0, T1, R™), let F satisfy Assumption 1. Then,
the flow @, : RY — R’ is well-defined for any x, € R and it satisfies the following properties.

e For every R> 0 and p > 0, there exists a constant R > 0 such that
| @, (0] <R
for every x € Bg(0) and every 6 € L*([0, T], R™) such that ||0||.2 < p.
e Forevery R > 0 and p > 0, there exists a constant L > 0 such that, for every t € [0, T], it holds
| Dl (1) — Py, (02| < Lixy — o]
for every x,, x, € Bg(0) and every 8 € L*([0, T], R™) such that ||0]],2 < p.
o Forevery R > 0 and p > 0, there exists a constant L > 0 such that, foreveryt,, t, €0, T), it holds
= 1
| @y, () — Dy, @] < Lit, — 11
for every x € Bg(0) and every 6 € L*([0, T1, R™) such that ||0]|,2 < p.
e For every R> 0 and p > 0, there exists a constant L > 0 such that, for every t € [0, T}, it holds

|©(3,, () = DG, ()], <LII6 — 6],z
for every x € Bg(0) and every 0,, 0, € L*([0, T1, R™) such that |0, |2, |02]l.2 < p.
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Figure 1. Left: network with an encoder structure. Right: autoencoder.

Bottleneck

Proof. The proof is postponed to the Appendix (see Lemmata A.1, A.2, A.3, A4). O

Even though the framework introduced in Assumption 1 is rather general, in this paper we specifi-
cally have in mind the case where the mapping .% : [0, T] x R? x R” — R represents the feed-forward
dynamics associated to ResNets. In this scenario, the parameter & € R” encodes the weights and shifts
of the network, i.e., § = (W, b), where W € R**? and b € R?. Moreover, the mapping .% has the form:

F(t,x,0)=0c(Wx+b),

where o : RY — R¢ is a non-linear function acting component-wise, often called in literature activation
function. In this work, we consider sigmoidal-type activation functions, such as the hyperbolic tangent
function:

o (x) = tanh (x),
as well as smooth approximations of the Rectified Linear Unit (ReLU) function, which is defined as:
o (x) = max{0, x}. (2.3)

We emphasise the need to consider smoothed versions of the ReLU function due to additional differen-
tiability requirements on .%#, which will be further clarified in Assumption 2. Another useful activation
function covered by Assumption 2 is the Leaky ReLLU function:

o (x) = max{0, x} — max{—aux, 0} 2.4)

where o € [0, 1] is a predetermined parameter that allows the output of the function to have negative
values. The smooth approximations of (2.3) and (2.4) that we consider will be presented in Section 4.

2.2. From NeurODEs to AutoencODEs

As explained in the Introduction, NeurODEs and ResNets —their discrete-time counterparts— face the
limitation of a ‘rectangular’ shape of the network because of formulas (1.2) and (1.1), respectively. To
overcome this fact, we aim at designing a continuous-time model capable of describing width-varying
neural networks, with a particular focus on Autoencoders, as they represent the prototype of neural net-
works whose layers operate between spaces of different dimensions. Indeed, Autoencoders consist of an
encoding phase, where the layers’ dimensions progressively decrease until reaching the ‘latent dimen-
sion’ of the network. Subsequently, in the decoding phase, the layers’ widths are increased until the same
dimensionality as the input data is restored. For this reason, Autoencoders are prominent examples of
width-varying neural networks, since the changes in layers’ dimensions lie at the core of their function-
ing. Sketches of encoders and Autoencoders are presented in Figure 1. Finally, we insist on the fact that
our model can encompass as well other types of architectures. In this regard, in Remark 2.2 we discuss
how our approach can be extended to U-nets.
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Figure 2. Left: embedding of an encoder into a dynamical system. Right: model for an autoencoder.

Encoder.

Our goal is to first model the case of a network, which sequentially reduces the dimensionality of the
layers’ outputs. For this purpose, we artificially force some of the components not to evolve anymore,
while we let the others be active part of the dynamics. More precisely, given an input variable x, € R, we
denote with (%), an increasing filtration, where each element .#; contains the sets of indices whose
corresponding components are inactive, i.e., they are constant and do not contribute to the dynamics.
Clearly, since the layers’ width will decrease sequentially, the filtration of inactive components .7; will
increase, i.e.

=S HAC...C L C{1,...,d}, r<d, j=0,...,r.

On the other hand, the sets of indices of active components define a decreasing filtration .o} :=
{1,...,d}\ S forj=0,...,r. Asopposed to before, the sets of active components (%7);—, .., satisfy

{1,....d} =2 D...2420, r<d, j=0,...,r

We observe that, for every j=0,...,r, the sets &/ and . provide a partition of {1, ...,d}. A visual
representation of this model for encoders is presented on the left side of Figure 2.

Now, in the time interval [0, T], let us consider r 4+ 1 nodes 0 =¢, <t, <...<t, <t ., =T.Forj=
0,...,r, wedenote with [t, #,.,] the sub-interval and, for every x € RR¢, we use the notation x 7= Xiey,
and X, := (X,)ez; to access the components of x belonging to . and .7, respectively. Hence, the
controlled dynamics for any ¢ € [#;, #;;,] can be described by

k(0 =0,
o 2.5
X (1) = Gi(x (1), 0(2)),
where ¢ :RI“ x R" — R, for j=0,...,r and x(0) = x,,(0) = x,. Furthermore, the dynamical
system describing the encoding part is
X)) =F(t,x(1),0(1), aerel0,T],
x(0) =xo
where, for f € [#;, t;,], we define the discontinuous vector field as follows
Y (x s 0)) , ifke,
(7, x,0)), = (50, 0)), ' (2.6)

0, ifke.7,
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Remark 2.1. Notice that 6(¢) € R” for every t € [0, T'], according to the model that we have just
described. However, it is natural to expect that, since x has varying active components, in a similar way
the controlled dynamics .% (¢, x, 6) shall not explicitly depend at every ¢ € [0, T] on every component
of 6.

Autoencoder.

We now extend the previous model to the case of networks, which not only decrease the dimensionality
of the layers but are also able to increase the layers’ width in order to restore the original dimension
of the input data. Here we denote by z, € R’ the input variable, and we fictitiously augment the input’s
dimension, so that we consider the initial datum x, = (zy, 0) € RY = R? x R? , where 0 € RY. We make
use of the following notation for every x € R:

where 77 is the augmented (or shadow) part of the vector x. In this model, the time horizon [0, T7 is
splitted using the following time-nodes:

O=Hh=<tH<...2t, ...t Zth:=T

where ¢,, which was the end of the encoder in the previous model, is now the instant corresponding to the
bottleneck of the autoencoder. Similarly, as before, we introduce two families of partitions of {1, ..., d }
modelling the active and non-active components of, respectively, z and z”. The first filtrations are relative
to the encoding phase and they involve the component of z:

S ifl<j<r, o Do ifl<j<r,
I=S_ ifj>r, =gl ifj>r.

where %:= @, 4. C{1,... ,Zi} and o, =1{1,... ,;1}, <, 2D . The second filtrations, that aim at
modelling the decoder, act on the shadow part of x, i.e., they involve the components of z”:

ﬂj’jlz{l,...,d} ifl<j<r, bagﬂ:(?) ifl<j<r,
%”g%” if r <j<2r, %”Q,@?ﬂ ifr<j<2r.

—1

While the encoder structure acting on the input data z, is the same as before, in the decoding phase we aim
at activating the components that have been previously turned off during the encoding. However, since
the information contained in the original input z, should be first compressed and then decompressed, we
should not make use of the values of the components that we have turned off in the encoding and hence,
we cannot re-activate them. Therefore, in our model the dimension is restored by activating components
of 7", the shadow part of x, which we recall was initialised equal to 0 € R?. This is the reason why we
introduce sets of active and inactive components also for the shadow part of the state variable. A sketch
of this type of model is presented on the right of Figure 2. Moreover, in order to be consistent with the
classical structure of an autoencoder, the following identities must be satisfied:

1. %ﬂ%”:@foreveryj:1,...,2r,
2. e U ={1,...,d}.

The first identity formalises the constraint that the active component of z and those of z cannot overlap
and must be distinct, while the second identity imposes that, at the end of the evolution, the active
components in z and z7 should sum up exactly to 1, ... ,Zi. Furthermore, from the first identity we
derive that .7, C (/" )= S and, similarly, o/ C .7, for every j=1,...,2r. Moreover, </, satisfies
the inclusion .7, C .o/ forevery j =1, ..., 2r, which is consistent with the fact that layer with the smallest
width is located in the bottleneck, i.e., in the interval [¢,, ., ]. Finally, from the first and the second
assumption, we obtain that ,@72’;’ = %, i.e., the final active components of z7 coincide with the inactive
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components of z, and, similarly, % = «%,. Finally, to access the active components of x = (z, z"), we
make use of the following notation:
Koy = @hetys Xaglt = (% )y AN Xy ot = (2o 2oy
and we do the same for the inactive components:
X5 =@hesy Xop = (&) icpm ad Xy om0 = (25, Zpn).
We are now in position to write the controlled dynamics in the interval ; <1 <1t;;:

x:}}Y‘lg/H(t) == O,

‘ 2.7)
Xy et (n= gj(xmj,mf’ (1), 0(0),
where ¢, : RIS R RIS for j=0,...,2r, and x%,(0) =0, x.,(0) = xo. As before, we
define the discontinuous vector field .% for t € [t;, #;1,], as follows
G (xogep0)) ik SV
(Z(t.x,0)), = (9bear-9), o 2.8)

0, ifke.ZU. 7N,

J

Hence, we are now able to describe any type of width-varying neural network through a continuous-time
model depicted by the following dynamical system

x(t) = F(,x(t),0(t)) ae.in[0,T],
x(0) = xo.

It is essential to highlight the key difference between the previous NeurODE model in (2.6) and the
current model: the vector field .# now explicitly depends on the time variable ¢ to account for sudden
dimensionality drops, where certain components are forced to remain constant. As a matter of fact, the
resulting dynamics exhibit high discontinuity in the variable 7. To the best of our knowledge, this is the
first attempt to consider such discontinuous dynamics in NeurODEs. Previous works, such as [18, 26],
typically do not include an explicit dependence on the time variable in the right-hand side of NeurODEs,
or they assume a continuous dependency on time, as in [8]. Furthermore, it is worth noting that the vector
field .# introduced to model autoencoders satisfies the general assumptions outlined in Assumption 1
at the beginning of this section.

Remark 2.2. The presented model, initially designed for Autoencoders, can be easily extended to
accommodate various types of width-varying neural networks, including architectures with long skip
connections such as U-nets [38]. While the specific details of U-nets are not discussed in detail, their
general structure is outlined in Figure 3. U-nets consist of two main components: the contracting path
(encoder) and the expansive path (decoder). These paths are symmetric, with skip connections between
corresponding layers in each part. Within each path, the input passes through a series of convolutional
layers, followed by a non-linear activation function (often ReLU), and other operations (e.g., max pool-
ing) which are not encompassed by our model. The long skip connections that characterise U-nets
require some modifications to the model of autoencoder described above. If we denote with d; for
i=0,...,r the dimensionality of each layer in the contracting path, we have that ;12,_,» = (Ni,- for every
i=0,...,r. Then, given an initial condition z, € R;’U, we embed it into the augmented state variable

Xo = (20,0), where 0 € R+t

As done in the previous model for autoencoder, we consider time-nodes O =#, < ... <, =T, and in
each sub-interval we introduce a controlled dynamics with the scheme of active/inactive components
depicted in Figure 3.
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Figure 3. Embedding of the U-net into a higher-dimensional dynamical system.

3. Mean-field analysis

In this section, we extend the dynamical model introduced in Section 2 to its mean-field limit, which cor-
responds to the scenario of an infinitely large dataset. Within this framework, we formulate the training
of NeurODEs and AutoencODEs as a mean-field optimal control problem and provide the associated
necessary optimality conditions. It is worth noting that our analysis covers both the high-regularized
regime, as studied in previous work [8], as well as the low-regularized regime, which has not been
extensively addressed before. In this regard, we dedicate a subsection to a detailed comparison with the
results obtained in [8]. Additionally, we investigate the case of finite-particles approximation and we
establish a quantitative bound on the generalisation capabilities of these networks.

3.1. Mean-field dynamical model

In this section, we employ the same viewpoint as in [8], and we consider the case of a dataset with
an infinite number of observations. In our framework, each datum is modelled as a point x, € R?, and
it comes associated to its corresponding label y, € R?. Notice that, in principle, in Machine Learning
applications the label (or farget) datum y, may have dimension different from d. However, the labels’
dimension is just a matter of notation and does not represent a limit of our model. Following [8], we
consider the curve ¢ — (x(¢), y(¢)), which satisfies

x(t) = F(t,x@1),0(1)) and () =0 (3.1
for a.e. 1 € [0, T, and (x(0), y(0)) = (x9, yo)- We observe that the variable y corresponding to the labels

is not changing, nor it is affecting the evolution of the variable x. We recall that the flow associated with
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the dynamics of the variable x is denoted by @, : R’ — R? for every ¢ € [0, T], and it has been defined

in (2.2). Moreover, in regards to the full dynamics prescribed by (3.1), for every admissible control

0 € L*([0, T], R™) we introduce the extended flow <I>f07,) ‘RY x R? - R? x R?, which reads

q’?o,,)(x()’ yO) = (q)?o’,)(xﬂ)v yO) (32)

for every t € [0, T] and for every (xo, yo) € RY x R?. We now consider the case of an infinite number of
labelled data (Xg Y(i))iel’ where [ is an infinite set of indexes. In our mathematical model, we understand

this data distribution as a compactly-supported probability measure (i, € ., (R" X ]R"). Moreover, for
every t € [0, T], we denote by ¢+ p, the curve of probability measures in &, (Rd X R") that models
the evolution of the solutions of (3.1) corresponding to the Cauchy initial conditions (X("), Y(’;)l,e ,-In other
words, the curve 7 — u, satisfies the following continuity equation:

i, 3) + V- (F(t, %, 001,06 )) =0, ulimo(x, ¥) = po(x, y), (3.3)
understood in the sense of distributions, i.e.

Definition 2. For any given T > 0 and 0 € L*([0, T], R™), we say that p. € ‘5([0, T], 2. (R”)) is a weak
solution of (3.3) on the time interval [0, T] if

T
/ f (B0, x,3) + VW (1, x,) - F(1,%,6) dsi(x, y) dt =0, (3.4)
0 JRA

for every test function € € ((0, T) x R*).
Let us now discuss the existence and the characterisation of the solution.

Proposition 3.1. Under Assumptions 1, for every i, € 2.(R*) we have that (3.3) admits a unique
solution t+— ., in the sense of Definition 2. Moreover, we have that for every t € [0, T

M = q)?o,,)#ﬂo- (35)
Proof. Existence and uniqueness of the measure solution of (3.3) follow from [1, Proposition 2.1,
Theorem 3.1 and Remark 2.1]. O

From the characterisation of the solution of (3.3) provided in (3.5), it follows that the curve 7+ u,
inherits the properties of the flow map ®° described in Proposition 2.1. These facts are collected in the
next result.

Proposition 3.2. Let us fix T >0 and p, € P.(R*), and let us consider ¥ :[0,T] x R? x R" —
RY satisfying Assumption 1. Let 8 € L*([0, T, R™) be an admissible control, and let t+—> 1, be the
corresponding solution of (3.3). Then, the curve t — i, satisfies the properties listed below.

e For every R > 0and p > 0, there exists R > 0 such that, for every t € [0, T, it holds that

supp(pe,) C Bx(0)

for every 8 € L*([0, T1, R™) such that ||0||> < p, and for every 11, such that supp(iLo) C Bg(0).
e For every R > 0and p > 0, there exists L > 0 such that, for every t € [0, T, it holds that

Wi, v,) < LW, (o, Vo)

for every 0 € L*([0, T], R™) such that ||0|2 < p, and for every initial conditions Ly, vy such that the
supports satisfy supp(iLo), supp(vy) C Br(0), where u, = <I>fo‘l)#u0 and v, = ‘I’?o,,)#vo-

e For every R> 0 and p > 0, there exists L > 0 such that, for every t,, t, € [0, T1, it holds that

Wilp,» 1) <L+ 1ty — 1)
for every 0 € L*([0, T1, R™) such that 0|2 < p, and for every , such that supp(iLo) C Bg(0).
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e Forevery R > 0 and p > 0, there exists L > 0 such that, for every t € [0, T, it holds that
Wi (u, vy) < Z”@l — 6,2

for every 0,,0, € L*([0, T, R™) such that ||0||,2, |0:]l;2 < p, and for every initial condition v, such
that supp(u) C Br(0), where i, = q’?&,r)#l’vo and v, = ‘I)?S,r)#,uvw

Proof. All the results follow from Proposition 3.1 and from the properties of the flow map presented
in Proposition 2.1, combined with the Kantorovich duality (1.4) for the distance W;, and the change-
of-variables formula (1.3). Since the argument is essentially the same for all the properties, we detail
the computations only for the second point, i.e., the Lipschitz-continuous dependence on the initial
distribution. Owing to (1.4), for any ¢ € [0, T, for any ¢ € Lip(R*) such that its Lipschitz constant
Lip(¢) < 1, it holds that

Wit ) < / @(x,y) d(1t, — v)(x,y) = / @ (@)@, ) ko = vo)(x, ) = LW (1o, vo),

R2d R

where the equality follows from the definition of push-forward and from (3.2), while the con-
stant L in the second inequality descends from the local Lipschitz estimate of ®{,, established in
Proposition 2.1. O

3.2. Mean-field optimal control

Using the transport equation (3.3), we can now formulate the mean-field optimal control problem
that we aim to address. To this end, we introduce the functional J: L*([0, T], R") — R, defined as
follows:

/ axwduﬂnw+kjiwmfm,
R 0

J(O) = (3.6)

{ O (x,y) + V, - (Z(t,x, O (x,y) =0 1e[0,T],
S.t.
Meli=o(X, ¥) = [o(x, y),

for every admissible control @ € L*([0, T], R™). The objective is to find the optimal control #* that
minimises J(6*), subject to the PDE constraint (3.3) being satisfied by the curve ¢+ w,. The term
‘mean-field” emphasises that 6 is shared by an entire population of input-target pairs, and the optimal
control must depend on the distribution of the initial data. We observe that when the initial measure p,
is empirical, i.e.
N 1 .
Ko = Ky = ]_V ; S(X{),Y("))’

then minimisation of (3.6) reduces to a classical finite particle optimal control problem with ODE
constraints.

We now state the further regularity hypotheses that we require, in addition to the one contained in
Assumption 1.

Assumption 2. For any given T > 0, the vector field .7 satisfies the following.
(iv) For every R > 0 there exists a constant Ly > 0 such that, for every x,, x, € Bg(0), it holds
|V Z(t,x1,0) — Vo F (1, %,0)| < Lg(1 +10)|x; —x5|, fora.e tel0,T]and every 6 e R".
(v) There exists another constant Ly > 0 such that, for every 6,, 0, € R", it holds
Vo F (1, x,60,) — Vo F(t,x,0,)| < Lgl0, — 0,], fora.e. te[0,T]and x € Bz(0).
From this, it follows that |V, (¢, x,0)| < Lg(1 + |0|) for every x € Bi(0) and for every 6 € R™.

https://doi.org/10.1017/50956792524000032 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792524000032

14 C. Cipriani et al.

(vi) There exists another constant Ly > 0 such that, for every 6,, 6, € R", it holds
IV.Z(t,x,0)) = Vi (1, x,60,)| < Lg(1 410, + |6:)|60) — 6,|,  for a.e. t € [0, T] and x € B(0).

From this, it follows that |V,.Z (t,x,0)| < Lg(1 + |0|?) for every x € Bg(0) and for every 6 € R™.

(vii) There exists another constant Ly > 0 such that

|VoF (t,x1,0) — Vo F (t,%,0)| < Lg(1 + |0)|x; — x5|,  fora.e. t € [0, T] and x,, x, € Br(0).

Additionally, it is necessary to specify the assumptions on the function ¢ that quantifies the
discrepancy between the output of the network and its corresponding label.

Assumption 3. The function £:R? x R+ R, is C'-regular and non-negative. Moreover, for every
R > 0, there exists a constant Ly > 0 such that, for every x|, x, € Bz(0), it holds

[V Ly, y1) — Vil (X, y)| < Lg (Ix — x| + [y1 — y21) 3.7

Remark 3.1. We formulate here some explicit examples of controlled dynamics and loss function that
satisfy the hypotheses listed in Assumptions 1-3. As regards the velocity field % : [0, T] x R? x R" —
R, if we denote with 7 the active components at the instant 7 € [0, 7], then, using the same notations
as in (2.6) and in (2.8), we have that

(Z(t,%,0)), =0 (Wi - Xos + by)

where 0 = (W, b) € R x R?, and where o : R — Ris the activation function. The case of a smooth and
bounded activation was already considered in [8], and we refer the reader to [8, Remark 3.1] for examples
of bounded functions that satisfy the assumptions. In this paper, we allow for activation functions that
have sub-linear growth in the argument. Namely, in Section 5 we shall make use of a smoothed version
of the Leaky ReLu that reads as

l—«

o(@)=az+ log (1+¢€%), zeR, (3.8
where « € [0, 1) and s > 0 are hyper-parameters. Computing the first and the second derivatives of o,
we obtain that

ST SeSZ

c@Q=a+(1—a) m,

o'(2)= 3.9

14 e’

and it follows that |0'(z)| <1 and |o"(z)| <s for every z€ R. Then, considering k,, k, € o, we
have that

. (Z(t,x,0)), =0’ (Wkl,d ‘X + bkl) Wi sy s
ko

and it follows that

d
T _
Xk, (/ (- 6))k' 0,

(Z(t.y.0), | <sIWIPlx—yl.

9
(Z(t,x,(W, b)), — 5

F(t,x,(W,b
\axkz L (Fn W),

< (L sAW)IW = W +5IW[b— b,

where we used that 6 = (W, b),0' = (W', b’). These show, respectively, that Assumption 2-(iv) and
Assumption 2-(vi) are satisfied if we use (3.8) as the activation function. Then, we observe that

W (ﬁ(t,x,e))kl =o' (Wkwj <Xy +bkl)xk2,
1,82
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yielding

< sPPIW = W' + slx||b — b'|

(Z(@,x, (W, b)), —

(Z@,x, (W, b)),

‘ akakz

d ki.ky

(Zt,x,0), —

(Z71,5,0), | < (1+sIylIW])lx =yl

‘ aWkI,kz aWklvkz

where we used that 0 = (W, b), 0" = (W', b’). Similarly, as before, the last two inequalities establish,
respectively, Assumption 2-(v) and Assumption 2-(vii). We report that the derivatives in the biases
% (9 (t, x, 0)) ,, €an be estimated with analogous expressions. Finally, we observe that Assumption 3
2
holds whenever £ : RY x RY — R is of class C? in its variables, as for instance it is the case for £(x, y) =
Ix —yl*.
Let us begin by establishing a regularity result for the reduced final cost, which refers to the cost
function without the regularisation term.

Lemma 3.3 (Differentiability of the cost). Let T,R > 0 and 1, € 2. (R*) be such that supp(iy) C
Bg(0), and let us consider . :[0,T] x R! x R" — R? and £ : R? x R? — R that satisfy, respectively,
Assumptions 1-2 and Assumption 3. Then, the reduced final cost

/ £(x, y) dus(x, ),
R2d

Jo:0 e L([0, TI; R™) > (3.10)

{ arﬂf(x» Y) + vx (y(t’ x? er)/'l/f (-x7 Y)) = 0’
s.1.

W limo(x, ¥) = po(x, ¥),

is Fréchet-differentiable. Moreover, using the standard Hilbert space structure of L*([0, T], R™), we can
represent the differential of J, at the point 6, as the function:

Vod(0) : 1> / 0T (1, ©R (0, 0(D)) - Ry ()" - Vel (D1, (x), ) dpto(x, y) (3.11)
R

fora.e. t€[0,T].

Before proving the statement, we need to introduce the linear operator Z¢ (x): R — R? with 7,5 €
[0, T, that is related to the linearisation along a trajectory of the dynamics of the control system (2.1), and
that appears in (3.11). Given an admissible control 8 € L*([0, T], R™), let us consider the corresponding
trajectory curve ¢ > ®f (x) for z € [0, T], i.e., the solution of (2.1) starting at the point x € R” at the
initial instant = 0. Given any t € [0, T'], we consider the following linear ODE in the phase space
Rdxd:

%,%’(‘1 O =V.F (s, (%), 9(s)) -, ,(x) forae.sel0,T],
@fm)(x) =1Id.

(3.12)

We insist on the fact that, when we write %fm)(x), x denotes the starting point of the trajectory
along which the dynamics have been linearised. We observe that, using Assumption 2-(iv) — (vi) and
Caratheodory Theorem, it follows that (3.12) admits a unique solution, for every x € R? and for every
7 € [0, T]. Since it is an elementary object in Control Theory, the properties of %’ are discussed in the
Appendix (see Proposition A.7). We just recall here that the following relation is satisfied:

Ry () =V, D[,

(3.13)

0
P 0.0) (x)

for every 7,5 € [0, T] and for every x € R? (see, e.g., [10, Theorem 2.3.2]). Moreover, for every 7, s €
[0, T'] the following identity holds:

! (x) - Z, (x) =1d,
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i.e., the matrices e%’f,s(x), %’zr(x) are one the inverse of the other. From this fact, it is possible to deduce
that

9
E939;2()() = %' (0)-V.F (v, Dl (%),0(7)) (3.14)

for almost every 1, s € [0, T] (see, e.g., [10, Theorem 2.2.3] for the details).

Proof of Lemma 3.3. Let us fix an admissible control 6 € L*([0,T];R™) and let u’c
%°(10, T1; 2.(R*)) be the unique solution of the continuity equation (3.3), corresponding to the
control 6 and satisfying ’|,—o = uo. According to Proposition 3.1, this curve can be expressed as

wl = @, .1 for every t € [0, T], where the map ®(,, = (®f,,.1d) : R* — R* has been introduced in

(3.2) as the flow of the extended control system (3.1). In particular, we can rewrite the terminal cost J,
defined in (3.10) as

Ju(0) = / € (D)0, ) dio(x, y).
R2d

In order to compute the gradient V,J,, we preliminarily need to focus on the differentiability with
respect to 6 of the mapping 6 — £ (@foﬂ(x), y), when (x,y) is fixed. Indeed, given another control
€ L*([0, T]; R™) and ¢ > 0, from Proposition A.6 it descends that

Q?J;? ()= q)?o,r)(x) + SEO(T) + 0y(e)
= <I)?O,T)(X) te / .@ZYT)(X)V(,E (S7 q)?o,x)(x)’ 9(5)) P (s)ds + 0y(¢) ase— 0, (3.15)
0

where 0y(¢) is uniform for every x € Bx(0) C R?, and as ¥ varies in the unit ball of L>. Owing to
Assumption 3, for every x, y, v € Br(0) we observe that

1
€+ ev +ole),y) — £(x,y) — eV, y) - v < [Vib(x, y)|o(e) + S Lelev + o>  ase—0.

(3.16)
Therefore, by combining (3.15) and (3.16), we obtain that

¢ (q;fof;;’(x),y) -t ((D?o,n(x)’y)

T
=¢ / (Vo (D1, (0),y) - Zpy (%) - Vo T (5, @ (%), 0(5))) - D(5)ds + 05(€).
0

Since the previous expression is uniform for x, y € Br(0), then if we integrate both sides of the last
identity with respect to w,, we have that

Jo(0 +¢ev) —J,(0)

T
=¢ f / (Vol (Pl @), 3) - oy (6) - Vo T (5, @y (), 0(5))) - D (5) ds dpto(x, y) + 0p e).
R Jo
(3.17)

This proves the Fréchet differentiability of the functional J, at the point . We observe that, from
Proposition 2.1, Proposition A.7 and Assumption 2, it follows that the function s+ V£ (<I>f0?r)(x), y) .
Ry 1)(X) - Vo F (s, (%), 9(s)) is uniformly bounded in L?, as x,y vary in Bg(0) C R?. Then, using
Fubini Theorem, the first term of the expansion (3.17) can be rewritten as

/ </ A\ (CDfOYT)(x),y) -%fm(x) Vo F (s, q>fo,x)(x)’ 9(s)) ditg(x, y)) -9 (s) ds.
0 R2

Hence, from the previous asymptotic expansion and from Riesz Representation Theorem, we deduce
(3.11). O
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‘We now prove the most important result of this subsection, concerning the Lipschitz regularity of the
gradient V,J,.

Proposition 3.4. Under the same assumptions and notations as in Lemma 3.3, we have that the gra-
dient VyJ, : L*([0, T],R™) — L*([0, T1, R™) is Lipschitz continuous on every bounded set of L>. More
precisely, given 0,,0, € L*([0, T]; R™), there exists a constant (T, R, |0, || 2, |6:]|2) > O such that

[ Vel (0) = Vad (0|, < LT, RO (112, 10:112) |61 — 62 .-

Proof. Let us consider two admissible controls 8,6, € L*([0, T], R™) such that ||0,]|,2, |6:]l,2 < C.
In order to simplify the notations, given x € Bg(0) C R, we define the curves x, : [0, T] — R? and
X, :[0,T] = R? as

x1() = <D?é,,)(x), X (1) := CD?SV,)(X)

for every t € [0, T], where the flows ®%, ®” where introduced in (2.2). We recall that, in virtue of
Proposition 2.1, x,(), x,(¢) € Bz(0) for every ¢ € [0, 1]. Then, for every y € Bz(0), we observe that

Vo T (t, x1(0,01(0)) 2y () V.l (x1(T),y) — Vo (2, x1(2), 02(0) %) () VLT (x(T), ) ‘

< Vo T T (t,x:(8), 0:0)) | |20, ()| |Vl (1 (D), y) — Vil (x2(T), y) |
+ | Vo Z T (t, 1,10, 6.0) | |21/ — Ry )| [Vl (x2(T), y) |
+ | Vo Z T (£, x1(0), 0:(5) — Vo T T (t, %:(8), (D)) | |20, () | | Vil T (02T, y)| (3.18)

for a.e. t € [0, T]. We bound separately the three terms at the right-hand side of (3.18). As regards the
first addend, from Assumption 2-(v), Assumption 3, Proposition A.7 and Lemma A.4, we deduce that
there exists a positive constant C; > 0 such that

Vo Z T (1,00, 0:0) | | %0 ()| | Vil (x1(T), y) = Vil (xa(T), y) |
<C (L4160 16, — 6 ]l12 (3.19)

for a.e. t € [0, T]. Similarly, using again Assumption 2-(v), Assumption 3 and Proposition A.7 on the
second addend at the right-hand side of (3.18), we obtain that there exists C, > 0 such that

Vo7 (6,00, 6:0) | |26y @) T = Fir ()]

VL (0(T), )| < G (1 +16:0D 16, — Ball2 - (3.20)
for a.e. t € [0, T']. Moreover, the third term can be bounded as follows:
Vo7 (t, (), 0,(0) = Vo T (t, x:(0), D) | |20 )| [Vl (32(T), y) |
=G A +16:DN6 = O:llz2 +161(1) — 6:(1)]] (3.21)

for a.e. t € [0, T], where we used Assumption 2-(v) — (vii), Proposition A.7 and Lemma A.4. Therefore,
combining (3.18)—(3.21), we deduce that

Vo T T (t,x1(0), 0,(0) ' () VLT (x(T),y) — Vo (. x1(0), 0:(0)) 2 (1) Vol (x:(T), y) )

< CLA+16:ODIO =l +161(1) — 6] (3.22)

for a.e. t € [0, T]. We observe that the last inequality holds for every x, y € Bz(0). Therefore, if we inte-
grate both sides of (3.22) with respect to the probability measure p,, recalling the expression of the
gradient of J, reported in (3.11), we have that

Vo (0[] = Vo011 < C [(1 +16:(0)D 116 — sl + 161 (1) — :(1)]] (3.23)

for a.e. 1 € [0, T], and this concludes the proof. O
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From the previous result, we can deduce that the terminal cost J, : L*([0, T, R™) — R is locally semi-
convex.

Corollary 3.5 (Local semiconvexity of the cost functional). Under the same assumptions and nota-
tions as in Lemma 3.3, let us consider a bounded subset T' C L*([0, T]; R™). Then, V,J : L*([0, T]) —
L*([0, TY) is Lipschitz continuous on T'. Moreover, there exists a constant £ (T, R, T') > 0 such that the
cost functional J : L*([0, T], R") — R defined in (3.6) satisfies the following semiconvexity estimate:

(A =0)0 +£6,) <1 =JO) + I (6:) — (20 — L(T,R, 1), — 6,13 (3.24)

for every 0,,0, € I" and for every ¢ € [0, 1]. In particular, if A > %,,S”(T, R, T), the cost functional J is
strictly convex over T.

Proof. We recall that J(0)=J,(0) + A||0 ||i2, where J, has been introduced in (3.10). Owing to
Proposition 3.4, it follows that V,J, is Lipschitz continuous on I with constant .2 (T, R, I'). This implies

that J is Lipschitz continuous as well on I". Moreover, it descends that
Jo((1 =06, 4 ¢6,) <1 = OJ(0) + ¢ Jo(6:) + L(T, R, T)216, — 6,17,
for every 6,, 0, € I" and for every ¢ € [0, 1]. On the other hand, recalling that

11 =538y + ¢Oall = (1 = OB NI + S N16all7> — (1 = £)116) — 62117
for every 6,, 0, € L?, we immediately deduce (3.24). ]

Remark 3.2. When the parameter A > 0 that tunes the L*-regularization is large enough, we can show
that the functional J defined by (3.6) admits a unique global minimiser. Indeed, since the control
identically O is an admissible competitor, we have that

inf J(0) < J(0) = J,(0),
fel?

where we observe that the right-hand side is not affected by the value of 1. Hence, recalling that J(6) =
J(0) + A116]7,, we have that the sublevel set {6 : J(6) < J,(0)} is included in the ball B, := {6 : |0]|7, <
%J((O)}. Since these balls are decreasing as A increases, owing to Corollary 3.5, we deduce that there
exists a parameter A > 0 such that the cost functional J is strongly convex when restricted to B;. Then,
Lemma 3.3 guarantees that the functional J : L*([0, T], R") — R introduced in (3.6) is continuous with
respect to the strong topology of L?, while the convexity implies that it is weakly lower semi-continuous
as well. Being the ball B; weakly compact, we deduce that the restriction to B;, of the functional J admits
a unique minimiser 0*. However, since Bj includes the sublevel set {0 : J(6) < J,(0)}, it follows that 6*
is actually the unique global minimiser. It is interesting to observe that, even though A is chosen large
enough to ensure existence (and uniqueness) of the global minimiser, it is not possible to conclude that
the functional J is globally convex. This is essentially due to the fact that Corollary 3.5 holds only on
bounded subsets of L?.

Taking advantage of the representation of the gradient of the terminal cost J, provided by (3.11), we
can formulate the necessary optimality conditions for the cost J introduced in (3.6). In order to do that,
we introduce the function p : [0, T] x RY x R? — R? as follows:

pt(x’ y) = Vxe (CD?Q’T)(-X% y) : %Z,T)(x)’ (325)

where %(9 (¥ is defined according to (3.12). We observe that p (as well as V,£) should be understood

1.
as a row vector. Moreover, using (3.14), we deduce that, for every x,y € R?, the ¢ — p,(x, y) is solving

the following backward Cauchy problem:

ad
Ept(x’ )’) = _pt(x’ y) : V,\y (l, CD?OJ)(X), Q(I)) s pT(xs y) = ng (q)(goj)(-x)’ y) . (326)
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Hence, we can equivalently rewrite V,J, using p:

VoJo(O)[t] = /

R:

. Vo Z T (1, @4, (1), 0(0)) - p/ (x,y) dpto(x, y) (3.27)

for almost every ¢ € [0, T']. Therefore, recalling that J(8) = J,(0) + A||6 ||22, we deduce that the stationary
condition V,J(6*) = 0 can be rephrased as

Il (x, )+ Vo (F(t,x, 05 ()] (x, ) =0, 1 li—o (X, ¥) = po(x, ),

Ap; (6, y) = —p;(x, y) - Vo (1, D, (%), 0%(1)) , Pilier(x,y) = Vol (g (%), ¥)

1 * * *
O==5| VuF T, @y, (0, 0°(0) - p; T (x,y) dpao(x, y).
R2d

(3.28)
Remark 3.3. The computation of p through the backward integration of (3.26) can be interpreted as
the control-theoretic equivalent of the “back-propagation of the gradients”. We observe that, in order to
check whether (3.28) is satisfied, it is sufficient to evaluate p* only on supp(u,). Moreover, the evaluation
of p* on different points (x;, y,), (X2, y2) € supp(u) involves the resolution of two uncoupled backward
ODEs. This means that, when dealing with a measure p, that charges only finitely many points, we can
solve the equation (3.26) in parallel for every point in supp().

In virtue of Proposition 3.4, we can study the gradient flow induced by the cost functional
J:L*([0, T],R™) — R on its domain. More precisely, given an admissible control 6, € L*([0, T], R™),
we consider the gradient flow equation:

0(w) = —V,J(0(w)) forw >0,
(3.29)
6(0) = 6.

In the next result, we show that the gradient flow equation (3.29) is well-posed and that the solution is
defined for every w > 0. In the particular case of linear-control systems, the properties of the gradient
flow trajectories have been investigated in [42].

Lemma 3.6. Let T,R > 0 and juy € 2.(R*) be a probability measure such that supp(ity) C Bz(0),
and let us consider F :[0,T] xR!xR" - R? and £:R?x R?!— R that satisfy, respectively,
Assumptions 1-2 and 3. Then, for every 8, € L*([0, T], R™), the gradient flow equation (3.29) admits
a unique solution w — () of class C' that is defined for every w € [0, +00).

Proof. Let us consider 6, € L*([0, T], R™), and let us introduce the sublevel set
I:= {6 € L*([0, T],R™) : J() < J(6)},

where J is the functional introduced in (3.6) defining the mean-field optimal control problem.
Using the fact that the end-point cost £:RY x RY— R, is non-negative, we deduce that I' C
{9 eL*([0,TI,R™) - [10]3, < %J(@O)}. Hence, from Proposition 3.4 it follows that the gradient field V,J
is Lipschitz (and bounded) on I'. Hence, using a classical result on ODE in Banach spaces (see, e.g.,
[31, Theorem 5.1.1]), it follows that the initial value problem (3.29) admits a unique small-time solution

o+ B(w) of class C! defined for w € [—§, §], with § > 0. Moreover, we observe that
d .
gJ(Q(w)) = (VoJ(0(w)), 0(w))) = —[|VeJ (O ()]l 2 <O,

and this implies that 6 (w) € T for every w € [0, §]. Hence, it is possible to recursively extend the solution
to every interval of the form [0, M], with M > 0. ]

We observe that, under the current working assumptions, we cannot provide any convergence result
for the gradient flow trajectories. This is not surprising since, when the regularisation parameter A > 0
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is small, it is not even possible to prove that the functional J admits minimisers. Indeed, the argument
presented in Remark 3.2 requires the regularisation parameter A to be sufficiently large.

We conclude the discussion with an observation on a possible discretization of (3.29). If we fix a
sufficiently small parameter t > 0, given an initial guess 6,, we can consider the sequence of controls
(O =0 C L*([0, T], R™) defined through the Minimizing Movement Scheme:

0, =6y, 0, € arg mm [J(@) + — ||0 o; ||L2] for every k > 0. (3.30)

Remark 3.4. We observe that the minimisation problems in (3.30) are well-posed as soon as the
functionals 6 — J; (0) := J(0) + 5. ||9 0; || are strictly convex on the bounded sublevel set Kj :=
{9 J@)<J ( )} for every k > 0 Hence the parameter T > 0 can be calibrated by means of the esti-
mates provided by Corollary 3.5, considering the bounded set K;,. Then, using and inductive argument,
it follows that, for every k > 0, the functional Jgk : L*([0, T], R™) — R admits a unique global minimiser
0, Also for J; we can derive the necessary conditions for optimality satisfied by 6,,, which are anal-

k1
ogous to the ones formulated in (3.28), and which descend as well from the identity V,J; (9,: +1) 0:
Ot (%, y) + V- (F (t,x,07,,(D) pilx, ) =0, Mlizo(X, ¥) = fo(x, ¥),
005, 3) = =Py VT (1, D@, 67,0)) Pilier3) = V. (9 0.5)
1
O ()= Ty (9k O- /I;Zd Vy F ' (t q>(5+,)] (x),0 +1(f)) pl(x,y) duo(x, }’)>
(3.31)

Finally, we observe that the mapping A® : L*([0, T], R") — L?*([0, T], R™) defined for a.e. t € [0, T] as

1
GO =~ (e;a)—r / Vo FT (1, Yy, (1), 60)) - p) (5. ) duo(x,w) (3.32)
RrR2d

is a contraction on Kj, as soon as

1+ZA Lip (V0JZ|K9)

For every t >0 such that the sequence (9,: ) 420 is defined, we denote with o7 [0, +00) —
L*([0, T], R™) the piecewise affine interpolation obtained as
A 91:+1 — 91?
0 (w) =6 + —(w—kt) forwelkt,(k+ 1)T]. (3.33)
T
We finally report a classical result concerning the convergence of the piecewise affine interpolation 6
to the gradient flow trajectory solving (3.29).

Proposition 3.7. Under the same assumptions and notations as in Lemma 3.6, let us consider an ini-
tial point 6, € L*([0, T], R™) and a sequence (T;);cw such that 7, — 0 as j — 0o, and let (é’f)jeN be the
sequence of piecewise affine curves defined by (3.33). Then, for every 2 > 0, there exists a subsequence
(éffk) won Converging uniformly on the interval [0, 2] to the solution of (3.29) starting from 6.

Proof. The proof follows directly from [41, Proposition 2.3]. O

3.3. Finite-particles approximation

In this section, we study the stability of the mean-field optimal control problem (3.6) with respect to
finite-samples distributions. More precisely, assume that we are given samples {( 0 Y{)) }l,:1 of size N >
1 independently and identically distributed according to u, € Z.(R*), and consider the empirical loss
minimisation problem
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N T
ziv > (X1, Y1) + 2 / 16(0))* dt
i=1 0
inf  JV(0):= 3 ‘ 5 (3.34)
OL2(0.TLR™) { X' =F(X(),00), Y0 =0,
X', Y'0)| _, = (X, Y), ie{l,...,N}.

By introducing the empirical measure p) € 22V (R*), defined as

the cost function in (3.34) can be rewritten as
1N(9)=/2 (Plorn ), ) dig (x.y) + X617 (3.35)
R2d

for every 6 € L*([0, T], R™), and the empirical loss minimisation problem in (3.34) can be recast as a
mean-field optimal control problem with initial datum . In this section, we are interested in studying
the asymptotic behaviour of the functional JV as N tends to infinity. More precisely, we consider a
sequence of probability measures (MSJ ) v~ Such that uy charges uniformly N points, and such that

W, (e, 0) 0
Then, in Proposition 3.8, we study the uniform convergence of JV and of V,J" to J and V,JV, respec-
tively, where J : L*([0, T], R™) — R is the functional defined in (3.6) and corresponding to the limiting
measure [,. Moreover, in Theorem 3.9, assuming the existence of a region where the functionals J" are
uniformly strongly convex, we provide an estimate of the so-called generalisation error in terms of the
distance W, (,ug" , uo).

Proposition 3.8 (Uniform convergence of JV and V,J¥). Let us consider a probability measure i, €
Z(R*) and a sequence (uf)v ) voy Such that u € PYR*) for every N > 1. Let us further assume
that W, (ug", /LO) — 0 as N — oo, and that there exists R > 0 such that supp(iL,), supp(ug’) C Br(0) for
every N> 1. Given T > 0, let F :[0,T] x R x R" — R? and £ :R? x R? — R satisfy, respectively,
Assumptions 1-2 and Assumption 3, and let J,J" : L*([0, T], R™) — R be the cost functionals defined in
(3.6) and (3.34), respectively. Then, for every bounded subset ' C L*([0, T], R™), we have that

lim sup |JY(8) —J(8)| = (3.36)
N—>00  gep
and
lim sup [|V,J¥(0) — Vo J(O)l2 =0, (3.37)
N—0oo  ger

where J was introduced in (3.6), and J" is defined as in (3.35).

Proof. Since we have that J(0) = J,(0) + All6]?, and JY(6) =J}(0) + A[10]|;
(3.36)—(3.37) for J, and JY', where we set

12, it S sufficient to prove

]2\’(9) = / ( (()T)(x) y) d/'Lo (x, y)
R2d

for every 8 € L? and for every N > 1. We first observe that, for every 6 € Lz([Ol T1,R™) such that |02 <
p, from Proposition 3.2 it follows that supp(i), supp (,u{)" ) C B3(0), for some R > 0. Then, denoting with
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t+— u” and 7+ p, the solutions of the continuity equation (3.3) driven by the control 6 and with initial
datum, respectively, MS’ and p,, we compute

|7)(0) — 1.(0)| = ‘ / (D)@, y) (dud — dpo)(x, y)’ = / €, y) (dpy — dpr)(x, )
de RZ(I

< LiL,W, (15 o) (3.38)

where we have used (3.2) and Proposition 3.1 in the second identity, and we have indicated with L, the
Lipschitz constant of £ on Bz(0), while L, descends from the continuous dependence of solutions of
(3.3) on the initial datum (see Proposition 3.2). We insist on the fact that both L.,L, depend on p, i.e.,
the upper bound on the L*-norm of the controls.

We now address the uniform convergence of V,J} to V,J, on bounded sets of L%. As before, let us
consider an admissible control 6 such that ||#]|,2 < p. Hence, using the representation provided in (3.11),
for a.e. t € [0, T] we have:

/ Vo T (1, D000, 06(0)) - Zitry(0)" - Vel T (P61, (x), ¥) (dpsgy — o) (x, )| (3.39)
R2d

In order to prove uniform convergence in L* norm, we have to show that the integrand is Lipschitz
continuous in (x, y) for a.e. r € [0, T], where the Lipschitz constant has to be L?-integrable as a function
of the ¢ variable. First of all, by combining Assumption 2—(v) and Lemma A.2, we can prove that there
exists constants Cy, L; > 0 (depending on p) such that

V0 (1 },,0,600) | = Ci(1+ 60,

Vo F (T, qD?()’t)(xl)» 9(0) —VoF (t, q’?o,,)(xz), 0(t)) ‘ < LiL,(1+ 10(0))x; — x| (3.40)

for a.e. t € [0, T]. We recall that the quantity L, > O (that already appeared in (3.38)) represents the
Lipschitz constant of the flow &, with respect to the initial datum. Moreover, from Proposition A.7, it
descends that

|| = Ca,

[0 050) = )| < Ll = ] (3.41)

for every t € [0, T], where the constants C,, L, both depend on p. Finally, owing to Assumption 3 and
Proposition 2.1, we deduce

VXZ (qD(e(),T)(x)’ y) ‘ = C37

V.t (q)?oj)(xl)ayl) -Vl (qD?O,T)(xz),)b) = Z5(1_42|351 =X+ Iy —)’2|) (3.42)

for every x,y € Br(0), where the constants Cs, L, and the Lipschitz constant Ls of V£ dependl once
again, on p. Combining (3.40), (3.41) and (3.42), we obtain that there exists a constant L, >0
such that

| Vo8] = VoI <L, (1 +100DW; (1), o) »

for a.e. ¢ € [0, T]. Observing that the right-hand side is L*-integrable in ¢, the previous inequality yields

Vol = VT | ,» < L,(1 4+ p)W; (1) o) -

and this concludes the proof. O
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In the next result, we provide an estimate of the generalisation error in terms of the distance
W, (/xg , M0)~ In this case, the important assumption is that there exists a sequence (9*‘” ) vo, ©of local
minimisers of the functionals (J")y, and that it is contained in a region where (JV)y, are uniformly

strongly convex.

Theorem 3.9. Under the same notations and hypotheses as in Proposition 3.8, let us further assume that
the functional J admits a local minimiser 0* and, similarly, that, for every N > 1, 0*" is a local minimiser
Jor JN. Moreover, we require that there exists a radius p > 0 such that, for every N > N, 6%V ¢ B,(6%)
and the functional J" is n—strongly convex in B,(8*), with n > 0. Then, there exists a constant C > 0
such that, for every N > N, we have

*N * l
/ 00, y) dps (x,y) — f £x, y) dpty (x, ) sC(WI(MQ,MOH— Wl(ug,uo)). (3.43)
R2d R2d ﬁ

Proof. According to our assumptions, the control 0*N € B,(6*) is a local minimiser for J", and, being
JV strongly convex on B,(6*) for N > N, we deduce that {6**” } =arg mian(9*> JV. Furthermore, from the
n-strong convexity of JV, it follows that for every 6,, 6, € B,(6*), it holds

(VQJN(GI) — VeIV (0,), 6, — 92) > 1116 — 0|3
According to Proposition 3.8, we can pass to the limit in the latter and deduce that
(VGJ(QI) = VyJ(6,), 6, — 92) > 6, — 6217

for every 6y, 6, € B,(0%). Hence, J is n-strongly convex in B,,(6*) as well, and that {#*} = arg ming, - J.
Therefore, from the n-strong convexity of JV and J, we obtain

JN(Q*) —JN(Q*’N) Z EHG*N _ 9*”12‘2

J(O) = N0 = 5 \ o —6°[.
Summing the last two inequalities, we deduce that
n||0™ —67||2, < (V@) —J@) + (J¥(0°) — I (67)) <2 Wi (1), 1ro) » (3.44)

where the second inequality follows from the local uniform convergence of Proposition 3.8. We are now
in position to derive a bound on the generalisation error:

/ ey (duy™ = duy) (v, y)‘
R2d

( (()T)(x) )’) dﬂo(x’)’)—/]Rz ( (()T)(x) }’) dl’LO(-x y)‘

=
R2d

+ ‘/ D, 1), ¥) (g (. y) = dpso(, y))‘
R

(CD((’JT)(x) y) ( (HJ,T)(X)»)’)‘ dug (x,y)

<L sup

Xesupp (/‘0 )

iy () = Blo (O] + LWy (s 110)
(3.45)

where L and L are constants coming from Assumption 3 and Proposition 2.1. Then, we combine
Proposition 2.1 with the estimate in (3.44), in order to obtain

. 2C
sup q>f0 ;/)(x) (D?or)(x) <Gl =0 p <G T]WI (,U«f)v, Mo)«

xesupp(uo )

Finally, from the last inequality and (3.45), we deduce (3.43). O]
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Remark 3.5. Since the functional J : L*([0, T], R™) — R defined in (3.6) is continuous (and, in partic-
ular, lower semi-continuous) with respect to the strong topology of L?, the locally uniform convergence
of the functionals J¥ to J (see Proposition 3.8) implies that J¥ is ['-converging to J with respect to the
strong topology of L. However, this fact is of little use, since the functionals J, J¥ are not strongly coer-
cive. On the other hand, if we equip L? with the weak topology, in general, the functional J is not lower
semi-continuous. In our framework, the only circumstance where one can hope for I"-convergence with
respect to the weak topology corresponds to the highly-regularized scenario, i.e., when the parameter
A > 0 is sufficiently large. Therefore, in the situations of practical interest when A is small, we cannot
rely on this tool, and the crucial aspect is that the dynamics (2.1) is non-linear with respect to the con-
trol variable. Indeed, in the case of affine-control systems considered in [44], it is possible to establish
[-convergence results in the L?-weak topology (see [43] for an application to diffeomorphisms approxi-
mation). Finally, we report that in [46], in order to obtain the L>-strong equi-coercivity of the functionals,
the authors introduced in the cost the H'-seminorm of the controls.

3.4. Convex regime and previous result

In order to conclude our mean-field analysis, we now compare our results with the ones obtained in the
similar framework of [8], where the regularisation parameter A was assumed to be sufficiently large,
leading to a convex regime in the sublevel sets (see Remark 3.2). We recall below the main results
presented in [8].

Theorem 3.10. Given T, R, R; > 0, and an initial datum p, € 2,(R*) with supp(i,) C Br(0), let us
consider a terminal condition Yr: R? x R — R such that supp(yr) C Bg,(0) and ¥r(x,y) = £(x,y)
Vx,y € Bg(0). Let .F satisfy [8, Assumptions 1-2] and £ € C*(R? x R, R). Assume further that A >
0 is large enough. Then, there exists a triple (u*, 0%, ¥*) € €([0, T], 2.(R*)) x Lip([0, T], R™) x
€'([0, T1, €*(R*)) solution of

a,,LLf()C, y) + Vx : (‘gz(t’ X, 9*0))“;(()“ y)) = O’ M? |,=0(X, )’) = ,U«()(.X, )’),
AV (x, y) + Vo (x,y) - F(t,x,0°(1) =0, Y/ li=r(x, y) = £(x, y), (3.46)

1
Q*T(I) =37 wat*(‘x’ y) : Veﬁ’(t, X, 0*(t)) dﬂj(x’ y)’
2)\. Rld
where yr* € €'([0, T, %”CZ(RM)) is in characteristic form. Moreover, the control solution 0* is unique in
a ball T'c C L*([0, T], R™) and continuously dependent on the initial datum L.

We observe that the condition on A > 0 to be large enough is crucial to obtain local convexity of the
cost functional and, consequently, existence and uniqueness of the solution. However, in the present
paper, we have not made assumptions on the magnitude of A, hence, as it was already noticed in
Remark 3.2, we might end up in a non-convex regime. Nevertheless, in Proposition 3.11, we show that,
in the case of A sufficiently large, the previous approach and the current one are “equivalent”.

Proposition 3.11. Under the same hypotheses as in Theorem 3.10, let J:L*([0,T]) — R be the
functional defined in (3.6). Then, 6* satisfies (3.46) if and only if it is a critical point for J.

Proof. According to Lemma (3.3), the gradient of the functional J at § € L*([0, T], R™) is defined for
ae.te[0,T] as

Vo J(O)[1] = f Vo T (1, ), (), 000)) - B () - VLT (D), (%), ) dito(x,y) + 226(0).

R2d
Hence, if we set the previous expression equal to zero, we obtain the characterisation of the critical
point

1
0(t) = ~5 fR . Vo T T (1, @y, (), 0(D)) - 2, 1 (0)" - Vol T (Dl (), y) dpnolx, y) (3.47)
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for a.e. ¢ € [0, T]. On the other hand, according to Theorem 3.10, the optimal 6 satisfies for a.e. t € [0, T]
the following

1
0 =—=— | (Vt(x,)- Vo (t,x,000) dp,(x,y)

2)\. R2d
1
=7 |, Ve (0 @0 0,60) Vg (¥, 0.3) ol ). (3.48)
Hence, to conclude that V,J = 0 is equivalent to condition stated in Theorem 3.10, we are left to show
that
R0 VLT (0, (), ) = Vi, (9, (). ) , (3.49)

where the operator %3,7)()6) is defined as the solution of (3.12). First of all, we recall that (¢, x, y) —

v (t, deO’,)(x), y) is defined as the characteristic solution of the second equation in (3.46) and, as such, it
satisfies

Y, (x,y)=4£ (q)?,j)(x)v J’) s
for every t € [0, T] and for every x, y € B, (0). By taking the gradient with respect to x, we obtain that
wat(-x, y) = VAK ((b(g[’]")(-x), y)) . qu)f,,f)
for all x, y € Bg,(0). Hence, using (3.13), we deduce that

\az ((D?on(x)’y) =Vt (CDZ.T) ° q)?ow(x)’y)) : fobf,f)!d,@ o = Vil (q)?o,n(x)’y)) '%g,n(x)

0.0

which proves (3.49). O

x’

4. Algorithm

In this section, we present our training procedure, which is derived from the necessary optimality con-
ditions related to the minimising movement scheme (see (3.31)). Since the mean-field optimal control
problem as presented in (3.6) is numerically intractable (especially in high-dimension), in the practice,
we always consider the functional corresponding to the finite-particles approximation (see (3.34)). For
its resolution, we employ an algorithm belonging to the family of shooting methods, which consists of
the forward evolution of the trajectories, the backward evolution of the adjoint variables, and the update
of the controls. Variants of this method have already been employed in different works, e.g. [6, 8, 14, 26,
33], with the name of method of successive approximations, and they have been proven to be an alter-
native way of performing the training of NeurODEs for a range of tasks, including high-dimensional
problems.

In our case, we start with a random guess for the control parameter 6, € L*([0, T], R™). Subsequently,
we solve the necessary optimality conditions specified in equation (3.31) for a suitable t > 0 to obtain an
updated control parameter 6,. More precisely, since the last identity in (3.31) has the form 6, = Ago ),
the computation of ¢, is performed via fixed-point iterations of the mapping Aj , which is defined as
in (3.32). In this regard, we recall that Aj is a contraction if 7 is small enough. The scheme that we
implemented is presented is Algorithm 1.

Remark 4.1. It is interesting to observe that, in the highly-regularized regime considered in [8], the
authors managed to obtain a contractive map directly from the necessary conditions for optimality, and
they did not need to consider the minimising movements scheme. This is rather natural since, when the
parameter A > 0 that tunes the L*-penalization is large enough, the functional associated with the optimal
control problem is strongly convex in the sublevel set corresponding to the control 8 = 0, as discussed in
Remark 3.2. However, as reported in [8], determining the appropriate value for A in each application can
be challenging. On the other hand, from the practitioners’ perspective, dealing with high regularisation
is not always desirable, since the machine learning task that the system should learn is encoded in the
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Algorithm 1: Shooting method

Data:{(Xé, Yé) N o data with labels;

=
.Z controlled vector field ;

69 initial guess for controls;

Nijer number of shooting iterations;

dt time-discretization of the interval [0, 7;
A regularization parameter;

T memory parameter;

Result: 9Niter

1 N~ %;

2 fork=1,...,Njer do

3 for j=1,...,N; do

4 fori=1,...,Ndo

5 | Xi(’j-H) ‘—Xi(’j) +dt *’(77<1A/'-Xi<lj)s 9"'(7(/)) ; // Solve forward
6 end

7 end

8 fori=1,...,Ndo

9 | PH(Ny) e =V l(X'(N;), Y(0)) 5 //Update the co-state at the final time
10 end

11 for j=N;,...,1do

12 fori=1,...,Ndo

13 | Pt) = Plltjn) +di Pl(tjgn) - Ve Z (50, X 110), 05 (1j110)) 5 //Solve backward
14 end

15 end

16 for j=1,...,N; do

17 10! — XN Vo (1, X (1)), gk+l (T.;'))T -Pi(tj)T : // Approximate the integral (3.27)
18 (')k“(fj) —A[- ﬁ(ek(fj) - ﬁlgkﬂ)] ; // Update the control via fixed-point A
19 end

20 end

final-time cost. The authors highlighted the complexity involved in selecting a regularisation parameter
that is large enough to achieve contractivity while ensuring that the resulting controls are not excessively
small (due to high regularisation) and of little use.

These considerations motivated us to consider a scenario where the regularisation parameter does
not need to be set sufficiently large. From a numerical perspective, the parameter t in equation (3.31)
(coming from the minimising movement scheme) plays the role of the learning rate, and it provides the
lacking amount of convexity, addressing the stability issues related to the resolution of optimal control
problems in non-convex regime. These kinds of instabilities were already known in the Soviet literature
on numerical optimal control (see the review paper [14]), and various solutions have been proposed to
address them. For example, in [40], the authors proposed an iterative method based on the Maximum
Principle and on an augmented Hamiltonian, with an approach that is somehow reminiscent of min-
imising movements. More recently, in the framework of NeurODEs, in [33], it was proposed another
stabilisation strategy, which is different from ours since it enforces similarity between the evolution of
state and co-state variables after the control update. Implicitly, the approach of [33] leads to a penalisa-
tion of significant changes in the controls. On the other hand, in our approach, this penalisation is more
explicit, and it is enforced via the memory term of the minimising movement scheme. To the best of our
knowledge, this is the first instance where a regularisation based on the minimising movement scheme
is employed for training NeurODE:s.

Remark 4.2. Although we formulate and analyse theoretically our problem within the mean-field
framework, it is not advantageous to numerically solve the forward equation as a partial differential
equation. In [8], various numerical methods for solving PDEs were employed and compared. However,
these methods encounter limitations when applied to high-dimensional data, which is often the case in
Machine Learning scenarios. Therefore, in this study, we employ a particle method to solve both the
forward partial differential equation and the backward dynamics. This particle-based approach involves
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reformulating the PDE as a system of ordinary differential equations in which particles represent math-
ematical collocation points that discretize the continuous fields. By employing this particle method, we
address the challenges associated with high-dimensional data, enabling efficient numerical solutions for
the forward and backward dynamics.

To conclude this section, we briefly present the forward and the backward systems that are solved
during the execution of the method. For the sake of simplicity, we will focus on the case of an encoder.
The objective is to minimise the following function:

1 & _ : A
J(O) = N Zﬁ (X2, (D), Y(0)) + 3 16115, “4.1)
i=1

where &7, denotes the active indices in the bottleneck, i.e. at t, = T, of the state-vector X'(T). The latter
denotes the encoded output at time T for the i-th particle, while Y*(0) represents the corresponding
target at time O (which we recall is the same at time T, being ¥ =0 for every i =1, ..., N). For each
i-th particle and every ¢ such that #; <t < t;,,, the forward dynamics can be described as follows:

X, (n=0,
X0 =4 (1X0,0.600).

subject to the initial condition X'(0) = X;fo (0) =X{ € R?. In the same interval t; <t < 1;,,, the backward
dynamics reads

4.2)

P, (=0,
N _ _ 4.3)
P0==P, 0V, % (1X,0,60),
where the final co-state is
, -0 (X (T),Y(0), ifke.,
0, if k ¢ <.
We notice that, fort; <t <t,, and every i € {0, ..., N}, we have
, o G, X, (D,0())
F X 0,000 =7 (1. (X, X.,) 0.60)) = < e , (44)
0
and, consequently, we deduce that
_ Ve 9 (X (©,600)) 0
VI@X 0. 60)=| "7 (- ) : (4.5)

0 0

where the null blocks are due to the fact that for ;<7 <1, V.%(,x,60)=0 if ke .7, and
V. 5 9(t,x,6)=0. In the case of an Autoencoder, the structure of the forward and backward dynamics
is analogous.

Remark 4.3. From the calculations reported above, it is evident that the matrices and the vectors
involved in our forward and backward dynamics are quite sparse (see (4.5) and (4.4)), and that the state
and co-state variables contain components that are constant in many sub-intervals (see (4.2) and (4.3)).
Hence, in the practical implementation, especially when dealing with an Autoencoder, we do not actually
need to double the original state variables and introduce the shadow ones, but we can simply overwrite
those values and, in this way, we obtain a more memory-efficient code. A similar argument holds as well
for the co-state variables. Moreover, we expect the control variable 6 to have several null components
during the evolution. This relates to Remark 2.1 and descends from the fact that, even though in our
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model 8 € R™ for every t € [0, T], in the internal sub-intervals [#, #,.,] only few of its components are
influencing the dynamics. Hence, owing to the L?-squared regularisation on @, it results that if in an
interval [#, #,4,] a certain component of 6 is not affecting the velocity, then it is convenient to keep it
null.

Before delving into the numerical experiments, it is essential to highlight the distinctions between
our AutoencODEs and standard Autoencoders. A defining characteristic of AutoencODE:s is the incor-
poration of skip connections at every layer, even in those where the dimensionality is not constant,
resulting in a distinct architecture compared to traditional Autoencoders. Moreover, there is a notable
difference in training methodologies. Standard Autoencoders leverage stochastic gradient descent vari-
ations like Adam for training (see e.g. [24, Chapter 8]), while our model is optimised without any
stochastic perturbations of the PMP. Due to these differences in both architectures and training tech-
niques, a straightforward comparison between the two models is currently unfeasible and remains a
topic for future exploration. Indeed, it is not possible to compare the two models in terms of veloc-
ity of convergence or performance, due to the fact that the training of standard Autoencoders is highly
optimised in any machine learning library, while our model is still subject to ongoing adjustments and
refinements. Nonetheless, our third numerical example on the MNIST dataset underscores discernible
differences between the behaviours of these models.

Finally, we mention that a possibility for enhancing our approach involves refining the training tech-
nique by considering a stochastic version of the PMP. Specifically, during each iteration of the shooting
method in Algorithm 1, subsampling a data batch for updating the controls shows promising results in
terms of expedited convergence and enhanced generalisation, akin to the benefits stochastic gradient
descent offers for gradient methods. However, a comprehensive analysis of this method extends beyond
the purpose of this paper.

5. Numerical experiments

In this section, we present a series of numerical examples to illustrate the practical application of our
approach. We consider datasets of varying dimensions, ranging from low-dimensional data to a more
typical Machine Learning dataset such as MNIST. Additionally, we provide justifications and insights
into some of the choices made in our theoretical analysis. For instance, we examine the process of
choosing the components to be deactivated during the modelling phase, and we investigate whether this
hand-picked selection can lead to any issues or incorrect results. In this regard, in our first experiment
concerning a classification task, we demonstrate that this a priori choice does not pose any problem,
as the network effectively learns to separate the dataset into two classes before accurately classifying
them. Furthermore, as we already pointed out, we have extended some of the assumptions from [8] to
accommodate the use of a smooth approximation of the ReLLU function. This extension is not merely
a theoretical exercise, since in our second numerical example, we show how valuable it is to leverage
unbounded activation functions. While both of these examples involve low-dimensional data and may
not be representative of typical tasks for an Autoencoder architecture, we address this limitation in
our third experiment by performing a reconstruction task on the MNIST dataset. Lastly, we present
noteworthy results obtained from analysing the performance of MNIST, highlighting specific behaviours
that warrant further investigation in future research.

The layers of the networks that we employ in all our experiments have the form:

T

R'5 X = (Xop X5) > 01900 = (X Xr) -+ h(0 (Way - Xy +b7) 0)

where 7, .9} are, respectively, the sets of active and inactive components at the layer n, b, are the
components of b € R belonging to .27, while W_,, is the square sub-matrix of W € R**“ corresponding

to the active components. Finally, the activation function o will be specified case by case.
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Classification with natural turn-off
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Figure 4. Left: classification task performed when the turned off component is the natural one. Right:
sketch of the AutoencODE architecture considered.

5.1. Bidimensional classification

In our initial experiment, we concentrate on a bidimensional classification task that has been extensively
described in [8]. Although this task deviates from the typical application of Autoencoders, where the
objective is data reconstruction instead of classification, we believe it gives valuable insights into how
our model works. The objective is to classify particles sampled from a standard Gaussian distribution in
R? based on the sign of their first component. Given an initial data point x, € R?, denoted by x,[i] with
i =1, 2 representing its i—th component, we assign a positive label +1 to it if x,[1] > 0, and a negative
label —1 otherwise. To incorporate the labels into the Autoencoder framework, we augment the labels
to obtain a positive label [1, 0] and a negative one [—1, 0]. In such a way, we obtain target vectors in R?,
i.e., with the same dimension as the input data points in the first layer.

The considered architecture is an Autoencoder comprising twenty-one layers, corresponding to 7 =2
and df = 0.05. The first seven layers maintain a constant active dimension equal to 2, followed by seven
layers of active dimension 1. Finally, the last seven layers, representing the prototype of a decoder, have
again constant active dimension 2, restoring the initial one. A sketch of the architecture is presented on
the right side of Figure 4.

We underline that we make use of the observation presented in Remark 4.3 to construct the
implemented network, and we report that we employ the hyperbolic tangent as activation function.

The next step is to determine which components to deactivate, i.e., we have to choose the sets .#;
forj=1,...,2r: the natural choice is to deactivate the second component since the information, which
the classification is based on, is contained in the first component (the sign) of the input data-points.
Since we use the memory-saving regime of Remark 4.3, we observe that, in the decoder, the particles
are ‘projected’ onto the x-axis, as their second component is deactivated and set equal to 0. Then, in
the decoding phase, both the components have again the possibility of evolving. This particular case is
illustrated on the left side of Figure 4.

Now, let us consider a scenario where the network architecture remains the same, but instead of
deactivating the second component, we turn off the first component. This has the effect of “projecting”
the particles onto the y-axis in the encoding phase. The results are presented in Figure 5, where an
interesting effect emerges.

In the initial phase (left), where the particles can evolve in the whole space R?, the network is capable
of rearranging the particles in order to separate them. More precisely, in this part, the relevant informa-
tion for the classification (i.e., the sign of the first component), is transferred to the second component,
which will not be deactivated. Therefore, once the data points are projected onto the y-axis in the bot-
tleneck (middle), two distinct clusters are already formed, corresponding to the two classes of particles.
Finally, when the full dimension is restored, the remaining task consists of moving these clusters towards
the respective labels, as demonstrated in the plot on the right of Figure 5. This numerical evidence con-
firms that our a priori choice (even when it is very unnatural) of the components to be deactivated does
not affect the network’s ability to learn and classify the data. Finally, while studying this low-dimensional
numerical example, we test one of the assumptions that we made in the theoretical setting. In particular,
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Table 1. Minimum and maximum eigenvalues of the Hessian matrix across epochs.

Epochs 0 80 160 240 320 400 480 560 640 720
Min Eig.  -1.72e-2 -1.19e-2 -1.09e-2 -8.10e-3 -3.44e-3 —6.13e-3 6.80e-4 7.1le-4 7.25e-4 7.33e-4
Max Eig.  3.78e-2 2.84e-1 7.30e-1 9.34e-1 1.11 1.18 1.22 1.25 1.26 1.27

Layer 7 Layer 14 Layer 40
P e

151 @ e

Inital Meg s
aspl ® Moved Negstive Particles
# label # label

0004 @ . 000 { @ .

-100 =0.7% =050 -0.2% 000 025 030 075 L00 =100 -0.7% =050 =0.35 000 025 030 75 L00 -1.0 0.5 oo o5 18

Figure 5. Left: initial phase, i.e., separation of the data along the y-axis. Center: encoding phase, i.e.,
only the second component is active. Right: decoding phase and classification result after the ‘unnatural
turn off . Notice that, for a nice clustering of the classified data, we have increased the number of layers
from 20 to 40. However, we report that the network accomplishes the task even if we use the same
structure as in Figure 4.

we want to check if it is reasonable to assume that the cost landscape is convex around local minima,
as assumed in Theorem 3.9. In Table 1, we report the smallest and highest eigenvalues of the Hessian
matrix of the loss function recorded during the training process, i.e., starting from a random initial guess,
until the convergence to an optimal solution.

5.2. Parabola reconstruction

In our second numerical experiment, we focus on the task of reconstructing a two-dimensional parabola.
To achieve this, we sample points from the parabolic curve and we use them as the initial data for our
network. The network architecture consists of a first block of seven layers with active dimension 2,
followed by seven additional layers with active dimension 1. Together, these two blocks represent the
encoding phase in which the set of active components are o7, = {0} for j =17, . . ., 14. Similarly, as in the
previous example, the points at the 7-th layer are “projected” onto the x—axis, and for the six subsequent
layers, they are constrained to stay in this subspace. After the 14-th layer, the original active dimension
is restored, and the particles can move in the whole space R?, aiming at reaching their original positions.
Despite the low dimensionality of this task, it provides an interesting application that allows us to observe
the distinct phases of our mode, which are presented in Figure 6.

Notably, in the initial seven layers, the particles show quite tiny movements (top left of Figure 6).
This is because the relevant information to reconstruct the position is encoded in the first component,
which is kept active in the bottleneck. On the other hand, if in the encoder we chose to deactivate the first
component instead of the second one, we would expect that the points need to move considerably before
the projection takes place, as was the case in the previous classification task. During the second phase
(top right of Figure 6), the particles separate along the x-axis, preparing for the final decoding phase,
which proves to be the most challenging to learn (depicted in the bottom left of Figure 6). Based on our
theoretical knowledge and the results from initial experiments, we attempt to improve the performance
of the AutoencODE network by modifying its structure. One possible approach is to design the network
in a way that allows more time for the particles to evolve during the decoding phase while reducing
the time spent in the initial and bottleneck phases. Indeed, we try to use 40 layers instead of 20, and
most of the new ones are allocated in the decoding phase. The result is illustrated in the bottom right of
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Figure 6. Top left: initial phase. Top rights: encoding phase. Bottom left: decoding phase. Bottom right:
network’s reconstruction with alternative architecture.

Figure 6, where we observe that changing the network’s structure has a significant positive impact on
the reconstruction quality, leading to better results. This result is inspired by the heuristic observation
that the particles ‘do not need to move’ in the first two phases. On this point, a more theoretical analysis
of the network’s structure will be further discussed in the next paragraph, where we perform a sanity
check, and relate the need for extra layers to the Lipschitz constant of the trained network.

This experiment highlights an important observation regarding the choice of activation functions.
Specifically, it becomes evident that certain bounded activation functions, such as the hyperbolic tangent,
are inadequate for moving the particles back to their original positions during the decoding phase. The
bounded nature of these activation functions limits their ability to move a sufficiently large range of
values, which can lead to the points getting stuck at suboptimal positions and failing to reconstruct
the parabolic curve accurately. To overcome this limitation and achieve successful reconstruction, it is
necessary to employ unbounded activation functions that allow for a wider range of values, in particular
the well-known Leaky Relu function. An advantage of our approach is that our theory permits the use of
smooth approximations for well-known activation functions, such as the Leaky ReLU (2.4). Specifically,
we employ the following smooth approximation of the Leaky ReL.U function:

Usmooth(x) ox + (1 - Ol) IOg ( + esx)’ (51)

where s approaching infinity ensures convergence to the original Leaky ReLU function. While alter-
native approximations are available, we employed (5.1) in our study. This observation emphasises the
importance of considering the characteristics and properties of activation functions when designing and
training neural networks, and it motivates our goal in this work to encompass unbounded activation
functions in our working assumptions.
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Figure 7. Architecture used for the MNIST reconstruction task. The inactive nodes are marked in green.

5.3. MNIST reconstruction

In this experiment, we apply the AutoencODE architecture and our training method to the task of recon-
structing images from the MNIST dataset. The MNIST dataset contains 70, 000 greyscale images of
handwritten digits ranging from zero to nine. Each image has a size of 28 x 28 pixels and has been
normalised. This dataset is commonly used as a benchmark for image classification tasks or for evaluat-
ing image recognition and reconstruction algorithms. However, our objective in this experiment is not to
compare our reconstruction error with state-of-the-art results, but rather to demonstrate the applicability
of our method to high-dimensional data, and to highlight interesting phenomena that we encounter. In
general, when performing an autoencoder reconstruction task, the goal is to learn a lower-dimensional
representation of the data that captures its essential features. On the other hand, determining the dimen-
sion of the lower-dimensional representation, often referred to as the latent dimension, requires setting a
hyperparameter, i.e., the width of the bottleneck’s layers, which might depend on the specific application.

We now discuss the architecture we employed and the choice we made for the latent dimension. Our
network consists of twenty-three layers, with the first ten layers serving as encoder, where the dimension
of the layers is gradually reduced from the initial value d, = 784 to a latent dimension of d, = 32. Then,
this latent dimension is kept in the bottleneck for three layers, and the last ten layers act as decoder, and,
symmetrically to the encoder, it increases the width of the layers from 32 back to d,, = 784. Finally,
for each layer, we employ a smooth version of the Leaky Relu, see (5.1), as activation function. The
architecture is visualised in Figure 7, while the achieved reconstruction results are presented in Figure 8.
We observe that, once again, we made use of Remark 4.3 for the implementation of the AutoencoODE-
based model.

Latent dimensionality in the bottleneck.

One of the first findings that we observe in our experiments pertains to the latent dimension of the net-
work and to the intrinsic dimension of the dataset. The problem of determining the intrinsic dimension
has been object of previous studies such as [16, 17, 47], where it was estimated to be approximately
equal to 13 in the case of MNIST dataset. On this interesting topic, we also report the paper [32], where
a maximum likelihood estimator was proposed and datasets of images were considered, and the recent
contribution [35]. Finally, the model of the hidden manifold has been formulated and studied in [23].
Notably, our network exhibits an interesting characteristic in which, starting from the initial guess of
weights and biases initialised at 0, the training process automatically identifies an intrinsic dimension-
ality of 13. Namely, we observe that the latent vectors of dimension 32 corresponding to each image
in the dataset are sparse vectors with 13 non-zero components, forming a consistent support across all
latent vectors derived from the original images. To further analyse this phenomenon, we compute the
means of all the latent vectors for each digit and compare them, as depicted in the left and middle of
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Figure 9. Left: comparing two similar latent means. Center: again two similar latent means. Right:
mean and standard deviation of the encoded vectors in the bottleneck.

Figure 9. These mean vectors always have exactly the same support of dimension 13, and, interestingly,
we observe that digits that share similar handwritten shapes, such as the numbers 4 and 9 or digits 3
and 5, actually have latent means that are close to each other. Additionally, we explore the generative
capabilities of our network by allowing the latent means to evolve through the decoding phase, aim-
ing to generate new images consistent with the mean vector. This intriguing behaviour of our network
warrants further investigation into its ability to detect the intrinsic dimension of the input data, and into
the exploration of its generative potential. Previous studies have demonstrated that the ability of neural
networks to converge to simpler solutions is significantly influenced by the initial parameter values (see
e.g. [15]). Indeed, in our case, we have observed that this phenomenon only occurs when initialising the
parameters with zeros.
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Remark 5.1. If we compare our results with those of a standard Autoencoder, we observe the absence
of the emergence of the latent dimensionality within the bottleneck. For the comparison, we employed
a classical width-varying Autoencoder (i.e., without residual-like skipping connections), with the same
number of layers and trainable parameters as the AutoencODE represented in Figure 7. We used the
Leaky ReLu as the activation function, in every layer. When training standard Autoencoders, it is well-
known that constant initialisation schemes perform poorly, leading to uniform gradients and neurones
converging to exactly the same features during training. Conversely, when starting with low-magnitude
values of parameters, e.g., normally distributed with a standard deviation of 1073, the training is suc-
cessful in terms of reconstruction, but the resultant encoded vectors lack sparsity. In AutoencODE:s,
the combination of our novel architecture with our training methodology allows us to optimise the cost
even with a zero initialisation. Remarkably, this not only proves to be effective but also facilitates the
representation of data within the bottleneck through sparse vectors. These vectors exhibit a support size,
which seems to be intricately linked to the dataset’s true dimensionality.

These considerations are illustrated on the right of Figure 9, where we depict both the mean and
the associated standard deviation (visualized as a shadow surrounding the mean) of the encoded vec-
tors obtained after training with different initializations of the parameters. Indeed, we observed that
in standard Autoencoders initialised with zero, the resulting network fails to adequately reconstruct the
data. Instead, it predominantly learns a ‘mean’ reconstruction, making the standard deviation not visibly
apparent. The results achieved with a small initialisation effectively reconstruct the data. However, they
fall short of producing sparse vectors in the bottleneck, a feature successfully achieved by AutoencODEs
in the third case.

Sanity check of the network’s architecture.

An advantage of interpreting neural networks as discrete approximations of dynamical systems is that
we can make use of typical results of numerical resolutions of ODEs in order to better analyse our
results. Indeed, we notice that, according to well-known results, in order to solve a generic ODEs, we
need to take as discretization step-size df a value smaller than the inverse of the Lipschitz constant of
the vector field driving the dynamics. We recall that the quantity dt is related to the number of layers
of the network through the relation ny,ges = i, where T is the right-extreme of the evolution interval
[0, T1].

In our case, we choose a priori the amplitude of dt, we train the network and once we have computed
0*, we can compare a posteriori the discretization step-size chosen at the beginning with the quantity

= m for each time-node ¢ and every datum x.

In Figure 10, we show the time discretization df in orange and in blue the quantity A, for the case of
a wrongly constructed autoencoder (on the left) and the correct one (on the right). From these plots, we
can perform a ‘sanity check’ and we can make sure that the number of layers that we chose is sufficient
to solve the task. Indeed, in the wrong autoencoder on the left, we see that in the last layer, the quantity
A is smaller than dt, and this violates the condition that guarantees the stability of the explicit Euler
discretization.

Indeed, the introduction of two symmetric layers to the network (corresponding to the plot on the right
of Figure 10) allows the network to satisfy everywhere the relation A > dt. Moreover, we also notice that
during the encoding phase, the inverse of the Lipschitz constant of .% is quite high, which means that
the vector field does not need to move a lot of the points. This suggests that we could get rid of some of
the layers in the encoder and only keep the necessary ones, i.e., the ones in the decoder where A is small
and a finer discretization step size is required. We report that this last observation is consistent with the
results recently obtained in [11]. Finally, we also draw attention to the work [45], which shares a similar
spirit with our experiments, since the Lipschitz constant of the layers is the main subject of investigation.
In their study, the authors employ classical results on the numerical integration of ordinary differential
equations in order to understand how to constrain the weights of the network with the aim of designing
stable architectures. This approach leads to networks with non-expansive properties, which is highly
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Sanity check: ‘wrong' autoencoder Sanity check: ‘right' autoencoder
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Figure 10. Left: wrong autoencoder detected with the analysis of /. Right: correct version of the same

autoencoder.
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Figure 11. Left: Shannon entropy across layers. Right: our measure of entropy across layers.

advantageous for mitigating instabilities in various scenarios, such as testing adversarial examples [25],
training generative adversarial networks [3] or solving inverse problems using deep learning.

Entropy across layers.

We present our first experiments on the study of the information propagation within the network, where
some intriguing results appear. This phenomenon is illustrated in Figure 11, where we examine the
entropy across the layers after the network has been trained. We introduce two different measures of
entropy, depicted in the two graphs of the figure. In first place, we consider the well-known Shannon
entropy, denoted as H(E), which quantifies the information content of a discrete random variable E,
distributed according to a discrete probability measure p:Q2 — [0, 1] such that p(e) = p(E = e). The
Shannon entropy is computed as follows:

H(E) =E[—log (p(E)] =) —p(e) log (p(e))

ecE

In our context, the random variable of interest is £ = Zjvzl Ly xij<c» Where X{ represents a generic
image from the MNIST dataset. Additionally, we introduce another measure of entropy, denoted as &,
which quantifies the probability that the dataset can be partitioned into ten clusters corresponding to the
ten different digits. This quantity has been introduced in [21] and it is defined as

k
&=P|xel JB. (X)) ).

i=1
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where ¢ > 0 is a small radius, and X,, ..., X} are samplings from the dataset. Figure 11 suggests the
existence of a distinct pattern in the variation of information entropy across the layers, which offers a
hint for further investigations.

Let us first focus on the Shannon entropy: as the layers’ dimensionality decreases in the encoding
phase, there is an expected decrease of entropy, reflecting the compression and reduction of information
in the lower-dimensional representation. The bottleneck layer, where the dimension is kept constant,
represents a critical point where the entropy reaches a minimum. This indicates that the information
content is highly concentrated and compressed in this latent space. Then, during the decoding phase, the
Shannon entropy does not revert to its initial value but instead exhibits a slower increase. This behaviour
suggests that the network retains some of the learned structure and information from the bottleneck layer.
Something similar happens for the second measure of entropy: at the beginning, the data is unlikely to be
highly clustered, since two distinct images of the same digit may be quite distant from the other. In the
inner layers, this probability increases until it reaches its maximum (rather close to 1) in the bottleneck,
where the data can then be fully partitioned into clusters of radius €. As for the Shannon entropy, the
information from the bottleneck layer is retained during the decoding phase, which is why the entropy
remains constant for a while and then decreases back in a slower manner.

It is worth noticing that in both cases, the entropy does not fully return to its initial level. This might
be attributed to the phenomenon of mode collapse, where the network fails to capture the full variability
in the input data and instead produces similar outputs for different inputs, hence inducing some sort of
implicit bias. Mode collapse is often considered undesirable in generative models, as it hinders the ability
to generate diverse and realistic samples. However, in the context of understanding data structure and
performing clustering, the network’s capability to capture the main modes or clusters of the data can be
seen as a positive aspect. The network learns to extract salient features and represent the data in a compact
and informative manner, enabling tasks such as clustering and classification. Further investigation is
needed to explore the relationship between the observed entropy patterns, mode collapse and the overall
performance of the network on different tasks.

6. Conclusion

We have extended the well-established continuous-time model for Neural ODEs to the case of networks
with layers of varying width, by introducing a properly controlled dynamical system with explicit depen-
dence on the time variable. For the analysis of such controlled systems, we have employed a mean-field
control framework to investigate the limiting case when the size of the training dataset tends to infinity,
and we have obtained results on the generalisation capabilities of these networks. In addition to what
was already available in the literature, in our analysis, we do not need to require the presence of high
Tikhonov regularisation. Moreover, we have developed a training method tailored to this kind of network
that is based on the necessary conditions formulated in the theoretical sections. This training procedure
has been applied in the experiments to solve various tasks, and the promising results have been col-
lected together. We have also noticed some interesting arising behaviours (dimensionality detection)
that deserve further investigation in future work.
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A. Appendix
Lemma A.1 (Boundedness of trajectories). Let us consider the controlled system
x=%(tx0), x(0)=ux,
where . :[0,T] x R" x R" — R" satisfies Assumptions 1, and 0 € L*([0, T],R™). Then, for every

R >0 and any x, € Bg(0), we have that x(t) € Bz(0) for every t€[0,T], where R=(R+ Lg(1 +
10]]1))e = H1o1LD,

Proof. According to Assumption 1—(ii) on %, the trajectories can be bounded as follows:

t t
[x(D] < |xo] +/ |7 (s, x(s), 0(5))| ds < |xo| + Lg / (1 + x()D(1 + |6(s)]) ds
0 0
for every t € [0, T]. Using Gronwall’s lemma, it follows that

()] < (x| + Le (14110 [[1)) = C#1910) -

Lemma A.2 (Flow’s dependency on initial datum). For every t € [0, T, let us consider the flow map-
ping @, : R! — R? defined in (2.2) and driven by the control 6 € L*([0, T],R™). Let us assume that
the controlled dynamics % : [0, T] x R? x R" — RY satisfies Assumption 1. Then, for every R > 0, and
every xi, x, € Bg(0), it follows that

|0, (1) — DY (1) < I — ),
where R is defined as in Lemma A.1, and Ly is prescribed by Assumption 1-(ii).

Proof. Let us denote with ¢+ x,(f), t — x,(f) the solutions of (2.1) driven by 8 and starting, respec-
tively, from x,(0) = x;, x,(0) = x,. Then, for every ¢ € [0, T], we have

[x1(1) = %) < v — X, +/ |7 (s, x1(5), 0(5)) — F (s, x:(5), ()| ds
0

<t — x|+ L / (1 + 6Dl (5) — xa(s))] s,

0
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by using Assumption 1—(ii). As before, the statement follows from Gronwall’s Lemma. O

Lemma A.3 (Flow’s dependency on time). Under the same assumptions and notations as in Lemma
A2, for every R > 0, for every x € Bg(0) and for every 6 € L*([0, T], R™), we have that

|0, (0 — ®fy, (D] < La(l+ R+ 16 121, — 1]

forevery0 <t, <t, <T, where Ris defined as in Lemma A.1, and Ly, is prescribed by Assumption 1-(ii).
Moreover, if § € L*([0, T1, R™) N L>([0, T1, R™), then, for every 0 < t, <t, < T, it holds:

|<I>(0t2)(-x) - (0,1)(x)| =< LR(l +R)(1 + ”9 ||L2 )|t2 - t1|
Proof. If we denote by ¢ — x(¢) the solution of (2.1) driven by the control 8, then

ﬂm—WMS/

F(s5,x(5),0(s)| ds < [ : Li(1 4+ R)Y(1 + |0(s)|) ds.

The thesis follows by using Cauchy-Schwarz for 6 € L?, or from basic estimates if § € L. O

Lemma A.4 (Flow’s dependency on controls). For every t € [0,T], let dD(O " (0 y i RY— R? be the
flows defined in (2.2) and driven, respectively, by 0,, 0, € L*([0, T1, R™). Let us assume that the controlled
dynamics F :[0,T] x R* x R" — R" satisfies Assumption 1. Then, for every R > 0 and for every x €
By(0), it holds that

| @6, (X) — DG, (0)| < Lz (14 116 [1,2 + 162 [l,2) €510 116, — 6, ]2,
where R is defined as in Lemma A.1, and Ly, is prescribed by Assumption 1-(ii).

Proof. By using Assumption 1—(ii), (iii) and the triangle inequality, we obtain that

|, () — DG, ()] < f |7 (5, x1(5), 01(5)) — F (5, %,(5), 6(5))| ds
< f |7 (s, x1(5), 01(5)) — F (s, x2(5), 01 (5))| ds
0
+ / |-F (s, %2(5), 01(5)) — F (5, x,(5), 0a(5))| ds
0

t
<LR/ (14 0:1(s)lxi(s) = x2() [ ds + Lz (1 + 11601 [l2 + 1102 11.2) 161 — 0 12 -
0

The statement follows again by applying Gronwall’s Lemma. O

Proposition A.5 (Differentiability with respect to trajectories perturbations). Let us assume that the
controlled dynamics F satisfies Assumptions 1-2. Given an admissible control 9 € L*([0, T], R™) and
a trajectory ti— x(t) = O, (xo) with xo € Bx(0), let & : [0, T] — R? be the solution of the linearised
problem

E() = V. Z (1, x(1), 0())E(1),
EM=v,

where 1 € [0, T is the instant of perturbation and v is the direction of perturbation of the trajectory.
Then, for every t € (¢, T), it holds

(AL)

| @, (x(0) + €v) — f, (x(D) — €£(1)| < CIv[*e?

where C is a constant depending on T, R, |0 | 2.
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Proof. For 7>1, let us denote with 7+ y(r) := ®,  (x (7) + €v) the solution of the modified problem,

@t ~
obtained by perturbing the original trajectory with €v at instant 7. Then, since £ solves (A1), we can
write

y(1) — x(1) — €€ ()] = | @, (x(7) + €v) — D, (x(1)) — €£(1)]

< / |-Z (s, y(5), 0(5)) — F (5, x(5), 0(5)) — € V. F (5, x(5), 0(5)& (5)|ds
< f |7 (5, 9(5), 0(5)) — F (5, x(5), 0(5)) — V.. F (5, x(5), 0(5)(¥(s) — x(s))|ds

+[ [V (5, x(5), O()y(s) — x(s) — € (s)|ds

t 1

< f [/ IV T (5, x(5) + T(¥(s) — x(5)), O(5) — V.. F (5, x(5), 0 ()| [¥(5) — X(S)Idf} ds
7 0

+ / [V (5, x(5), 0 ()N 1y(s) — x(s) — €&(s)|ds

for every ¢ > 7. We now address the two integrals separately. Using Assumption 2—(iv) and the result of
Lemma A.4, we obtain the following bound

t 1

f [ / IV, (s, 3(5) + T((5) — x(5))). B(s) — V.. T (s x(5). () Iy(s) —x<s>|dr] ds
f 0

< / Le (14 16)?) §|y(s> — x(s)ds

1
< SLa (L4 1613:) 50517 W levf?

Similarly, for the second integral, owing to Assumption 2—(iv), we can compute:

[ [V Z (5, x(5), 0 ()] y(5) — x(s5) — ES(S)IdSS/ Lz (1 +10(9)1) (1 + R)Iy(s) — x(s) — €£(s)ds

Finally, by combining the two results together and using Gronwall’s Lemma, we prove the
statement. O

Proposition A.6 (Differentiability with respect to control perturbations). Consider the solution & of the
linearised problem

E() = V. T (1,5 (1), 00)E (1) + Vy T (1, X (1), (1) v(7)
£0)=0

where the control 0 is perturbed at the initial time with 6 4 €v, when starting with an initial datum
Xo € Bg(0). Then,

(A2)

| s’ (x0) = D, (x0) — €6(1)| < ClIvl[}2€° (A3)

where C is a constant depending on T, R, Lg, ||0 ||,.. Moreover, we have that for every t € [0, T]
§(n= / Ry, o (X0) - Vo (5, X7 (5), 0(5))v(s) ds, (Ad)
0

where , () has been defined in (3.12).
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Proof. We first observe that the dynamics in (A2) are affine in the £ variable. Moreover, Assumptions 1—
2 guarantee that the coefficients are L!-regular in time. Hence, from the classical Caratheodory Theorem
we deduce the existence and the uniqueness of the solution of (A2). Finally, the identity (A4) follows as

a classical application of the resolvent map (,@z‘[)(xo)s,lgmﬂ (see,e.g., in [10, Theorem 2.2.3]).

Let us denote with 7+ x(f) and 7 — y(¢) the solutions of Cauchy problem (2.1) corresponding, respec-
tively, to the admissible controls 6 and 6 + €v. In virtue of Lemma A.1, we have that there exists R>0
such that x(#), y(t) € Bz(0) for every ¢ € [0, T]. Then, recalling the definition of the flow map provided in
(2.2), we compute

V(1) = x(1) — €£(D)] = | D5 (o) — Dy, (x0) — €£ (D)

< / . F (5, 3(5), 6(5) + €1(s)) — F (5, x(5), 0(5)) — €&(5)| ds
0

= / | (5, ¥(s), 0(s) + €v(s)) — F (5, x(5), 0(5) + €v(s))
0
— €V F(s5,x(5), 0(s) + €v(5)) - (y(s) — x(5))| ds

+ / |-Z (s, x(5), B(s) + €v(s)) — F (5, x(5), 0(5)) — € V.7 (5, x(5), 0(5)) - v(s5)| ds
0

+ / [V (5, X(5), 0(s) + €v(s)) — V. F (s, X(5), 0(5)||y(s) — x(s)|ds
0

+/ [V Z (5, x(5), 0 (s)y(5) — x(5) — €& (5)| ds.
0

We now handle each term separately:

/ |7 (s, y(5), 0(5) + €v(s)) — F (5, x(5), O(5) + €V(s)) — € Vi T (5, x(5), O(5) + €v(s)(¥(s) — x(5))| ds
0

<[ t [ [ a1+ 106+ ev) eives —x(s)|2dr] ds
0 0

<Ly (L4110 ll2 4 € [ [l2)* =001 |y 12, &2
(AS)

where we used Assumption 2—(iv) and Lemma A.4. By using Assumption 2—(v), we obtain the
following bounds for the second integral:

/ |.Z (s, x(5), 0(s) + €v(s)) — F (s, x(5), 0(5)) — Vo.F (s, x(5), 0(5)) - €v(s)| ds
0

t 1 1
< / |:/ LR|v(s)|zezrd1::| ds = ELR v 7 €. (A6)
0 0

Similarly, the third integral can be bounded by using Assumption 2—(vi) and Lemma A.4, and it
yields

/ |V T (s, x(5), 0(s) + €v(s)) — V.. T (5, x(5), 0 ()| y(5) — x(s)| ds
0

S/ LR(l + |9(S)| + 6|V(S)|)e|y(s) _X(S)||V(S)| ds
0
<L (10 iz e Iy 1) 500 o €2, (A7)
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Finally, the fourth integral can be bounded using Assumption 2—(iv) as follows:

f [V Z (5, x(5), 0())|y(s) — x(s) — €& (s)|ds < f Li(1+R) (14 [0(5)I*) [y(s) — x(s) — €&(s)| ds.
0 0

(A8)
Hence, by combining (AS5), (A6), (A7) and (A8), the thesis follows from Gronwall Lemma. O

Proposition A.7 (Properties of the resolvent map). Let us assume that the controlled dynamics F satis-
fies Assumptions 1-2. Given an admissible control 8 € L*([0, T|, R™) and a trajectory t — x(t) = deOJ)(x)
with x € B(0), for every t € [0, T] the resolvent map %, (x) : [0, T] — R is the curve s — %, ,(x,)
that solves

iﬁgm)(x) = (s oy, (%), 9(s)) o®)  forae. se[0,T],
(A9)
K. T)(x) =1d.
Then for every t,s € [0, T, there exists a constant C, depending on T, R, ||0 ||,» such that
X)-v

| % 0] = Sup| ”)i|) | <C. (A10)

Moreover, for every x,y € Br(0), there exists a constant C, depending on T, R, ||0 ||,2 such that

R (x)v—ZR (¥ v

| %, 00 = B, )| = sup| — 2 |scz|x—y|. (A1)

vl

Finally, if 0,, 0, satisfy ||0,l, |6;1] < p, then there exists a constant Cs depending on T, R, p such that

61 .
81,0 — 2,0 o= sup |02 = Hey )]

V0 [v]

= G0 = Os 2. (A12)

Proof. We first prove the boundedness of the resolvent map. Let us fix v € R? with v #0, and let us
define £(s) := %fm)(x) -v for every s € [0, T]. Then, in virtue of Assumption 2—(vi), we have:

[E@I =&+ |V 7 (a, D, (%), 0(0))| |E(a)|do§|v|+LR/ (14+6(0)) £(0)| do,
0

and, by Gronwall’s Lemma, we deduce (A10). Similarly as before, given x, y € Bx(0) and v # 0, let us
define £*(s) := %’ p v)(x) vand £°(s) := f’tv_v)(y) -v for every s € [0, T]. Then, we have that

1§°(s) — &' ()| =

(0, @, (), 0(0)) () — V.TF (0, ®fy,,,(),0(0)) £(0)| do

T

<

7 (0, 9, (%), 0(0)) — V.77 (0, D, (1), 0(0))| 1€°(0)| do
+ f VT (0, @, ), 000)| 18°(0) — £ (o) do
<G| / Ly (14 6(0)) |®,,,x) — ®f,,()| do

+ [ L(1+007) 180 - £l do.
where we used (A10) and Assumption 2-(iv). Hence, combining Lemma A.2 with Gronwall’s Lemma,

we deduce (A11). Finally, we prove the dependence of the resolvent map on different controls 6;, 6, €
L*([0, T1;R™). Given x € Bx(0) and v # 0, let us define &% (s) := %, (x) - v and £%(s) := -, (x) - v for
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every s € [0, T]. Then, we compute

6" () = £™(9)| = f : VT (0, D, (%), 61(0)) £ (0) = VT (0, B, (), 62(0)) §™(0)| do
< / V. (0, D, (x),01(0)) — V.F (0, D, (x), :(0)) | [E (0)] do
" / Vo7 (0, @500, 0(@)| [§" (0) = £7(0)| do
=G / L (1460 ) [04,00 — ¥%,00] do
+ G [Lre(l +161(0)] + 16:(0)D)161(0) — 6:(0)| do

+ / Li (14 6(07) £ (0) - (o)) do,

where we used Assumption 2—(iv)-(vi). O
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