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Infinite Classes of Covering Numbers
I. Bluskov, M. Greig and K. Heinrich

Abstract. Let D be a family of k-subsets (called blocks) of a v-set X(v). Then D is a (v, k, t) covering design or
covering if every t-subset of X(v) is contained in at least one block of D. The number of blocks is the size of the
covering, and the minimum size of the covering is called the covering number. In this paper we consider the
case t = 2, and find several infinite classes of covering numbers. We also give upper bounds on other classes
of covering numbers.

1 Introduction

First we discuss some facts and notation that will be used throughout the paper. Let D =
{B1,B2, . . . ,Bb} be a finite family of k-subsets (called blocks) of a v-set X(v) = {1, 2, . . . , v}
(with elements called points). Then D is a (v, k, t) covering design or covering if every t-
subset of X(v) is contained in at least one block of D. The number of blocks, b, is the
size of the covering, and the minimum size of the covering is called the covering number,
denoted C(v, k, t). If every t-subset of X(v) is contained in exactly one block of D, then
D is a Steiner system, denoted S(v, k, t). A Steiner system is said to be resolvable if there
exists a partition of its set of blocks into subsets called resolution classes each of which in
turn partitions the set X(v). A transversal design of group-size n, and block-size k, denoted
TD(k, n), is a triple (V,G,D), where V is a set of kn elements; G is a partition of V into k
classes (the groups), each of size n; B is a collection of k-subsets of V (the blocks), and every
unordered pair of elements from V is either contained in exactly one group or exactly one
block, but not both. There exist transversal designs TD(n + 1, n) for all prime powers n.
The existence of a TD(k, n) implies the existence of a TD(k − 1, n). Since, in some of our
constructions, we use a TD(n−1, n), it is worth noting a result of Shrikhande’s [7], namely
that a TD(n−1, n) can always be extended to a TD(n +1, n) (with the sole exception of one
of the two TD(3, 4) designs). Let K and G be sets of positive integers and let λ be a positive
integer. A group divisible design (of index λ and order v) is a triple (V,G,B), where V is a
finite set of cardinality v, G is a partition of V into parts (groups) whose sizes lie in G, and
B is a family of subsets (blocks) of V which satisfies the properties:

1. If B ∈ B, then |B| ∈ K.
2. Every pair of distinct elements of V occurs in exactly λ blocks or one group, but not

both.
3. |G| > 1.

A general lower bound on C(v, k, t) is due to Schönheim [6].
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Theorem 1.1

C(v, k, t) ≥

⌈
v

k

⌈
v − 1

k− 1
· · ·
⌈v − t + 1

k− t + 1

⌉
· · ·

⌉⌉
.

Let X(k)(v) denote the set of all k-subsets of X(v). A t-(v, {k1, k2, . . . , kn}, λ) design is a
pair
(
X(v),D

)
, where X(v) = {1, 2, . . . , v} is a set of points and D is a subset of X(k1)(v) ∪

X(k2)(v)∪· · ·∪X(kn)(v) with elements called blocks (of size k1, k2, . . . , kn) so that every t-set
of X(v) is contained in exactly λ blocks.

There is an extensive literature on the covering numbers C(v, k, t). For excellent surveys
on the known results we refer to [3] and [5]. In this work we continue the search for classes
of covering numbers started in [2].

2 Main results

Theorem 2.1 If n is a power of an odd prime, then

C(n2 − n, n− 1, 2) = n2 + 2n.

Proof We start with an affine plane of order n; that is, a resolvable Steiner system S(n2, n, 2).
It has n + 1 parallel classes, P1, P2, . . . , Pn+1, each containing n lines. Let

Pi = {Bi j | j = 1, 2, . . . , n}, i = 1, 2, . . . , n + 1

be the parallel classes, where the Bi j are the lines. Now let us remove a line, say Bn+1,n, and
all of its points from the remaining blocks. The line Bn+1,n intersects each of the lines of any
of the parallel classes P1, P2, . . . , Pn in exactly one point. Consider the union of the set of
blocks

A = {Bi j \ Bn+1,n | 1 ≤ i, j ≤ n}

and Pn+1 \ Bn+1,n. This is a 2-(n2 − n, {n, n − 1}, 1) design with (n − 1) blocks of size n
(the blocks of Pn+1 \Bn+1,n) and n2 blocks of size (n− 1) (the blocks of A). We shall use the
(n−1) blocks of size n to construct 2n blocks of size (n−1) covering all the pairs contained
in Pn+1 \ Bn+1,n. Let

Bn+1,1 = a11 a12 . . . a1n

Bn+1,2 = a21 a22 . . . a2n

. . .

Bn+1,n−1 = an−1,1 an−1,2 . . . an−1,n
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be the lines of Pn+1 \ Bn+1,n. Now it is easy to check that the 2n blocks

a12 a13 . . . a1n

a22 a23 . . . a2n

. . . . . . . . . . . .
an−1,2 an−1,3 . . . an−1,n

a11 a13 . . . a1n

a21 a23 . . . a2n

. . . . . . . . . . . .
an−1,1 an−1,3 . . . an−1,n

a11 a12 a21 a22 . . . a n−1
2 ,1

a n−1
2 ,2

a n+1
2 ,1

a n+1
2 ,2

a n+3
2 ,1

a n+3
2 ,2
. . . an−1,1 an−1,2

cover all the pairs contained in the blocks of Pn+1 \Bn+1,n. Let us denote the 2n blocks listed
above by C. It is clear now that we can substitute the blocks of Pn+1 \ Bn+1,n with the blocks
of C in the 2-(n2−n, {n, n−1}, 1) design to get an (n2−n, n−1, 1) covering of size n2 +2n.

What remains to be shown is that the covering number C(n2 − n, n − 1, 2) is exactly
n2 + 2n. Schönheim’s theorem applied to an (n2 − n, n− 1, 2) covering yields

C(n2 − n, n− 1, 2) ≥

⌈
n2 − n

n− 1

⌈n2 − n− 1

n− 2

⌉⌉
= n
⌈n2 − n− 1

n− 2

⌉
.

Since � n2−n−1
n−2 � = n + 2, C(n2 − n, n− 1, 2) ≥ n2 + 2n, which completes the proof.

Theorem 2.2 If n = 2k, k ≥ 2, then

n2 + 2n ≤ C(n2 − n, n− 1, 2) ≤ n2 + 2n + 1.

Proof We use the proof of the preceding theorem except for the last two blocks of C. Since
n is even, three blocks are required to cover the (n−1) pairs ai1ai2, i = 1, 2, . . . , n−1.

Note that it is not known whether this construction produces any covering numbers; it
does not for n = 4 where a covering with n2 + 2n blocks meeting the Schönheim bound is
known; that is, C(12, 3, 2) = 24 [5].

We now generalize the above construction. What we essentially used was a transversal
design TD(n− 1, n), where n is a prime power. We took the n2 blocks of the TD(n− 1, n),
then covered the pairs contained in the groups of the transversal design by forming two
blocks from the points of each group, and covering the remaining pairs by two (three)
additional blocks. So, we shall proceed by using the same TD(n− 1, n), noting that we can
extend each group by a common set of new points and use the same type of construction
to cover the pairs contained in each of the extended groups. We introduce new points
X = {x1, x2, . . . , xr}. Using the notation from Theorem 2.1, the expanded groups are
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X ∪ Bn+1,i , i = 1, 2, . . . , n− 1. For each of the expanded groups we form two blocks of size
(n− 1) and a third block of size (2r + 2):

B1
n+1,i = x1 x2 . . . xr ai,r+2 ai,r+3 . . . ai,n

B2
n+1,i = ai,1 ai,2 . . . ai,r ai,r+1 ai,r+3 . . . ai,n

B3
n+1,i = x1 x2 . . . xr ai,1 ai,2 . . . ai,r+2.

We certainly want 2r + 2 ≤ n − 1; that is, r ≤ n−3
2 . It is clear that these three blocks cover

all pairs contained in X ∪ Bn+1,i . Now, if (r + 2) is small compared to (n − 1) we will be
able to unite sets of s = 
 n−1−r

r+2 � “third” blocks into single blocks of size at most (n − 1)
containing all pairs from the corresponding third blocks. So, we form the blocks:

x1 x2 . . . xr a1,1 a1,2 . . . a1,r+2 a2,1 a2,2 . . . a2,r+2 . . . as,1 as,2 . . . as,r+2 ∗

x1 x2 . . . xr as+1,1 as+1,2 . . . as+1,r+2 as+2,1 as+2,2 . . . as+2,r+2 . . . a2s,1 a2s,2 . . . a2s,r+2 ∗

. . .

x1 x2 . . . xr aqs+1,1 aqs+1,2 . . . aqs+1,r+2 . . . an−1,1 an−1,2 . . . an−1,r+2 ∗

The asterisk at the end of each block denotes the remaining (n−1)−
(
(r +2)s+r

)
positions

for the first q blocks and (n− 1)−
(

r + (r + 2)(n− 1− s
 n−1
s �)
)

for the last block. Clearly,
� n−1

s � = �
n−1

� n−1−r
r+2 �
� is the number of blocks needed to cover all pairs contained in the third

blocks of the extended groups. Thus we have proved the following:

Theorem 2.3 If 0 ≤ r ≤ n−3
2 , where n ≥ 3 is a prime power, then

C(n2 − n + r, n− 1, 2) ≤ n2 + 2(n− 1) +
⌈ n− 1


 n−1−r
r+2 �

⌉
.

The interesting question now is whether this construction produces new covering num-
bers. In what follows we answer this question affirmatively. First we calculate the Schön-
heim bound for an (n2 − n + r, n− 1, 2) covering, where 0 ≤ r ≤ n−3

2 .

C(n2 − n + r, n− 1, 2) ≥

⌈
n2 − n + r

n− 1

⌈n2 − n + r − 1

n− 2

⌉⌉

=

⌈
n2 − n + r

n− 1

(
n + 1 +

⌈ r + 1

n− 2

⌉)⌉

=
⌈ (n2 − n + r)(n + 2)

n− 1

⌉
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= n2 + 2n + r +
⌈ 3r

n− 1

⌉

= n2 + 2(n− 1) + r + 2 + ε,

where

ε =
⌈ 3r

n− 1

⌉
=




0 if r = 0,

1 if 0 < r ≤ n−1
3 and n ≥ 7,

or 0 < r ≤ n−3
2 and n < 7,

2 if n−1
3 < r ≤ n−3

2 .

The question is: When does r + 2 + ε =
⌈

n−1
� n−1−r

r+2 �

⌉
?

Case 1. r = 0. Then ε = 0, so we need to solve 2 =
⌈

n−1
� n−1

2 �

⌉
, which is true only for odd n.

Thus we get C(n2 − n, n− 1, 2) = n2 + 2n, where n is a power of an odd prime; that is, the
result from Theorem 2.1.

Case 2. 0 < r ≤ n−1
3 , n ≥ 7. Now, ε = 1, so we have to find the solutions to

r + 3 =

⌈
n− 1


 n−1−r
r+2 �

⌉
,(1)

which is equivalent to

r + 2 <
n− 1


 n−1−r
r+2 �

≤ r + 3,

or,

n− 1

r + 3
≤
⌊n− 1− r

r + 2

⌋
<

n− 1

r + 2
.(2)

The right hand inequality of (2) is always true, so (1) is equivalent to

n− 1

r + 3
≤
⌊n− 1− r

r + 2

⌋
.(3)

Finally, condition (3) is satisfied if and only if
[

n−1
r+3 ,

n−1−r
r+2

]
is an interval and contains an

integer, so we get the following.

Theorem 2.4 If n ≥ 7 is a prime power and 1 ≤ r ≤ n−1
3 is an integer such that[

n−1
r+3 ,

n−1−r
r+2

]
is an interval containing an integer, then

C(n2 − n + r, n− 1, 2) = (n + 1)2 + r.
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n Range of r n Range of r n Range of r
7 - 29 1–4 64 1–6
8 1 31 1–3 67 1–4
9 1 32 1–2 71 1–7
11 1–2 37 1–3 73 1–6
13 1 41 1–5 79 1–6
16 1–2 43 1–4 81 1–7
17 1 47 1–4 83 1–5
19 1–3 49 1–5 89 1–8
23 1–2 53 1–4 97 1–6
25 1–3 59 1–4
27 1–2 61 1–4

Table 1: New covering numbers for n < 100.

Note that we have to test only pairs (n, r) such that
[

n−1
r+3 ,

n−1−r
r+2

]
is indeed an interval,

that is, n−1
r+3 ≤

n−1−r
r+2 . The last inequality is equivalent to r2 + 3r + (1− n) ≤ 0, which gives

the following range for r:

1 ≤ r ≤
⌊√5 + 4n− 3

2

⌋
.(4)

Since
√

5+4n−3
2 ≤ n−1

3 for every n, (4) is a necessary (but not sufficient) condition for the
existence of a solution to equation (1).

The Table 2 gives new covering numbers produced by Theorem 2.4 in the range n < 100
for n a prime power.

Case 3. 0 < r ≤ n−3
2 , n < 7. In this case, n = 3, 4, or 5. If n = 3 or 4 we do

not get any values for r, so the only possibility is n = 5. Then r = 1, and we obtain
C(21, 4, 2) = 25 + 10 + 1 + 1 = 37 (as given in [5]).

Case 4. n−1
3 < r ≤ n−3

2 , n > 7. Now, ε = 2, so we want to solve

r + 4 =

⌈
n− 1


 n−1−r
r+2 �

⌉
.

The restrictions on r imply 
 n−1−r
r+2 � = 1, so the equation becomes r + 4 = n − 1. Thus

r = n− 5, which is larger than n−3
2 , so we do not get any solutions in this case.

We proceed with another generalization of the construction from Theorem 2.1; initially
without introducing new points. Instead of starting with a TD(n − 1, n), we start with a
TD(n − m, n), where m ≥ 1 and n ≥ 3m. We basically follow the same construction as in
Theorems 2.1 and 2.3: first take the n2 blocks of size n − m from the TD(n − m, n), then
form two blocks of size n−m from each of the n−m groups of the TD(n−m, n), and finally
form blocks of size n−m to cover the pairs contained in the (m+m)-sets remaining in each
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group. We certainly want n−m ≥ 2m, that is, m ≤ n
3 . Thus we get an (n2 −mn, n−m, 2)

covering of size

n2 + 2(n−m) +

⌈
n−m


 n−m
2m �

⌉
,

which proves the following.

Theorem 2.5 If n ≥ 3 is a prime power and 1 ≤ m ≤ n
3 , then

C(n2 −mn, n−m, 2) ≤ n2 + 2(n−m) +

⌈
n−m


 n−m
2m �

⌉
.

The Schönheim bound for an (n2 −mn, n−m, 2) covering, where 1 ≤ m ≤ n
3 , is

C(n2 −mn, n−m, 2) ≥

⌈
n2 −mn

n−m

⌈n2 −mn− 1

n−m− 1

⌉⌉

=

⌈
n
⌈

n + 1 +
m

n−m− 1

⌉⌉

= n2 + 2n

= n2 + 2(n−m) + 2m.

Now, if 2m =
⌈

n−m
� n−m

2m �

⌉
, then we get a covering number. But 2m =

⌈
n−m
� n−m

2m �

⌉
if and only if

2m divides n−m, and we apply the following.

Claim 2.6 If n = pa, where p is a prime and n > m, then 2m divides (n − m) if and only
if m = pb, 0 ≤ b ≤ a− 1, and p is odd.

Proof (⇐) n−m = pa − pb = pb(pa−b − 1) is divisible by 2pb = 2m for p odd.
(⇒) Now, let n = pa, and let m = k · pb, where (p, k) = 1. Then

pa − kpb

2kpb
=

(pa−b − k)

2k

is an integer, so k divides pa−b. However, (k, p) = 1; consequently, k = 1, that is, m = pb.
Furthermore, 2k divides pa−b − k, and since k = 1, p must be odd.

Thus we prove that the construction preceding the claim produces covering numbers
if and only if n and m are powers of the same odd prime. More precisely, we have the
following.

Theorem 2.7 If p is an odd prime and 0 ≤ b ≤ a− 1, then

C(p2a − pa+b, pa − pb, 2) = p2a + 2pa.
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Note that any particular value of b produces a new infinite class of covering numbers.
We can now generalize Theorem 2.3 by starting with a TD(n − m, n), m ≥ 1, and

extending each group by r new points. The result is the following.

Theorem 2.8 If n is a prime power, m is an integer such that n ≥ 3m, and r is an integer
such that 0 ≤ r ≤ n−3m

2 , then

C(n2 −mn + r, n−m, 2) ≤ n2 + 2(n−m) +

⌈
n−m


 n−m−r
2m+r �

⌉
.

The Schönheim bound for an (n2 −mn + r, n−m, 2) covering, where 0 ≤ r ≤ n−3m
2 , is

(after routine calculations):

C(n2 −mn + r, n−m, 2) ≥ n2 + 2(n−m) + 2m + r +
⌈ r(m + 2)

n−m

⌉
.

Consequently, if

2m + r +
⌈ r(m + 2)

n−m

⌉
=

⌈
n−m


 n−m−r
2m+r �

⌉
,

then we get a covering number. This allow us to formulate the following general result.

Theorem 2.9 If n ≥ 3 is a prime power, m is an integer such that 1 ≤ m ≤ n
3 , r is an integer

such that 0 ≤ r ≤ n−3m
2 , and (n,m, r) is a solution to the equation

2m + r +
⌈ r(m + 2)

n−m

⌉
=

⌈
n−m


 n−m−r
2m+r �

⌉
,(5)

then

C(n2 −mn + r, n−m, 2) = n2 + 2n + r +
⌈ r(m + 2)

n−m

⌉
.

By studying the solutions of equation (5) we are able to extract infinite classes of cov-
ering numbers. As much as possible, we restrict ourselves to following the discussion after
Theorem 2.3. Difficulties arise because of the many possible values of ε = � r(m+2)

n−m � in the
general case. Nevertheless, by adapting Cases 2 and 3 (ε = 1) we obtain some explicit
results.

Let ε = 1. Then r(m+2)
n−m ≤ 1, so 1 ≤ r ≤ n−m

m+2 . Equation (5) becomes

2m + r + 1 =

⌈
n−m


 n−m−r
2m+r �

⌉
.(6)

Comparing the upper bounds n−m
m+2 and n−3m

2 on r, we see that n−m
m+2 ≤

n−3m
2 if n ≥ 3m + 4,

and n−m
m+2 ≥

n−3m
2 if 3m ≤ n ≤ 3m + 3. Thus ε = 1 if a) n ≥ 3m + 4 and 1 ≤ r ≤ n−m

m+2 , or
b) 3m ≤ n ≤ 3m + 3 and 1 ≤ r ≤ n−3m

2 .
Let us consider case a). By an argument similar to Case 2 (from the discussion after

Theorem 2.3), we see that equation (6) is equivalent to the condition that
[

n−m
2m+r+1 ,

n−m−r
2m+r

]
is an interval containing an integer. This proves the following.
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Theorem 2.10 If n is a prime power, m an integer such that n ≥ 3m + 4, and r ≥ 1 is an
integer such that

[
n−m

2m+r+1 ,
n−m−r

2m+r

]
is an interval containing an integer, then

C(n2 −mn + r, n−m, 2) = (n + 1)2 + r.

The necessary condition (4), which ensures that
[

n−m
2m+r+1 ,

n−m−r
2m+r

]
is an interval, is re-

placed by:

1 ≤ r ≤
⌊√4m2 + 4n + 1− (2m + 1)

2

⌋
.(7)

Note that the condition r ≤ n−3m
2 is weaker than the necessary condition (7). Thus Theo-

rem 2.10 produces covering numbers even if m is not a power of the same prime as n (or
power of a prime at all). It also produces covering numbers when n is a power of two. For
example,

n = 13, m = 2, r = 1 gives C(144, 11, 2) = 197;
n = 16, m = 2, r = 2 gives C(226, 14, 2) = 291;
n = 59, m = 6, r = 1 gives C(3128, 53, 2) = 3601.

Now, let us consider case b) (an extension of Case 3). If n = 3m or n = 3m + 1 we get
no values of r. If n = 3m + 2, then r = 1, and the equation (6) holds for every m, so we
obtain the following.

Theorem 2.11 If m = n−2
3 , where n ≡ 2 (mod 3) is a prime power, then

C(6m2 + 10m + 5, 2m + 2, 2) = 9m2 + 18m + 10.

Note that letting m = 2 in the above result produces the “lottery” covering number
C(49, 6, 2) = 82.

If n = 3m + 3, then, again, r = 1. Equation (6) is not satisfied for any m.
Rather than trying to extract further infinite classes of covering numbers from Theo-

rem 2.9, we restrict ourselves to listing all the triples (n,m, r) producing covering numbers
from Theorem 2.9 for n ≤ 40 (see Table 2).

The idea of taking a group divisible design (such as a transversal design), and then cover-
ing the groups in some way, is a natural approach to producing a covering design. Todorov
[8, Theorem 4] found the construction we have given in Theorem 2.5; however he did not
investigate when this construction met the Schönheim bound (nor did he add extra points
to the basic design).

As a further example of the use of group divisible designs we give the following.

Theorem 2.12 If there exists a group divisible design with n groups of size m, blocks of size
k ≥ m, and λ = 1, then

C(mn, k, 2) ≤
m2n(n− 1)

k(k− 1)
+

⌈
n


 k
m�

⌉
.(8)
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n m r Covering number n m r Covering number
3 1 0 C(6, 2, 2) = 15 5 1 0 C(20, 4, 2) = 35
5 1 1 C(21, 4, 2) = 37 7 1 0 C(42, 6, 2) = 63
8 1 1 C(57, 7, 2) = 82 8 2 1 C(49, 6, 2) = 82
9 1 0 C(72, 8, 2) = 99 9 1 1 C(73, 8, 2) = 101
9 3 0 C(54, 6, 2) = 99 11 1 0 C(110, 10, 2) = 143

11 1 1 C(111, 10, 2) = 145 11 1 2 C(112, 10, 2) = 146
11 3 1 C(89, 8, 2) = 145 13 1 0 C(156, 12, 2) = 195
13 1 1 C(157, 12, 2) = 197 13 2 1 C(144, 11, 2) = 197
16 1 1 C(241, 15, 2) = 290 16 1 2 C(242, 15, 2) = 291
16 2 2 C(226, 14, 2) = 291 17 1 0 C(272, 16, 2) = 323
17 1 1 C(273, 16, 2) = 325 17 5 1 C(205, 12, 2) = 325
19 1 0 C(342, 18, 2) = 399 19 1 1 C(343, 18, 2) = 401
19 1 2 C(344, 18, 2) = 402 19 1 3 C(345, 18, 2) = 403
19 2 1 C(324, 17, 2) = 401 19 3 1 C(305, 16, 2) = 401
23 1 0 C(506, 22, 2) = 575 23 1 1 C(507, 22, 2) = 577
23 1 2 C(508, 22, 2) = 578 23 2 1 C(484, 21, 2) = 577
23 2 2 C(485, 21, 2) = 578 23 4 1 C(438, 19, 2) = 577
23 7 1 C(369, 16, 2) = 577 25 1 0 C(600, 24, 2) = 675
25 1 1 C(601, 24, 2) = 677 25 1 2 C(602, 24, 2) = 678
25 1 3 C(603, 24, 2) = 679 25 2 1 C(576, 23, 2) = 677
25 3 1 C(551, 22, 2) = 677 25 5 0 C(500, 20, 2) = 675
27 1 0 C(702, 26, 2) = 783 27 1 1 C(703, 26, 2) = 785
27 1 2 C(704, 26, 2) = 786 27 3 0 C(648, 24, 2) = 783
27 3 1 C(649, 24, 2) = 785 27 9 0 C(486, 18, 2) = 783
29 1 0 C(812, 28, 2) = 899 29 1 1 C(813, 28, 2) = 901
29 1 2 C(814, 28, 2) = 902 29 1 3 C(815, 28, 2) = 903
29 1 4 C(816, 28, 2) = 904 29 2 1 C(784, 27, 2) = 901
29 2 2 C(785, 27, 2) = 902 29 3 2 C(756, 26, 2) = 902
29 5 1 C(697, 24, 2) = 901 29 9 1 C(581, 20, 2) = 901
31 1 0 C(930, 30, 2) = 1023 31 1 1 C(931, 30, 2) = 1025
31 1 2 C(932, 30, 2) = 1026 31 1 3 C(933, 30, 2) = 1027
31 2 1 C(900, 29, 2) = 1025 31 5 2 C(808, 26, 2) = 1026
32 1 1 C(993, 31, 2) = 1090 32 1 2 C(994, 31, 2) = 1091
32 2 1 C(961, 30, 2) = 1090 32 3 1 C(929, 29, 2) = 1090
32 4 1 C(897, 28, 2) = 1090 32 10 1 C(705, 22, 2) = 1090
37 1 0 C(1332, 36, 2) = 1443 37 1 1 C(1333, 36, 2) = 1445
37 1 2 C(1334, 36, 2) = 1446 37 1 3 C(1335, 36, 2) = 1447
37 2 1 C(1296, 35, 2) = 1445 37 2 2 C(1297, 35, 2) = 1446
37 3 2 C(1260, 34, 2) = 1446 37 4 2 C(1223, 33, 2) = 1446

Table 2: Covering numbers from Theorem 2.9 for n ≤ 40.
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Proof The number of blocks of the group divisible design is m2n(n−1)
k(k−1) . The pairs contained

in the groups can be covered by
⌈

n
� k

m �

⌉
additional blocks of size k.

Obviously, if the Schönheim bound �mn
k �

mn−1
k−1 �� equals the right hand side of inequal-

ity (8), then so does the covering number C(mn, k, 2). We know of three cases, where
this observation can be applied to find new covering numbers. The first two are due to
Mathon [4]: group divisible designs with 33 groups of size 3 and block-size 9, and 45
groups of size 3 and block-size 12. Another case is Baker’s design [1] with 15 groups of size
3 and block-size 7. These lead to the following.

Corollary 2.13 C(99, 9, 2) = 143, C(135, 12, 2) = 147 and C(46, 7, 2) = 53.

3 Packings

Although the primary focus of this paper is on covering designs, it is worth mentioning
packing designs. With the same notation as in the introduction, a (v, k, t) packing design or
packing is a family of k-subsets (blocks) of X(v) such that every t-subset of X(v) is contained
in at most one block of the design. The packing number D(v, k, t) is the maximum size of a
(v, k, t) packing. There is also a general upper bound on packings due to Schönheim.

Theorem 3.1

D(v, k, t) ≥

⌊
v

k

⌊
v − 1

k− 1
· · ·
⌊v − t + 1

k− t + 1

⌋
· · ·

⌋⌋
= U (v, k, t).

If we take the blocks of a TD(n−1, n), plus a block of n−1 points from each of the n−1
groups (thereby omitting one point per group), then we have a packing design of n2 + n−1
blocks. Using this and the Schönheim packing bound we obtain the following.

Theorem 3.2 If n ≥ 3 is a prime power, then

n2 + n− 1 ≤ D(n2 − n, n− 1, 2) ≤ n2 + n = U (n2, n− 1, 2).

Theorem 3.2 can be extended to the following.

Theorem 3.3 If there exists a group divisible design with λ = 1, v points, block size k and
every group of size less than k, then that design is a packing with U (v, k, 2) blocks.

Proof Note that a point in a group of size g must meet each of the v − g points outside
its group exactly once, so k − 1 divides v − g. Now suppose g1 and g2 are the sizes of two
groups and g1 ≥ g2. Since k − 1 divides v − g1 and v − g2, it divides their difference. But
0 ≤ (v − g2)− (v − g1) = g1 − g2 ≤ (k− 1)− 1, so we see that all groups are of the same
size. Next we note that

v − g

k− 1
≤
⌊v − 1

k− 1

⌋
<

v − 1 + k− g

k− 1
=

v − g

k− 1
+ 1

so the first inequality is actually an equality, and the number of blocks in the group divisible
design is

(
v(v − g)

)
/
(
k(k− 1)

)
which is U (v, k, 2).
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Corollary 3.4 D(45, 7, 2) = 45, D(99, 9, 2) = 132, and D(135, 12, 2) = 135.

Proof Use Baker’s design [1] with k = 7 and 15 groups of size 3, and the two Mathon
designs [4] with k = 9 and 33 groups of size 3, and k = 12 and 45 groups of size 3 in
Theorem 3.3.
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