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Can-annular combustors feature clusters of thermoacoustic eigenvalues, which originate
from the weak acoustic coupling between N identical cans at the downstream end.
When instabilities occur, one needs to consider the nonlinear interaction between all N
modes in the unstable cluster in order to predict the steady-state behaviour. A nonlinear
reduced-order model for the analysis of this phenomenon is developed, based on the
balance equations for acoustic mass, momentum and energy. Its linearisation yields
explicit expressions for the N complex-valued eigenfrequencies that form a cluster. To treat
the nonlinear equations semianalytically, a Galerkin projection is performed, resulting
in a nonlinear system of N coupled oscillators. Each oscillator represents the dynamics
of a global mode that oscillates in the whole can-annular combustor. The analytical
expressions of the equations reveal how the geometrical and thermofluid parameters
affect the thermoacoustic response of the system. To gain further insights, the method of
averaging is applied to obtain equations for the slow-time dynamics of the amplitude and
phase of each mode. The averaged system, whose solutions compare very well with those
of the full oscillator equations, is shown to be able to predict complex transient dynamics.
A variety of dynamical states are identified in the steady-state oscillatory regime, including
push–push (in-phase) and spinning oscillations. Notably, the averaged equations are able
to predict the existence of synchronised states. These states occur when the frequencies of
two (or more) unstable modes with nominally different frequencies lock onto a common
frequency as a result of nonlinear interactions.
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1. Introduction

Thermoacoustic oscillations arise from the coupling of an unsteady heating process with
the acoustic modes of an enclosure (Rayleigh 1878). This phenomenon can be found
in a variety of technical systems, and it has been a particularly plaguing challenge for
the development of modern low-emission gas turbine combustors (Keller 1995; Dowling
1997; Candel 2002; Lieuwen & Yang 2005; Poinsot 2017). The vast majority of gas
turbine combustors are equipped with annular or can-annular combustor architectures.
These systems nominally feature a high degree of spatial symmetry, which leads to
interesting properties in the thermoacoustic mode structure, most notably, the occurrence
of degenerate mode pairs (Noiray & Schuermans 2013; Bauerheim, Nicoud & Poinsot
2016; Magri, Bauerheim & Juniper 2016; Mensah et al. 2018). The linear modal structure
of annular (Noiray, Bothien & Schuermans 2011) and can-annular (Ghirardo et al. 2019)
thermoacoustic systems has been scrutinised to some extent in the past, and can, in fact,
be considered as relatively well understood.

In the present work, we explore nonlinear thermoacoustic phenomena in can-annular
systems. For this purpose, we conduct a weakly nonlinear analysis of a generic can-annular
configuration using the method of averaging. A thorough understanding of the linear
modal structure of can-annular systems is a prerequisite; therefore, a concise summary
of the relevant elements is given next.

1.1. Linear structure of thermoacoustic modes in can-annular combustors
The spectrum of a can-annular system is characterised by the existence of clusters of
eigenvalues that form in the vicinity of the thermoacoustic eigenfrequencies of a single
isolated can, i.e. in the absence of coupling between the cans (Bethke et al. 2002; Panek,
Farisco & Huth 2017; Ghirardo et al. 2019; von Saldern, Orchini & Moeck 2021c), as
illustrated in figure 1. These mode clusters are linked to the weak coupling between
nominally identical cans – the weaker the coupling, the closer the modes are in frequency
and growth rate. On a conceptual level, it is straightforward to see that a system consisting
of weakly coupled identical subsystems features mode clusters. Let us consider a system
of N identical combustor cans, initially uncoupled (figure 1a,c). In the composite system,
each eigenvalue associated with an isolated can appears N times, and because the cans
are all identical, these eigenvalues are the same. They are, therefore, (at least) N-fold
degenerate. In general, this degeneracy will be semisimple since the states in the individual
cans are independent and, hence, span the full eigenspace. If we now introduce a weak
coupling between adjacent cans (figure 1b,d), this N-fold degeneracy is unfold. Since the
coupling is weak and the sensitivity of the eigenvalues is bounded, all of the N eigenvalues
will be located in the vicinity of the initial N-fold degenerate eigenvalue associated with
an isolated can. In other words, they form a cluster.

Not all of the N unfold eigenvalues in the weakly coupled system will be distinct.
Because of the discrete rotational symmetry of the system, most of the eigenvalues will be
two-fold degenerate, more precisely, all except for those with azimuthal orders 0 and N/2
(Ghirardo et al. 2019; von Saldern et al. 2021c). Here, we assume that N is even, which is
the technically relevant case. When N is odd, all modes except those with azimuthal orders
being 0 or multiples of N are degenerate. In summary, the composite system consisting of
N identical uncoupled cans features N-fold degenerate eigenvalues, with algebraic and
geometric multiplicity N. When a weak coupling between the cans is introduced, the
N-fold degenerate eigenvalues split into a cluster consisting of two simple eigenvalues
and N/2 − 1 degenerate eigenvalues with algebraic and geometric multiplicity two. The
existence of eigenvalue clusters, featuring modes with similar frequencies and growth
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WNA of thermoacoustic oscillations in can-annular combustors
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Figure 1. Spectrum of can-annular systems. Qualitative depiction of the emergence of eigenvalue clusters
through the weak coupling of identical subsystems. (a,c) Set of N identical, uncoupled cans. Each eigenvalue
of the composite system is N-fold degenerate (two are shown, one in the stable and one in the unstable
half-plane). (b,d) Set of N identical, weakly coupled cans. The eigenvalues form clusters around the eigenvalues
of the uncoupled cans, which leads to the existence of many closely spaced unstable eigenvalues, a feature of
can-annular combustors.

rates, is, hence, a general feature of can-annular thermoacoustic systems. This is in contrast
to most of the literature in thermoacoustics, which considers a single unstable mode or a
pair of degenerate unstable modes. When many modes are simultaneously unstable, it is
not straightforward to predict the final oscillatory state; sophisticated nonlinear analysis
techniques have to be utilised. Moreover, such a scenario provides ample opportunity for
non-trivial nonlinear phenomena, in particular, synchronisation between modes that are
close in frequency and growth rate (von Saldern, Moeck & Orchini 2021a). This is further
elaborated on in the next section.

1.2. Nonlinear effects and synchronisation
Synchronisation generally refers to the emergence of phase coherence between oscillatory
states. This phenomenon has been identified in an abundance of physical, chemical
and biological systems since Huygens’ observations of the synchronisation of pendulum
clocks. More recently, it has been reported on in thermoacoustic systems in a number
of studies. To put the present work into proper context, it is important to acknowledge
that a crucial aspect is what states are considered to synchronise. Various forms of
synchronisation have been considered in thermoacoustic systems, including phase-locking
of an oscillatory state to an external forcing (e.g. Kashinath, Li & Juniper 2018; Guan
et al. 2019), or the synchronous oscillation of fields (e.g. Pawar et al. 2017; Mondal, Pawar
& Sujith 2018). However, these studies are not directly relevant for the synchronisation
of self-excited modes that we consider in the present work. To this extent, we would
like to recall some basic facts about synchronisation from the seminal book by Pikovsky,
Rosenblum & Kurths (2001).
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The relevant setting in the present context is the mutual synchronisation of self-sustained
oscillators (Pikovsky et al. 2001, see Chap. 4). As highlighted by Pikovsky et al. (2001),
synchronisation is only a meaningful concept when the oscillators are self-sustained
(possibly self-excited) and if they are weakly coupled. To understand why the first
condition is required for synchronisation, consider two oscillators, only one of which
is self-excited, with the other being stable. When these are now coupled, even if only
weakly, the stable oscillator will always follow the self-excited one. This is not an example
of synchronisation, but of response to a forcing. To understand the second condition,
consider a scenario in which the coupling is strong. Then, one oscillatory state will always
leave a significant trace in the other states it is coupled to. Again, these states share some
phase coherence, however, not through a process of synchronisation, merely by virtue of
strong coupling. Generally, synchronisation between oscillatory states is favoured through
proximity of resonance frequencies. As the resonance frequencies drift apart, an increased
level (nonetheless weak) of coupling is required to achieve synchronisation, a phenomenon
often represented in the form of Arnold tongues (Pikovsky et al. 2001; Balanov et al.
2009). Also note that synchronisation can occur when the oscillation frequency of one state
is close to a multiple (harmonic) or fractional multiple (subharmonic) of the resonance
frequency of another state.

Now considering a thermoacoustic can-annular system, there are two possible choices
for what to consider as states/oscillators when studying synchronisation.

(I) Since the cans are typically weakly coupled, one can consider the thermoacoustic
modes of the individual uncoupled cans as oscillatory states that may synchronise
under the effect of the coupling. The coupling between adjacent cans is of acoustic
or aeroacoustic nature and has reactive and diffusive components; it is linear at
leading order but may exhibit finite-amplitude effects (Pedergnana et al. 2021).
Chen et al. (2021) and Guan et al. (2021) reported mutual synchronisation of
two coupled, nominally identical thermoacoustic oscillators. In the former study,
synchronisation was assessed in a numerical model under variation of the resonator
length (frequency detuning) and resonator outlet proximity (coupling strength).
Phase-coupled solutions were found to be more likely when frequency detuning
is small and the coupling strength large, consistent with basic synchronisation
theory. Guan et al. (2021) observed similar phenomena experimentally and were
able to produce some of them with a low-order model based on coupled van-der-Pol
oscillators. Moon et al. (2020a) investigated synchronisation between two nominally
identical turbulent combustors, acoustically communicating via an adjustable
cross-talk gap. When the combustors were operated at identical conditions, in-phase
and phase-opposition synchronised states occurred sporadically in a competitive
manner, with asynchronous states existing at low coupling strength. Guan et al.
(2022) consider a system composed of four thermoacoustic oscillators and identify
synchronisation and other nonlinear phenomena in symmetric and asymmetric
settings.

(II) Alternatively, one can consider the thermoacoustic modes of the full can-annular
system as global oscillatory states that may synchronise. In a symmetric setting,
these modes will be of Bloch type (Mensah, Campa & Moeck 2016; von Saldern
et al. 2021c). Furthermore, since the thermoacoustic modes of the full system
are biorthogonal, they are linearly uncoupled. They are coupled only through the
nonlinear terms in the flame response (and possibly in the can-to-can coupling). As
such, this coupling can also be considered weak.
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Let us consider the differences between the two settings introduced above. We assume
here that the can-annular system features discrete rotational symmetry of the order of the
number of cans, N. This implies that all cans, as well as the coupling between them, are
identical. In this case, all the states in approach (I) have nominally the same frequencies
and growth rates. Because of the direct (linear) coupling and identical eigenfrequencies,
synchronised (in the sense of phase-locked) oscillations among the cans are strongly
favoured. We can therefore consider that this approach is perhaps more appropriate in an
asymmetric case, when the uncoupled cans have slightly different resonance frequencies.
On the other hand, the oscillatory states considered in approach (II) will generally
have different resonance frequencies. Yet, when the can-to-can coupling is weak, these
differences will be small, as explained in § 1.1. Synchronisation is then a possible scenario,
but it is challenging to predict under what conditions it occurs and which modes will be
involved.

Another point to consider is that approach (II) can be adopted for studying
synchronisation phenomena in annular or essentially longitudinal thermoacoustic systems
too. Approach (I), on the other hand, would be unsuitable in this context. This is because
the individual flames in an annular or sequential combustor cannot be considered as
oscillators (assuming that there are no unstable intrinsic thermoacoustic modes). Note,
in any case, that synchronisation of thermoacoustic modes in an annular or longitudinal
combustor is generally much less likely because the modes are typically not close
in frequency. However, it can occur in special circumstances, one example being the
manifestation of the slanted mode (Bourgouin et al. 2015; Moeck et al. 2019), which
results from the synchronisation of an azimuthal and an axisymmetric thermoacoustic
mode. Synchronisation between two longitudinal modes with one having approximately
twice the frequency of the other was observed in a sequential combustion system and
successfully modelled based on two coupled stochastic oscillators (Bonciolini & Noiray
2019). Acharya, Bothien & Lieuwen (2018) investigated the nonlinear interaction of two
thermoacoustic modes with close eigenfrequencies based on an oscillator model derived
from the Euler equations using a Galerkin expansion. In the present work we will also
adopt approach (II) and consider synchronisation between thermoacoustic modes of the
full system.

The evolution of the dynamics of a combustor with multiple linearly unstable
eigenvalues is governed by the nonlinear modal coupling between the unstable modes.
There exist in the literature studies that have focused on assessing this interplay for
specific scenarios, with few (two or three) linearly unstable modes. In particular, by using
the method of averaging, Noiray et al. (2011) showed how a single pair of degenerate
azimuthal modes in an annular configuration saturated by a cubic nonlinearity always
converges to spinning solutions; asymmetries are required to stabilise standing azimuthal
wave solutions (Noiray & Schuermans 2013). In more recent work, these results have
been extended to account also for the effect of noise on the dynamics, showing that
(combustion) noise tends to promote the existence of mixed modes (Faure-Beaulieu et al.
2021). Instead, Moeck & Paschereit (2012), Orchini & Juniper (2016) and Acharya et al.
(2018) considered the coexistence of two non-degenerate unstable modes, and derived
equations for the (slow) evolution of the oscillation amplitudes, accounting for the modal
interaction, using the describing function method or a two time scales approach. They
discussed how these equations are able to predict the existence of periodic solutions, in
which one of the modes dominates over the other, or quasiperiodic solutions, in which both
modes participate in the steady-state oscillations. One significant challenge in these types
of analysis is that predicting the existence and stability of multimode solutions requires
rather detailed knowledge of the nonlinear terms in the system – a single-input describing
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function is not sufficient. Moeck et al. (2019) considered the nonlinear interaction of three
simultaneously unstable modes in an annular combustor, specifically an axisymmetric
mode and a pair of degenerate azimuthal modes. This picture becomes significantly more
complicated for can-annular systems, because (at least) N modes – some of which are
degenerate – need to be retained in a nonlinear analysis, and their coupling accounted for.
Unfortunately, the large number of nonlinear terms that arise in the study of a can-annular
system inhibits an analytical analysis of the solutions and their stability.

1.3. Scope
This work aims at developing a weakly nonlinear framework for describing the nonlinear
dynamics of can-annular thermoacoustic systems, which are characterised by the presence
of clusters of linearly unstable modes. In § 2 we derive from first principles the nonlinear
equations that govern the coupled dynamics in the configuration considered. The linear
properties of the equations are discussed in § 3, and explicit expressions for the growth
rates and frequencies of the eigenvalues as a function of the geometrical and coupling
parameters are derived. In § 4 we employ the method of averaging to derive equations for
the slow-dynamics of the system. These nonlinear, coupled equations govern the evolution
of the amplitudes and frequencies of all the modes that contribute to the oscillations.
Lastly, in § 5 we numerically verify the validity of the derived equations, and we use them
to discuss what dynamical solutions are supported by can-annular systems, with a focus
on the existence of synchronised states in these configurations.

2. Nonlinear time-domain equations for the dynamics of thermoacoustic modes in
can-annular systems

We consider a can-annular system composed of N identical combustor cans coupled to
their neighbours at the downstream end by small apertures, which allow for acoustic
communication between neighbouring cans. Each can hosts an acoustically compact heat
source. The cans form a periodic array, with the Nth can connected to the first. The
geometry is shown schematically in figure 2. The thermoacoustic response of each can,
labelled by the index j, is described by the conservation of mass, momentum and energy.
For the purpose of this study, mean flow effects in the cans are neglected by invoking a low
Mach-number assumption (Culick 2006). The linearised equations for the conservation of
mass, momentum and energy, respectively, read

∂ρ′
j

∂t
+ ρ̄∇ · u′

j = 0, (2.1a)

∂u′
j

∂t
+ 1
ρ̄

∇p′
j = 0, (2.1b)

∂p′
j

∂t
− c̄2

∂ρ′
j

∂t
= (γ − 1)q̇′

j, (2.1c)

where u′ ≡ [u′
x, u′

y, u′
z] is the acoustic velocity field, ρ̄ the mean density, p′ the unsteady

pressure fluctuation, c̄ the speed of sound (assumed constant), γ the heat capacity ratio,
and q̇′ the unsteady heat release rate due to combustion in a small, acoustically compact
volume. These equations may be combined to obtain a second-order partial differential
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Figure 2. Schematic of the can-annular geometry considered in this study. (a) Top view of the N connected
cans, with depth H and width B in the azimuthal direction θ . (b) Unwrapped side view of the geometry. The
cans have height L, contain unsteady heat release rate sources q′ and are connected by a downstream aperture
of axial extension lg. This gap allows for acoustic communication with the neighbouring cans. Note that the
azimuthal angle θ corresponds to the Cartesian y coordinate in the unwrapped representation.

equation for the acoustic pressure fluctuations

∂2p′
j

∂t2
− c̄2∇2p′

j = (γ − 1)
∂ q̇′

j

∂t
, (2.2)

which is a wave equation with a source term on the right-hand side, due to the generation
of acoustic waves by the unsteady heat release rate. Once a model for q̇′ and boundary
conditions are provided, the thermoacoustic equation (2.2) can be solved.

2.1. Coupling between cans
When the cans are connected through small apertures, one needs to account for the acoustic
communication from a can to the neighbouring ones. From a can perspective, this can be
taken into account as an acoustic mass source/sink along the extension of the aperture
(Fournier et al. 2021; von Saldern et al. 2021c). The aperture is assumed to have surface
area Ag ≡ lgH, where lg is the axial extension of the apertures and H their depth. By
denoting with Ωj,j+1 the surface of the aperture that allows for acoustic communication
between cans j and can j + 1, a uniform azimuthal transverse velocity is assumed to be
present in the aperture

u′
y,j(x, t) =

{
u′

j,j+1(t) if x ∈ Ωj,j+1,

0 otherwise.
(2.3)

The characteristic frequency of the cluster we are interested in modelling is assumed to
be below the cut-on frequency of transverse oscillations in a can, which depends on the
speed of sound and the transverse dimensions of the can (Rienstra & Hirschberg 2004).
Typical cut-on frequencies for transverse modes in realistic configurations are of the order
of a few kilohertz. When transverse oscillations are cut off, the acoustics in each can
is well-approximated by planar wave propagation along the axial direction x (Rienstra
& Hirschberg 2004). While it is true that near the connection between the cans and the
gap a non-planar near field exists, as highlighted in Ghirardo et al. (2019), non-planar
waves rapidly decay for frequencies below the lowest transverse mode cut-on frequency.
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The depiction of the acoustics established here is analogous to that of conventional
T-junctions used, e.g. to represent the acoustics at the interface of a duct and a transversally
mounted Helmholtz resonator (Bothien & Wassmer 2015). By considering frequencies
for which all transverse modes are cut off, we can integrate the conservation equations
(2.1) over the cross-section of the can, Ac ≡ BH, where B is the width of a can. For the
conservation of mass (2.1a) this reads∫ B

0
dy
∫ H

0
dz

[
∂ρ′

j

∂t
+ ρ̄

∂u′
x,j

∂x
+ ρ̄

∂u′
y,j

∂y
+ ρ̄

∂u′
z,j

∂z

]
= 0. (2.4)

Furthermore, under the planar wave assumption the acoustic variables are only functions
of x, the axial coordinate, and (2.4) simplifies to

Ac

[
∂ρ′

j

∂t
+ ρ̄

∂u′
x,j

∂x

]
+ ρ̄H

[
u′

y,j(y = B)− u′
y,j(y = 0)

]
Θg(x)

+ ρ̄B
[
u′

z,j(z = H)− u′
z,j(z = 0)

]
= 0. (2.5)

In (2.5), u′
y,j(y = B) is the transverse acoustic velocity on the boundary separating cans

j and j + 1, and u′
y,j(y = 0) that on the boundary separating cans j − 1 and j. These are

non-zero only along the extension of the aperture, as per (2.3), which is accounted for by
introducing the Heaviside function Θ(x) and by defining

Θg(x) = Θ(x − xg)Θ(xg + lg − x), (2.6)

where xg is the upstream end of the aperture. Furthermore, u′
z,j = 0 at z = 0 and z = H

because of the presence of physical walls, at which the velocity vanishes. To ease the
notation, from now onward we will drop the subscript x from the axial component of the
velocity in the cans. Also note that the gap between two combustor cans occupies zero
volume in our model, which essentially means that it is assumed acoustically compact.

By integrating also the momentum and energy equations, the conservation laws read

∂ρ′
j

∂t
+ ρ̄

∂u′
j

∂x
= ρ̄

H
Ac

[
u′

j−1,j − u′
j,j+1

]
Θg(x), (2.7a)

∂u′
j

∂t
+ 1
ρ̄

∂p′
j

∂x
= 0, (2.7b)

∂p′
j

∂t
− c̄2

∂ρ′
j

∂t
= (γ − 1)q̇′

j. (2.7c)

In the absence of transverse acoustic fluctuations (u′
j,j+1 = u′

j−1,j = 0), these equations
reduce to the classic one-dimensional thermoacoustic equations in a duct. To obtain a
Helmholtz-like equation analogous to (2.2) that accounts for the presence of transverse
acoustic fluctuations between the cans, we substitute the conservation of mass (2.7a) into
the conservation of energy (2.7c),

∂p′
j

∂t
+ ρ̄c̄2

∂u′
j

∂x
= ρ̄c̄2 H

Ac

[
u′

j−1,j − u′
j,j+1

]
Θg(x)+ (γ − 1)q̇′

j, (2.8)

and then combine the latter with the conservation of momentum to obtain a second-order
partial differential equation for the acoustic pressure, in which a linear damping term with
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damping coefficient α is included (Noiray et al. 2011):

∂2p′
j

∂t2
+ α

∂p′
j

∂t
− c̄2

∂2p′
j

∂x2 = ρ̄c̄2 H
Ac

[
∂u′

j−1,j

∂t
−
∂u′

j,j+1

∂t

]
Θg(x)+ (γ − 1)

∂ q̇′
j

∂t
. (2.9)

The structure of the thermoacoustic equation (2.9) for can-annular systems makes it clear
how the dynamics in each can is driven by two sources: the classic volumetric energy
addition given by the heat release rate q̇′ in that can, and the can-annular-specific acoustic
fluctuations at the connections with the neighbouring cans.

2.2. Closure of the equations
To close (2.9) we need to express the source terms, viz. heat release rate and transverse
acoustic velocity fluctuations, as functions of the pressure variables. For the heat release
rate, we shall employ the simple but widely used cubic saturation relation between the
unsteady heat release and the pressure fluctuations, by defining (Noiray et al. 2011;
Ghirardo, Juniper & Bothien 2018)

q̇′
j(x, t) ≡

[
βp′

j(x, t)− κp′
j(x, t)3

]
δ(xf ), (2.10)

where δ(x) denotes Dirac’s delta. Flames utilised in gas turbine combustors are typically
velocity sensitive; however, the pressure and velocity fluctuations at the flame are directly
related through the upstream can impedance. In principle, the combustor cans may
communicate with their neighbours through the upstream plenum, but this is usually
considered of less importance compared with the cross-talk gap at the turbine inlet
(Ghirardo et al. 2019).

The acoustic communication between the cans is present only when the pressure
difference between neighbouring cans is non-zero, which in turn causes transverse acoustic
velocity fluctuations through the gaps. These can then be linked to the pressure difference
between two cans by an impedance ζ , sometimes expressed in terms of the Rayleigh
conductivity KR (Howe 1997):

p̂j − p̂j+1

ûj,j+1
= ρ̄c̄ζ, ζ = sAg

c̄KR
. (2.11a,b)

The latter equation is expressed in the frequency domain, for which we adopt the
convention p′(x, t) → p̂(x)est, with s ≡ σ + iω, σ denoting the growth rate and ω the
angular frequency.

By considering (2.11a,b) also for the pressure difference between can j and j − 1, one
can express the transverse acoustic velocity fluctuations as a function of the acoustic
pressure fluctuations in neighbouring cans as (von Saldern et al. 2021c)

ûj−1,j − ûj,j+1 = 1
ρ̄c̄

1
ζ

(
p̂j−1 − 2p̂j + p̂j+1

)
. (2.12)

The latter relation is valid at the connection between the cans and the annular section,
x = xg, and should be interpreted as an integral average over the extension of the gap, lg,
for an acoustically non-compact connection (von Saldern, Orchini & Moeck 2021b).

In the present study, we consider the Rayleigh conductivity to be a complex-valued
constant. This is a fair approximation when the analysis is restricted to the vicinity of a
frequency s = iω0 of interest, which corresponds to the frequency at which the cluster of
eigenvalues investigated in our analysis is found. Following Howe (1997) (note that due to
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A. Orchini and J.P. Moeck

a different convention in the definition of the Laplace transform, the Rayleigh conductivity
(2.13) is the complex conjugate of that reported by Howe (1997)), we define

KR ≡ 2rg(Γ + iΔ), (2.13)

where rg ≡ √
Ag/π is a characteristic length (equivalent radius) of the aperture. The

real part of the Rayleigh conductivity represents a stiffness term, and, when s = iω0,
corresponds to the imaginary part of ζ , the can-to-can reactance. Similarly, the imaginary
part of KR represents a damping term, and it corresponds to the real part of the impedance
ζ , the can-to-can resistance.

By substituting the expression for the Rayleigh conductivity in (2.12), and recalling its
relation (2.11a,b) with the can-to-can impedance ζ , we obtain

s
[
ûj−1,j − ûj,j+1

] = 2rg
Γ + iΔ
ρAg

(
p̂j−1 − 2p̂j + p̂j+1

)
, (2.14)

which, in the vicinity of the frequency of interest s = iω0, can be written in the time
domain as

∂

∂t

[
u′

j−1,j − u′
j,j+1

]
= 2rg

ρAg

[
Γ + Δ

ω0

∂

∂t

] (
p′

j−1 − 2p′
j + p′

j+1

)
. (2.15)

The latter can be substituted in (2.9), leading to a system of coupled wave equations
describing the dynamics of the can-annular configuration

∂2p′
j

∂t2
+ α

∂p′
j

∂t
− c̄2

∂2p′
j

∂x2 = c̄2 H2rg

AcAg

[
Γ + Δ

ω0

∂

∂t

] (
p′

j−1 − 2p′
j + p′

j+1

)
Θg(x)

+ (γ − 1)β
∂p′

j

∂t
δ(xf )− (γ − 1)κ

∂p′3
j

∂t
δ(xf ). (2.16)

Equation (2.16) reveals that there exist two coupling mechanisms between neighbouring
cans: one proportional to the pressure difference (reactive coupling, proportional to Γ )
and one proportional to difference in the rate of change of the pressure (diffusive coupling,
proportional to Δ).

2.3. Galerkin projection
To study (2.16), we employ the Galerkin method to project the dynamics onto a set of
prescribed can mode shapes. Because we are interested in studying the dynamics in the
vicinity of a thermoacoustic eigenvalue, it is reasonable to assume that, in each can, the
dynamics is dominated by a single Galerkin mode

p′
j(x, t) = ηj(t)ψj(x). (2.17)

The mode shapesψj(x) are prescribed as the passive thermoacoustic modes with frequency
ω0, identified in each single, uncoupled can, and are subject to the normalisation condition∫ L

0
|ψj(x)|2 dx = 1. (2.18)

In this study, we shall consider a can-annular set-up with nominal rotational symmetry,
so that the Galerkin mode is identical in all cans, ψj(x) = ψ(x), as guaranteed by Bloch’s
theorem (von Saldern et al. 2021c).
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WNA of thermoacoustic oscillations in can-annular combustors

By substituting the Galerkin ansatz in (2.16), multiplying the equation by ψ∗, and
integrating over x, we obtain a set of coupled equations for the amplitudes of the modes:

η̈j + ω2
0ηj =

(
(γ − 1)|ψ(xf )|2β − α

)
η̇j

+ c̄2 H2rg

AgAc

∫ xg+lg

xg

|ψ(x)|2 dxΓ
[(
ηj−1 − ηj

)+ (
ηj+1 − ηj

)]

+ c̄2 H2rg

AcAg

∫ xg+lg

xg

|ψ(x)|2 dx
Δ

ω0

[(
η̇j−1 − η̇j

)+ (
η̇j+1 − η̇j

)]+ NL(ηj, η̇j).

(2.19)

On the left-hand side, we have isolated the oscillatory dynamics of the mode of interest in
can j in the absence of (i) damping, (ii) coupling with the other cans and (iii) heat release
rate dynamics. On the right-hand side we distinguish three contributions to the dynamics:
(i) a linear damping/driving term, related to the linear flame response, β, and the acoustic
damping, α; (ii) two linear coupling terms, one driven by the reactive coupling Γ , the other
driven by the diffusive coupling Δ; (iii) nonlinear terms (NL) that couple the dynamics of
the modes and, in our model, originate from the cubic saturation of the heat release rate.
For the nonlinear cubic saturation of the heat release rate employed in our analysis, the
nonlinear term reads

NL(ηj, η̇j) = −3(γ − 1)|ψ(xf )|4κη2
j η̇j. (2.20)

The coefficients Δ and Γ of the coupling terms between the oscillators in (2.19) are
all identical because we have assumed a perfect rotational symmetry, implying that
the coupling type/strength remains constant (uniform) throughout the entire network
of oscillators. This symmetry assumption could be nonetheless relaxed, resulting in
can-specific coupling terms Δj and Γj. This asymmetric scenario will, however, not be
considered in this study.

We emphasise that, even though the Galerkin modes are identical, the dynamics of the
can-annular system is nonetheless described by a total of N second-order equations, one for
the acoustic oscillations in each can. The collective behaviour of the oscillation amplitudes
in each can and their phase patterns are, however, related to the dynamics of the global
modes of the entire can-annular combustor, as shown in the next section.

3. Linear response

By neglecting the nonlinear terms in (2.19), we investigate the linear stability of the
rotationally symmetric, coupled can-annular system. We introduce the scaled parameters

Γ̃ ≡ c̄2 H2rg

AcAg

∫ xg+lg

xg

|ψ(x)|2 dx
Γ

ω0
, Δ̃ ≡ c̄2 H2rg

AcAg

∫ xg+lg

xg

|ψ(x)|2 dx
Δ

ω0
,

β̃ ≡ (γ − 1)|ψ(xf )|2β,

⎫⎪⎬
⎪⎭ (3.1)

so that (2.19) can be written in the more compact form

η̈j + ω2
0ηj =

[
β̃ − α − 2Δ̃

]
η̇j − 2ω0Γ̃ ηj + ω0Γ̃ ηj−1 + �̃η̇j−1 + ω0Γ̃ ηj+1 + �̃η̇j+1.

(3.2)
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The set of N equations for j = 1, . . . ,N is cast in state-space form by introducing the
state variables ζj ≡ η̇j, so that ζ̇j = η̈j. By collecting all the state variables in the state
vector z ≡ [η1, ζ1, . . . , ηN, ζN]T, (3.2) can be rewritten in matrix form as

dz
dt

= Mz, (3.3)

where the matrix M is block-circulant and has the form

M =

⎡
⎢⎢⎢⎢⎣
A B 0 . . . 0 B
B A B . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . A B
B 0 0 . . . B A

⎤
⎥⎥⎥⎥⎦ (3.4)

with

A ≡
[

0 1
−ω2

0 − 2ω0Γ̃ β̃ − α − 2Δ̃

]
, B ≡

[
0 0
ω0Γ̃ Δ̃

]
. (3.5a,b)

In the absence of can-to-can coupling (Γ̃ = 0 and Δ̃ = 0 when rg = 0), the matrix B
vanishes, and M becomes block-diagonal. Each block represents the acoustic dynamics in
a decoupled can, with natural (undamped) frequency ω0 and damping coefficient α − β̃.
In this limit, the matrix has N-fold degenerate eigenvalues. This degeneracy manifests in
the ambiguity between the phase of the oscillations in the cans: indeed, with no acoustic
communication, any arbitrary phase pattern is possible. As we shall see, the coupling
between the cans resolves (some of) the degeneracy: only specific phase patterns are
allowed, and different oscillation patterns have slightly different frequencies, which leads
to the creation of a cluster of eigenvalues.

To calculate the eigenvalues of (3.3), we recall that block-circulant matrices can always
be block-diagonalised (Olson et al. 2014). This is accomplished by multiplying M from
the left and from the right by the unitary matrix EN ⊗ I2, where ⊗ denotes the Kronecker
product, I2 is the two-dimensional identity matrix, and EN is the Fourier matrix of size N,
defined by

EN ≡ 1√
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

1 wN w2
N . . . wN−1

N

1 w2
N w4

N . . . w2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w2(N−1)

N . . . w(N−1)(N−1)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.6)

with wN ≡ ei(2π/N). This yields

(EN ⊗ I2)
HM(EN ⊗ I2) = D =

⎡
⎢⎢⎣
D0 0

D1
. . .

0 DN−1

⎤
⎥⎥⎦ , (3.7)

980 A52-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.4


WNA of thermoacoustic oscillations in can-annular combustors

where D is a 2N × 2N block-diagonal matrix, whose blocks Dk−1 have dimensions 2 × 2,
and are defined by (Olson et al. 2014)

Dk−1 ≡ A + Bω(k−1)
N + Bω(N−1)(k−1)

N = A + 2B cos
(

2π

N
(k − 1)

)
, k = 1, . . . ,N.

(3.8)
By recognising k − 1 as the Bloch number b, the block matrix Db reads

Db =
⎡
⎣ 0 1

−ω2
0 − 4ω0Γ̃ sin2

(
πb
N

)
β̃ − α − 4Δ̃ sin2

(
πb
N

)⎤⎦ , for b = 0, . . . ,N − 1,

(3.9)

and the dynamics of the bth mode is described by the linear eigenvalue problem

Dbvb = sbvb. (3.10)

The growth rate and angular frequency of the eigenvalues sb ≡ σb + iωb of the matrix
Db, defined in (3.9), are

σb = β̃ − α

2
− 2Δ̃ sin2

(
πb
N

)
, (3.11a)

ωb =

√√√√
ω2

0 −
(
β̃ − α

2

)2

+ 2
[(
β̃ − α

)
Δ̃+ 2ω0Γ̃

]
sin2

(
πb
N

)
− 4Δ̃2 sin4

(
πb
N

)
.

(3.11b)

Equations (3.11) are analytical expressions that describe the distribution of all the
can-annular eigenvalues in a cluster associated with a single-can mode as a function of the
system parameters (nominal frequency, nominal damping and real and imaginary parts of
the coupling impedance). The Bloch number b takes value from 0 to N − 1, or equivalently
from −N/2 + 1 to N/2 if N is even, or from −(N − 1)/2 to (N − 1)/2 if N is odd. Because
sin2(πb/N) is an even function, it holds that sb = s−b, leading to two-fold degeneracy of
all modes with b /= 0 and b /= N/2. For b = 0 the expressions retrieve the eigenvalue of a
single, isolated can, given by

s0 = β̃ − α

2
± iω0

√√√√1 −
(
β̃ − α

2ω0

)2

. (3.12)

The eigenvectors zb of the linear system (3.3) are given by (EN ⊗ I2)vb, where vb is the
2 × 1 eigenvector in the block-diagonal formulation. Because of the nature of (EN ⊗ I2),
it can be shown (Olson et al. 2014) that both the states contained in the eigenvectors zb
follow a discrete Fourier mode pattern of order b.

4. Weakly nonlinear dynamics

When performing a weakly nonlinear analysis, all the modes that are linearly unstable,
and thus can contribute to the dynamics, need to be retained. Due to the formation of
eigenvalue clusters in can-annular systems, if the uncoupled eigenvalue ω0 is marginally
stable, so are all the eigenvalues of the weakly coupled can-annular system – as per (3.11a)
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when Δ̃ is small compared with (β̃ − α). All the N modes in this cluster must therefore
be retained. In our analysis, it is assumed that a single cluster is (marginally) unstable.

Weakly nonlinear analysis of thermoacoustic oscillations in longitudinal and annular
configurations has been conducted previously (Ghirardo, Juniper & Moeck 2016; Orchini,
Rigas & Juniper 2016). In these works, however, the interaction of multiple linearly
unstable modes with close but initially unequal frequencies and growth rates, which is
the generic setting for can-annular systems, was not considered. Rather than describing
the amplitude of the oscillations in each can, it is more appropriate for a nonlinear analysis
to describe the amplitude of the global modes. This is because, from the results of the
linear analysis in § 3, we know that the can-annular pressure mode shapes in a cluster have
the form of Fourier modes with azimuthal order up to N/2. We wish to track the evolution
of the amplitude of these physically motivated mode shapes, which exponentially grow in
time in the linear regime, and lead to nonlinear modal interactions when the amplitudes
reach non-negligible values. Thus, by using the results of the linear analysis, and by
recalling that the y direction in figure 2 is equivalent to the azimuthal direction θ , the
global pressure dynamics can be described as

pj(x, t) = p(x, θj, t) = η0c(t)ψ(x)+ ηN/2c(t)ψ(x) cos(N/2 θj)

+
N/2−1∑
m=1

[
ηmc(t)ψ(x) cos(mθj)+ ηms(t)ψ(x) sin(mθj)

]
. (4.1)

The subscript mc indicates the mode with structure cos(mθ) for m = 0, . . . ,N/2, whereas
ms the mode with structure sin(mθ) for m = 1, . . . ,N/2 − 1. Note that, from the linear
stability results of § 3, we have exploited the fact that the m = 0 (push–push) and m = N/2
(push–pull) are non-degenerate.

Using the ansatz (4.1) in the can-annular Helmholtz equation (2.16), and defining the
scaled saturation constant κ̃ ≡ (γ − 1)|ψ(xf )|4κ , together with the coefficients (3.1),
yields a set of second-order, coupled, nonlinear ordinary differential equations governing
the dynamics of each mode:

η̈mc/s + ω2
0ηmc/s = (β̃ − α)η̇mc/s − 4 sin2

(mπ

N

) (
ω0Γ̃ ηmc/s + �̃η̇mc/s

)
− 3κ̃Nmc/s,

(4.2)
with Nmc/s defined by

Nmc = 1
(1 + δm0)π

∫ 2π

0
cos(mθ)

∂p′

∂t
p′2 dθ, Nms = 1

π

∫ 2π

0
sin(mθ)

∂p′

∂t
p′2 dθ.

(4.3a,b)

The Kronecker delta δm0 in the normalisation accounts for the fact that all modes with
m /= 0 average to π when integrated over the circumference, whereas the mode with m = 0
averages to 2π. The expressions for N can be made explicit by means of trigonometric
identities, but become very large for increasing values of N. For N = 8 cans, each
N contains over 100 terms. Their explicit expressions are thus not fully reported in
the manuscript, but an example calculation of one of these terms is provided in the
Appendix A.

Note that the left-hand side is identical for all the modes. This reflects the fact that,
in the absence of coupling, the cans are free to oscillate at the same frequency with any
circumferential phase pattern. The linear corrections due to the can-to-can coupling to the
frequencies (given by the terms proportional to Γ̃ ) and to the growth rates (given by the
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WNA of thermoacoustic oscillations in can-annular combustors

terms proportional to Δ̃) are considered as perturbations of the undamped oscillators, all
sharing the same natural frequency ω0.

To perform a weakly nonlinear analysis, we write

ηmc/s = Amc/s cos
(
ω0t + φmc/s

)
, η̇mc/s = −ω0Amc/s sin

(
ω0t + φmc/s

)
, (4.4a,b)

where A and φ are slowly varying functions of time. Their dynamics can be retrieved by a
moving average of the equations over a period T = 2π/ω0, i.e. an oscillation period of the
fast time scale defined by the uncoupled oscillators. The averaged quantities are denoted
by an overbar, and are defined by

ḡ(t) = 〈g〉(t) ≡ 1
T

∫ t+T

t
g(s) ds. (4.5)

After rewriting the original equation in standard form, η̈ + ω2
0η + h(η, η̇) = 0, first-order,

coupled nonlinear ordinary differential equations that govern the (slow) evolution of the
amplitudes and phases can be obtained (Strogatz 1994):

˙̄A =
〈

h(A, φ)
ω0

sin(ω0t + φ)

〉
and ˙̄φ =

〈
h(A, φ)
ω0A

cos(ω0t + φ)

〉
. (4.6a,b)

By approximating the instantaneous values on the right-hand side of (4.6a,b) with the
averaged values, the evolution of the amplitudes and phases of (4.2) is given by

˙̄Amc/s = β̃ − α

2
Āmc/s − 2Δ̃ sin2

(mπ

N

)
Āmc/s + 3κ̃

〈Nmc/s

ω0
sin(ω0t + φ̄mc/s)

〉
, (4.7a)

˙̄φmc/s = 2Γ̃ sin2
(mπ

N

)
+ 3κ̃

〈 Nmc/s

ω0Amc/s
cos(ω0t + φ̄mc/s)

〉
. (4.7b)

In the absence of the nonlinear terms, the amplitudes of the modes grow exponentially,
according to the linear term in (4.7a), with the same growth rates as those predicted
by (3.11a). The phases of all modes with m /= 0 drift at a constant rate, indicating a
shift in frequency of 2Γ̃ sin2(mπ/N), as per the constant term in (4.7b). This frequency
correction is not identical to that predicted by the linear analysis, as in (3.11b). This result
is, however, correct in the limits considered for the method of averaging, in which even
the linear deviations from the unperturbed oscillator, proportional to (β̃ − α), Γ̃ and Δ̃,
are considered small and expanded to first order. Indeed, a Taylor expansion of (3.11b)
around ω0 retrieves, at first order, the same frequency shift as the method of averaging.
Higher-order corrections to the frequency can be retrieved by the method of averaging
by considering higher-order terms when averaging the equations. However, since the
frequency drift is generally small, these higher-order effects will not be considered in this
study.

5. Results and discussion

In this section we present and discuss results obtained by integrating the slow dynamics
equations for the evolution of the amplitude and the phase of an N = 8 can-annular
configuration. Although the equations derived in §§ 3 and 4 are valid for an arbitrary
number N of cans, in order to present quantitative results, we need to fix N to a specific
value. In general, it should be expected that the results will depend on the specific value
of N, since, as N increases, qualitatively different types of solutions exist. The specific
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Figure 3. Time integration of the fast (thin, lighter colours) and slow (thick, darker colours) dynamics of the
considered weakly nonlinear can-annular system. Each panel shows the evolution of the amplitude of one of
the N = 8 modes that contribute to the dynamics; similar colours denote degenerate modes. Results obtained
for Γ̃ = 54 and Δ̃ = 0.

value N = 8 was chosen to balance the complexity of the dynamics to the manageability
of the nonlinear terms in the equations. The configuration considered here models the
atmospheric can-annular experimental set-up assembled at the Norwegian University of
Science and Technology and described by Buschmann, Worth & Moeck (2023). We refer
to the latter for details about the geometry. For all the calculations in the following, we have
set (β̃ − α)/2 ≈ 23 s−1,ω0 ≈ 2π × 180 rad s−1 and κ̃ ≈ 50, and varied the strength of the
(aero)acoustic coupling between the cans by varying Δ̃ and Γ̃ . The value of the driving
(β̃ − α) term was chosen to be approximately 2 % that of ω0 because (i) the method of
averaging requires (β̃ − α)  ω0 to yield accurate results at first order and (ii) it was
observed that the magnitude of this value is consistent with typical positive growth rates
found in Orchini et al. (2022), where the same experimental set-up of Buschmann et al.
(2023) was modelled. The nonlinear saturation coefficient κ was instead tuned in order to
have oscillation amplitudes with a maximum value close to unity.

5.1. Fast and slow dynamics
To validate the method of averaging presented in § 4, we integrate numerically both the
fast evolution of the coupled oscillators, (4.2), and the slow, averaged evolution of the
amplitudes and phases of all the linearly unstable modes, (4.7).

Figure 3 shows the evolution of the coefficients ηjm with thinner lines; a fast oscillation
is apparent. To emphasise the oscillating nature of these time series, the last 20 ms,
containing approximately three full cycles, are stretched in each panel. With the provided
initial conditions, the oscillations converge to a push–push mode (b = 0). The decay of the
amplitudes of the modes with m = 1, 2 is relatively slow and not visible in the reported
data, which show only the evolution of the dynamics for a total time of 1 s. Figure 3
shows also the evolution of the modal amplitudes as predicted by the method of averaging
with thicker, darker lines. The initial conditions of the averaged equations are chosen to
be identical to those of the oscillator dynamics, by exploiting the relation between the
oscillator states and the amplitudes and phases of the modes provided by (4.3a,b) at
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Figure 4. Time integration of the fast (solid, lighter colours) and slow (dashed, darker colours) dynamics of
the considered weakly nonlinear can-annular system. The time interval shown corresponds to 4 seconds. The
panels show the instantaneous phase of the oscillations, defined as a deviation from the natural phase of the
uncoupled oscillators, φ0 = ω0t. Similar colours refer to degenerate modes. Results obtained for Γ̃ = 54 and
Δ̃ = 0.

t = 0 s. Despite the highly non-monotonic behaviour of the oscillation amplitudes, the
evolution of the amplitudes, as approximated by the method of averaging, compares very
favourably with the real amplitudes of the oscillators. The averaged solutions can, in
fact, also predict the modulation of the oscillation amplitudes, which is due to beating
and nonlinear modal interaction, both typical of the transient dynamics of systems with
multiple, closely spaced eigenvalues.

To assess the description of the phase dynamics from the method of averaging,
we need to extract phase information from the dynamics of the oscillators. For each
real-valued time trace ηmj(t), we perform a Hilbert transform to obtain the imaginary
part of the complex-valued analytic signal H[ηmj](t), which satisfies Re[H[ηmj](t)] =
ηmj(t). The magnitude, |H[ηmj]|, and the phase angle, ϕmj ≡ ∠(H[ηmj]) of these complex
oscillatory signals correspond to the instantaneous amplitude and phase of the dynamics
of the oscillator ηmj. The phase ϕmj contains information on both the natural phase
of the uncoupled oscillators, defined by φ0 = ω0t, and on the deviation from the latter
of the coupled, nonlinear system. The method of averaging approximates the latter, and to
allow for a comparison, we define

φmj ≡ ϕmj − φ0 ≡ ∠(H[ηmj])− ω0t. (5.1)

Figure 4 shows a comparison between the instantaneous phases of the oscillators – solid
lines, lighter colours – obtained with the Hilbert transform, and the averaged phases
obtained by integrating directly the slow dynamics equations (4.7) – dashed lines, darker
colours. Except for some inaccuracy introduced by the finite-length Hilbert transform at
the beginning and end of the time series, the comparison between the phases is strikingly
good.

Although not shown, analogous comparisons have been performed for various values
of the coupling parameters Δ̃ and Γ̃ , and a good match between the averaged and exact
oscillator dynamics has always been observed. These results validate the derivation and
implementation of the averaged equations, and for this reason in the following sections we
will only show and discuss results obtained from the averaged equations.

5.2. Initial conditions and supported solutions
To study which types of solutions the system supports, we rely on the numerical integration
of the averaged equations from a variety of initial conditions. In this way, we assess
whether specific solutions are supported by the equations. By fixing Δ̃ = 0 and Γ̃ = 21,
we alternately set the initial amplitude of one of the modes to one, while setting the

980 A52-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.4


A. Orchini and J.P. Moeck

0.5
Ā
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Figure 5. Evolution of the amplitudes and phases of the coupled dynamics of an N = 8 can-annular system
when the oscillations are initialised to (a) a push–push mode, (b) a push–pull mode, (c,d) a standing mode with
m = 1, (e, f ) a standing mode with m = 2, (g,h) a standing mode with m = 3. The coupling parameters are set
to Γ̃ = 21 and Δ̃ = 0.

amplitudes of the remaining modes to 10−5. All phases are arbitrarily chosen to start
at φ̄mj = 0. This particular set of initial conditions is chosen to assess the stability of
standing solutions. Because we have chosen a standing basis for decomposing the pressure
dynamics in the cans, a pure standing solution is found if, for example, the amplitude of
one mode with 0 < m < N/2 is non-zero, and all other amplitudes are zero.

Figure 5 shows the evolution of the amplitudes and phases of all the considered
initial conditions. Only the evolution of the phase difference between the modes that
participate in the steady-state, stable oscillation are shown for each case. Starting from
figure 5(a), initialising the oscillations to a push–push mode results in a stable push–push
state (mode 0c). In the steady-state, the phase of this mode is flat, denoting that no
frequency drift occurs, and the final steady-state oscillations have the same frequency
of the uncoupled system, ω0, which is a general characteristic of push–push modes (von
Saldern et al. 2021a,c). When initialising the oscillations to a standing mode with m = 1,
figure 5(c,d), instead, the nonlinear modal interaction triggers the participation of other
modes. After a transient, the amplitudes of all modes drop to zero, except those of the
two standing modes with m = 1, which converge to the same value. In the steady state,
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their phases exhibit a constant drift, and are shifted apart by π/2. In conjunction with
the amplitudes reaching the same level, this indicates that the system has converged to a
spinning solution since it holds that

A cos(ω0t + φ(t)) cos(θ)+ A cos(ω0t + φ(t)+ π/2) sin(θ) = A cos(ω0t + φ(t)+ θ).

(5.2)

The slope of the phase in the steady state reaches a value of 6.15 rad s−1 for both modes.
This compares very well with the linear correction to the unperturbed angular frequency
predicted by the method of averaging, �ω ≡ 2Γ̃ sin2(mπ/N), as per (4.7b).

Similar results hold for cases in which standing solutions with m = 2, figure 5(e, f ), and
m = 3, figure 5(g,h), were initialised. In all these cases, after a transient, the solutions
diverge from the initial standing state and converge to spinning modes with order m
corresponding to that of the initial standing mode. This result is consistent with the
findings of Noiray et al. (2011), where it was shown that standing oscillations are not
stable solutions in symmetric annular configurations saturated by a cubic nonlinearity. The
angular frequency drifts calculated from the slopes of the phases are �ω = 21 rad s−1

and �ω = 35.8 rad s−1, for oscillations of spinning modes with m = 2 and m = 3,
respectively. Once again, these values coincide with those predicted by the linear term
in (4.7b).

5.3. Synchronisation
A different behaviour is observed when the solutions are initialised to a push–pull mode
(figure 5b). In this case, multiple modes with different values of m are triggered by
the nonlinear modal interaction, and survive in the final, steady-state oscillations. In
particular, the m = 4 push–pull mode, both modes with m = 3 and one of the modes
with m = 2 participate in the finite-amplitude oscillation. Figure 5 shows only a total
integration time of 4 s; at larger times the amplitudes of both standing modes with m = 3
converge to the same amplitude, A3j = 0.67, but with a phase difference of zero. This
corresponds to a standing mode, but rotated by π/4 with respect to those used as a basis,
and with an amplitude of

√
2A3. The amplitudes of the modes with m = 2 and m = 4

converge to A2s = 0.24, A4c = 0.88, respectively, and their phases have a constant phase
difference with respect to the modes having m = 3. This is a signature of synchronisation.
By synchronisation we mean the adjustment of rhythms of oscillators due to their weak
interaction, as defined by Pikovsky et al. (2001). As discussed in § 1.2, two conditions must
be satisfied for synchronisation to be possible: (i) the oscillators must be self-sustained
when decoupled; and (ii) a weak coupling must be established between the oscillators.
By using the results derived in § 3, we can verify that these conditions are easily satisfied
for can-annular geometries. When the cans are decoupled, Γ̃ = Δ̃ = 0, the eigenvalues
of all the N modes converge to (3.12). Thus, provided that the isolated can system is
thermoacoustically unstable, (β̃ − α) > 0, condition (i) is satisfied because there exist
a set of N self-sustained oscillation patterns in the system, one in each can. A (weak)
coupling between the cans is present when Γ̃ /= 0 and/or Δ̃ /= 0, satisfying condition (ii).
Furthermore, the linear effect of the weak coupling can be quantitatively seen from (3.11).
All the growth rates σb and angular frequencies ωb are close to the frequency of an isolated
can. If the growth rate of an uncoupled thermoacoustic mode is positive, (β̃ − α)/2 > 0,
then one should expect all the eigenvalues of the coupled can-annular system to have a
positive growth rate, because they form a cluster. All these modes grow exponentially in

980 A52-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.4


A. Orchini and J.P. Moeck

the linear regime and interact with each other during the transient response. The interaction
between modes may suppress the growth of some modes and enhance the growth of others.
Furthermore, the nonlinear interaction causes a drift of the oscillation frequencies as the
amplitude of oscillation increases. Under appropriate conditions, these frequencies may
lock to the same value: if modes with different linear oscillation frequencies persist in the
saturated oscillation state with the same frequency, synchronisation has occurred.

Identifying explicit conditions for synchronisation is a non-trivial task, because one
needs to find synchronised states that are supported by the governing equations (4.7),
and verify that these solutions are stable. Already for N = 8, this problem is complex to
treat analytically because the phase space is 16-dimensional, and there exists a very large
number of possible synchronised states. It is, however, analytically treatable for N = 3.
The expressions of the governing equations (4.7) including all the nonlinear terms can be
explicitly reported for this case:

˙̄A0c = β̃ − α

2
Ā0c

− 3κ̃
16

Āc0

[
Ā2

c1 cos(2φ̄c0 − 2φ̄c1)+ Ā2
s1 cos(2φ̄c0 − 2φ̄s1)+ 2Ā2

c0 + 2Ā2
c1 + 2Ā2

s1

]
,

(5.3a)

˙̄A1c = β̃ − α

2
Ā1c − 3�̃Ā1c

− 3κ̃
32

Āc1

[
4Ā2

c0 cos(2φ̄c0 − 2φ̄c1)+ Ā2
s1 cos(2φ̄c1 − 2φ̄s1)+ 8Ā2

c0 + 3Ā2
c1 + 2Ā2

s1

]
,

(5.3b)

˙̄A1s = β̃ − α

2
Ā1s − 3�̃Ā1s

− 3κ̃
32

Ās1

[
4Ā2

c0 cos(2φ̄c0 − 2φ̄s1)+ Ā2
c1 cos(2φ̄c1 − 2φ̄s1)+ 8Ā2

c0 + 2Ā2
c1 + 3Ā2

s1

]
,

(5.3c)

˙̄φ0c = +3κ̃
16

[
Ā2

c1 sin(2φ̄c0 − 2φ̄c1)+ Ā2
s1 sin(2φ̄c0 − 2φ̄s1)

]
, (5.3d)

˙̄φ1c = 3Γ̃ + 3κ̃
8

[
Ā2

s1
4

sin(2φ̄c1 − 2φ̄s1)− Ā2
c0 sin(2φ̄c0 − 2φ̄c1)

]
, (5.3e)

˙̄φ1s = 3Γ̃ − 3κ̃
8

[
Ā2

c0 sin(2φ̄c0 − 2φ̄s1)+ Ā2
c1
4

sin(2φ̄c1 − 2φ̄s1)

]
. (5.3f )

One can verify that these equations are equivalent to equation (5) presented by Moeck
et al. (2019), which were derived to model synchronisation between an axisymmetric and
an azimuthal mode in an annular combustor. We note that the physical meaning of the
coupling terms is different: the reactive (Δ̂) and resistive (1 − σ̂ ) coupling terms in the
work of Moeck et al. (2019) are directly related to differences in the frequencies/growth
rates of longitudinal and azimuthal modes in an annular combustion chamber. On the
other hand, the reactive (Γ̃ ) and resistive (Δ̃) terms in the can-annular model presented
in this work stem from the Rayleigh conductivity that provides a weak coupling between
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otherwise identical cans. Although the geometry and the detailed interpretation of the
parameters are different, the physics underlying the thermoacoustic phenomenon is the
same, and it should not come as a surprise that equations with the same structure appear
here.

Given the equivalent representation of the dynamics, we can directly apply the
results of Moeck et al. (2019) about synchronisation, shown in their figure 3, to the
can-annular system considered here: for N = 3, synchronisation is possible only for
specific combinations of the reactive and resistive coefficients. In particular, we can
exploit their result to conclude that, for N = 3, Δ̃ must be negative for synchronisation
to occur – the resistance Δ̃ is proportional to the parameter (1 − σ̂ ) of Moeck et al.
(2019). An interesting question is whether a negative resistance is a strict requirement
for synchronisation in can-annular systems with a larger number of cans, say N = 8.
The extension of this result to a larger number of cans could not formally be proven.
Instead, we relied on extensive numerical calculations for the N = 8 case to investigate
when synchronisation occurs. The results suggest that our model supports synchronised
solutions only for negative values of the resistivity. It was reported in Pedergnana et al.
(2021) that such a negative resistance may be induced in a frequency band by aeroacoustic
effects that excite the shear layer formed by the grazing flow along the can-to-can
apertures.

For our calculations, we consider coupling parameters in the range Δ̃/(β̃ − α) ∈
[−0.5, 0.5] for the resistance and Γ̃ /(β̃ − α) ∈ [−0.5, 0.25] for the reactance. Starting
from the smallest values of both coupling parameters, we initialise (4.7) close to the
unstable fixed points, with amplitudes equal to 10−5 and phases randomly distributed in
the range [0, 2π]. We integrate the equations until t = 200 s, to ensure convergence of the
results. We then assess if the final state is synchronised by determining how many modes
contribute to the final steady-state oscillations (with amplitudes larger than 0.05), and by
comparing the slopes of the phases – in other words, the frequencies. Each subsequent
calculation is then initialised from the end state of a neighbouring state, following a
continuation-like approach. Because the first identified state is synchronised, the approach
we follow is able to identify when the stability of synchronised solutions is lost. Figure 6
shows the results by using on the left a colour scheme that assigns a unique colour to states
with n synchronised modes, where n = 0 means that no synchronisation occurs, and on the
right the same colour scheme as in figure 3 to show which mode has the largest amplitude
in the final, possibly synchronised state. It is observed that synchronised states are stable
when Δ̃ < 0, consistent with the analytical findings of Moeck et al. (2019) for N = 3.
However, in contrast to the latter study, the window of synchronisation is much larger. This
is likely because in that study only one synchronisation pattern was possible, whereas in
the can-annular configuration considered in the present work, a large number of possible
synchronised states exist. Furthermore, in the identified synchronised states the push–pull
(4c) mode has the largest amplitude – an example can be seen in figure 5(b). On the other
hand, when synchronisation does not happen, for most Δ̃ > 0, the push–push (0c) mode
dominates the dynamics. We note that analogous results were reported in Pedergnana &
Noiray (2022), where dominant push–push oscillations for positive values of the resistive
coupling and dominant push–pull oscillations for negative values of the resistive coupling
were reported. We, however, also observe that there exist regions of positive resistance
where synchronisation persists. We, however, emphasise that these solutions have been
obtained by tracking synchronised solutions from negative resistance to positive resistance
and that figure 6 provides no information on the basins of attraction of these synchronised
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Figure 6. Synchronisation map for a can-annular system with N = 8 cans. (a) Number of modes that
participate in the synchronised final state. (b) Label of the mode that dominates the oscillations. The results
were obtained by time-marching equations (4.7), and by using a continuation algorithm while slowly increasing
Δ̃ and Γ̃ . Numerical results indicate that the synchronisation of states with different azimuthal orders is likely
when Δ̃ < 0.

solutions, nor on the possible existence of other stable oscillatory states. We also highlight
that the synchronised map shown in figure 6 exhibits a clear symmetry around the Γ̃ = 0
axis and that, provided that Δ̃ < 0, the larger is the magnitude of Γ̃ the fewer number of
modes participate in a synchronised state oscillation.

The results shown here correspond to an eight-can system. As pointed out previously,
existence and stability of oscillatory solutions will depend on the number of cans N. It is
difficult to make any general statement on how the dynamical picture changes when N is
increased or decreased. One obvious outcome, however, is that for odd N, the push–pull
mode does not exist. Since the push–pull mode was often observed to be dominant in the
synchronised states for our N = 8 computations, one can expect that the modal dynamics
would be quite different for N = 7 or 9.

To provide more insight into what a synchronised state is and what it is not, we report
in figure 7 details about three specific calculations for Γ̃ = 21, for which the phases were
initialised to zero. When Δ̃ = 0, case (a), after a transient only the amplitudes of the
cos(θ) and sin(θ) structures remain non-zero, whereas the others decay. The cos(θ) and
sin(θ) structures oscillate with the same frequency; however, this is not a synchronised
state because these modes are degenerate by construction, and have the same oscillation
frequency and growth rates already in the linear regime – see (3.11) for positive/negative b.
When Δ̃ = 5, the steady-state dynamics is dominated by the b = 0 mode only. Because a
single global mode participates in the oscillations, synchronisation cannot occur. We note,
however, that a b = 0 mode corresponds to a push–push oscillation. Some authors refer
to this state also as a synchronised state, because the phases of the oscillations in all the
cans are aligned (Moon et al. 2020b; Pedergnana & Noiray 2022). This is not consistent
with our classification of synchronisation, because the alignment of the oscillation phases
between the cans for the b = 0 mode is a linear effect, as we discussed in § 3, whereas
synchronisation between modes is an inherently nonlinear phenomenon (Pikovsky et al.
2001; Strogatz 2004). Lastly, when Δ̃ = −4, four modes participate in the oscillation,
sin(2θ), cos(3θ), sin(3θ) and cos(4θ). Despite the fact that the linear frequencies of these
modes are different, nonlinear effects drift these frequencies and synchronise them to
the same value. That in the steady state all modes participating in the dynamics have
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Figure 7. Evolution of the averaged amplitudes and phases for Γ̃ = 21: (a) Δ̃ = 0, converging to a spinning
solution; (b) Δ̃ = 5, converging to a push–push solution; (c) Δ̃ = −4, converging to a synchronised solution.
Animated versions of these graphs, which make it visually easy to understand the dynamics, are provided as
supplementary material available at https://doi.org/10.1017/jfm.2024.4.

synchronised to the same oscillation frequency can be seen from the fact that the slopes of
the averaged phase drifts are identical for all modes.

It is interesting to consider these results in view of available experimental observations.
However, a detailed quantitative comparison is not possible for several reasons. Most of the
experimental studies to date investigate two-can or four-can systems (Moon et al. 2020a,b;
Chen et al. 2021; Guan et al. 2022), which host a smaller number of Bloch modes. The
laboratory-scale can-annular system investigated by Buschmann et al. (2023) corresponds
to the configuration considered in the present work, but a quantitative comparison would
require detailed information about the linear and nonlinear flame responses, which is
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not available from the experiment. Lastly, most of the can-annular systems studied
experimentally are turbulent, which adds significant noise to the thermoacoustic dynamics
and partly obscures the attractor. Consequently, only general, qualitative aspects of our
results can be compared with the various experimental observations. Eigenvalue clusters
comprising all Bloch numbers and organised around the longitudinal can modes are a
general feature of can-annular systems, as we have argued in § 3. Traces of these eigenvalue
clusters can be seen in pressure spectra as multiple close acoustic resonances (Moon
et al. 2020b; Buschmann et al. 2023). Furthermore, while in single-burner and annular
multiburner systems, combustion instabilities most commonly manifest as single-mode
oscillations, our calculations show that multimode oscillations routinely occur in a
can-annular system, with a push–push or push–pull mode often being dominant. This is
consistent with experimental observations by Moon et al. (2020b), Guan et al. (2022) and
Buschmann et al. (2023).

6. Conclusions

In this work we have studied linear and nonlinear characteristics of can-annular
combustors. Can-annular (and annular) combustors are the most common combustor
architectures in stationary gas turbines for power generation. It is therefore important to
understand the complexity of thermoacoustic phenomena that occur in these systems.
In contrast to single-flame combustors, which are studied predominantly in laboratory
settings, multiflame systems exhibit more complex dynamics. And while annular and
can-annular systems share some qualitative similarities, foremost a high degree of
discrete rotational symmetry, there are also some marked differences. In the latter type
of combustor, each flame is situated in an almost isolated acoustic environment and
communicates with neighbouring cans only weakly through a small gap at the turbine inlet.
The weak coupling in conjunction with the combustor cans all being nominally identical
gives rise to mode clusters, which spawn from the modes of an isolated can and spread
farther with increasing coupling.

Clusters of unstable thermoacoustic modes, hence, generically occur in can-annular
combustors. With a group of eigenvalues having close frequencies and similar growth
rates, enhanced modal interaction is expected and synchronisation is indeed possible.
Since these are nonlinear phenomena, predictive modelling is challenging and cannot
be accomplished by relying, for example, on the describing function technique. While
the latter has been proven to be a successful tool for single-mode limit cycles in
thermoacoustic (and, of course, other) systems (Dowling 1997; Noiray et al. 2008), it
is not able to properly capture nonlinear multimodal interaction (Moeck & Paschereit
2012; Orchini & Juniper 2016). In the presence of multiple linearly unstable modes with
comparable growth rates, a proper nonlinear framework has to be employed to successfully
predict the final oscillatory state the system evolves to.

Starting from the linearised Euler equations with a nonlinear flame model, we
established a weakly nonlinear framework capable of representing the aforementioned
nonlinear phenomena in generic can-annular combustors. Wave-like equations for
the acoustic pressure field in the individual cans were derived, taking into
account the communication with the neighbouring cans through explicit coupling terms,
and the feedback from the flame response. Galerkin projection was then used to reduce
the infinite-dimensional problem to a set of coupled nonlinear oscillator equations, which
represent the temporal evolution of the thermoacoustic system modes. Application of
the method of averaging further reduced this set of equations to a slow-time state space
spanned by the oscillator amplitudes and phases.
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We applied this framework to represent a laboratory can-annular configuration with
eight combustor cans coupled at the downstream end. The aeroacoustic coupling between
neighbouring cans takes into account reactive and resistive effects. With a set of flame
model and coupling parameters, a number of stable single-mode limit cycles exist and can
be accessed in numerical simulations of the model by providing different (single-mode)
initial conditions. When initialising the model with a push–pull mode, in other words,
a mode with azimuthal order equal to half the number of combustor cans, a multimode
periodic solution is established that involves several modes at finite amplitude. All the
participating modes oscillate at the same frequency and feature fixed phase relations.
This is, hence, an occurrence of synchronisation, which has previously been observed
in other scenarios and contexts in thermoacoustic systems (Bonciolini & Noiray 2019;
Moeck et al. 2019; Moon et al. 2020a; Chen et al. 2021; Guan et al. 2021). In the
present case, synchronisation takes place between thermoacoustic system modes and is,
consequently, purely nonlinear. Considering the effect of the can-to-can coupling, we
found that the resistance essentially has to be negative for synchronised solutions to exist
(i.e. the coupling has to be amplifying). Depending on both reactive and resistive coupling
components, a different number of modes can synchronise.

The solutions of the averaged system with those of the original oscillator equations
agree remarkably well, as evident in figure 3. Even non-trivial amplitude development
during initial transients is captured with high accuracy. This highlights the suitability
of this method even in the presence of nonlinear multimode interaction. The method of
averaging has been used before for weakly nonlinear analysis of thermoacoustic systems,
but, to the best of our knowledge, not in settings as complex as in the present case, with a
large number of active modes, all having similar frequencies and growth rates. We utilised
a simple cubic nonlinearity in this work to model the saturation of the flame response.
While this model agrees with experimentally observed behaviour to some extent (Noiray
et al. 2011), the sensitivity of our observations to changes in the flame nonlinearity would
be interesting to assess.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.4.
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Appendix A. Nonlinear terms

The number of terms resulting from the averaging of the cubic nonlinearity (2.10) is
very large, due to the large number of modes (N) that need to be retained for a weakly
nonlinear analysis in can-annular configurations. For the dynamics of a mode with
azimuthal order m, a generic term η̇nηlηk in Nmc/s has a non-zero contribution only if the
Diophantine equation ±|m| ± |n| ± |l| ± |k| = 0 has at least one root. The terms resulting
from the nonlinear heat release rate saturation couple the dynamics of the modes, and
their expressions depend on the phase differences between the oscillations of the modes.
Their expressions are lengthy, and are not fully reported here, but can be straightforwardly
obtained by means of symbolic solvers.
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As an example, for N = 8 the nonlinearity of the push–push (m = 0) mode N0c contains
the term f = η̇3cη1cη4c/2. From (4.6a,b), the term resulting from the averaging of the
amplitude equation for mode m = 0 is

1
ω0

〈 f sin(ω0t + φ0c)〉

= −A3cA1cA4c

2
〈sin(ω0t + φ3c) cos(ω0t + φ1c) cos(ω0t + φ4c) sin(ω0t + φ0c)〉

= −A3cA1cA4c

16
(cos(φ0c + φ1c − φ3c − φ4c)

+ cos(φ0c − φ1c + φ3c − φ4c)+ cos(φ0c − φ1c − φ3c + φ4c)) . (A1)
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