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Abstract

In this note we shall prove the existence of an uncountable subset of Liouville numbers (which we call the
set of ultra-Liouville numbers) for which there exist uncountably many transcendental analytic functions
mapping the subset into itself.
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1. Introduction

A real number ξ is called a Liouville number, if there exists a rational sequence
(pk/qk)k≥1, with qk > 1, such that

0 <
∣∣∣∣∣ξ − pk

qk

∣∣∣∣∣ < q−k
k for k = 1, 2, . . . .

The set of the Liouville numbers is denoted by L.
The name arises because Liouville [4] showed in 1844 that all Liouville numbers are

transcendental, thus establishing the first explicit examples of transcendental numbers.
The number ` :=

∑
n≥1 10−n!, the so-called Liouville constant, is a standard example of

a Liouville number. In 1962, Erdős [3] proved that every real number can be written as
the sum and (if it is nonzero) the product of two Liouville numbers, as a consequence
of the fact that L is a rather large set in a topological sense: it is a dense Gδ set.

In his pioneering book, Maillet [6, Ch. III] discusses some arithmetic properties of
Liouville numbers. One of them is that, given a rational function f , with rational
coefficients, if ξ is a Liouville number, then so is f (ξ). We observe that the
converse of this result is not valid in general; for example, taking f (x) = x2, then ζ :=
√

(3 + `)/4 is not a Liouville number [1, Theorem 7.4], but f (ζ) is. Also the rational
coefficients cannot be taken to be algebraic (with at least one of them nonrational).
For instance, `

√
3/2 is not a Liouville number, see [6, Theorem I3]. In fact, `

√
3/2 is

a U2-number (for the definition of a U2-number and this result, see [2]).
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An algebraic function is a function f (x) which satisfies P(x, f (x)) = 0, where
P(x, y) is a polynomial with complex coefficients. For instance, functions that can
be constructed using only a finite number of elementary operations are examples of
algebraic functions. A function that is not algebraic is, by definition, a transcendental
function. Common examples are the trigonometric functions, the exponential function,
and their inverses.

In 1984, in one of his last papers, Mahler [5] posed several questions for which,
according to him, ‘perhaps further research might lead to interesting results’. His first
question is related to Liouville numbers. In particular, this question asks the following:

Question. Are there transcendental entire functions f (z) such that if ξ is any Liouville
number, then so is f (ξ)?

He said that: ‘The difficulty of this problem lies of course in the fact that the set of all
Liouville numbers is non-enumerable.’

The study of similar problems has attracted the attention of several mathematicians.
Let A and B be subsets of C with A ⊂ B and let ΣA(B) be the set of all transcendental
analytic functions f : B→ B such that f (A) ⊆ A. In 1886, Weierstrass proved that
the set ΣQ(R) has the power of continuum. Moreover, he asserted that ΣQ(C) , ∅.
In 1896, Stäckel [7] confirmed the Weierstrass assertion by proving that for each
countable subset Σ ⊆ C and each dense subset T ⊆ C, there is a transcendental entire
function f such that f (Σ) ⊆ T . In particular, if A is a countable dense subset of C, then
ΣA(C) is uncountable. Consult the very extensive annotated bibliography of [8] for
additional references and history. Note that the Mahler question can be rephrased as:
is ΣL(C) , ∅?

Set, inductively, exp[n](x) = exp(exp[n−1](x)) and exp[0](x) = x. Now let us define
the following class of numbers:

Definition. A real number ξ is called an ultra-Liouville number if, for every positive
integer k, there exist infinitely many rational numbers p/q, with q > 1, such that

0 <
∣∣∣∣∣ξ − p

q

∣∣∣∣∣ < 1
exp[k](q)

.

The set of the ultra-Liouville numbers will be denoted by Lultra.

It follows from the definition that Lultra ⊆ L is also a dense Gδ set (in particular, it is
uncountable) which means that Lultra is a large set in a topological sense. In particular,
every real number can be written as the sum and (if it is nonzero) the product of two
ultra-Liouville numbers, as in [3]. However, from a metrical point of view, both sets L
and Lultra are very small: they have Hausdorff dimension zero.

The aim of this paper is to investigate a problem related to Mahler’s question
concerning Lultra. More precisely, our main result is the following

Theorem 1.1. The set ΣLultra (C) is uncountable.

In order to prove that, we shall prove a stronger result about the behaviour of some
functions in ΣQ(C). For a rational number z, we denote its denominator by den(z). We
prove the following result.
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Theorem 1.2. There exist uncountably many functions f ∈ ΣQ(C) with 1
2 < f ′(x) < 3

2 ,
for all x ∈ R, such that

den( f (p/q)) < q8q2
, (∗)

for all p/q ∈ Q, with q > 1. In particular, den( f (p/q)) < eeq
− 1, if q ≥ 7.

2. The proofs
2.1. Proof that Theorem 1.2 implies Theorem 1.1. Given an ultra-Liouville
number ξ and a positive integer k, there exist infinitely many rational numbers p/q
with q ≥ 7 and such that

0 <
∣∣∣∣∣ξ − p

q

∣∣∣∣∣ < 1
exp[k+2](q)

.

Let f be a function as in Theorem 1.2. By the mean value theorem, we obtain∣∣∣∣∣ f (ξ) − f
( p

q

)∣∣∣∣∣ ≤ 3
2

∣∣∣∣∣ξ − p
q

∣∣∣∣∣ < 3
2 exp[k+2](q)

.

We know that f (p/q) = a/b, with b < eeq
− 1. Then 3

2 exp[k](b) < exp[k+2](q) and hence∣∣∣∣∣ f (ξ) −
a
b

∣∣∣∣∣ =

∣∣∣∣∣ f (ξ) − f
( p

q

)∣∣∣∣∣ < 1
exp[k](b)

.

This implies that f (ξ) is an ultra-Liouville number as desired. �

2.2. Proof of Theorem 1.2. Before starting the proof, we shall state three useful
facts (which can be easily proved)

• For any distinct y, b ∈ [−1, 1], we have |sin(y − b)| > |y − b|/3.
(Indeed, the function sin(x)/x is decreasing for x ∈ (0, π], and sin(2)/2 > 1

3 .)
• For any distinct x, y ∈ Q ∩ [0, 1

2 ], with den(x), den(y) ≤ n, we have

|cos(2πx) − cos(2πy)| ≥
4
n3 .

(Indeed, we first assume 0 ≤ x < y ≤ 1
4 , so we have two cases: if x = 0 then

cos(2πx) − cos(2πy) = 1 − cos(2πy) = 2 sin2(πy) ≥ 8/n2 ≥ 16/n3, since den(y) ≥
2; and if 0 < x < y then x ≥ 1/n and, by the mean value theorem, |cos(2πx) −
cos(2πy)| ≥ 2π sin(2πx)(2πy − 2πx) ≥ 8πx(y − x) ≥ 8π(y − x)/n ≥ 8π/n3 > 16/n3.
If 1

4 < x, y < 1
2 , replace x, y by 1

2 − x, 1
2 − y and argue similarly.)

• For every ε ∈ (0, 2], any interval of length greater than ε contains at least two
rational numbers with denominator less than or equal to d2/εe.

Consider the following enumeration of Q ∩ [0, 1
2 ]:

{x1, x2, . . .} = {
0
1 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

2
5 ,

1
6 , . . .},

where we consider only irreducible fractions ordered in the following way: x1 = 0
1 ;

for every k ≥ 1, if xk = p/q with 2p < q − 2 then xk+1 = r/q where r is the minimum
with p < r ≤ q/2 and gcd(r, q) = 1, and if 2p ≥ q − 2 then xk+1 = 1/(q + 1). The set
A = Q ∩ [0, 1

2 ] has the properties that cos(2πx) , cos(2πy) for every x , y in A, and
that for every z ∈ Q there is (exactly one) x ∈ A with cos(2πx) = cos(2πz).
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One can see that den(xn) ≥
√

n, for all n ≥ 1: indeed, the number of positive integers
n for which the denominator of xn is equal to k is at most k for every k ≥ 1, so the
maximum positive integer n for which the denominator of xn is at most k is at most
1 + 2 + · · · + k = k(k + 1)/2 ≤ k2.

Define Bn = {y1, y2, . . . , yn} with yk := cos(2πxk) and define f by

f (x) = x + g(cos(2πx)),

where g(y) =
∑∞

n=1 cngn(y) and gn(y) =
∏

b∈Bn
sin(y − b). Note that f (x + 1) = f (x) + 1

and so it is enough to consider Q ∩ [0, 1) in order to characterise f on Q. Notice
also that, in order to show that f (x) ∈ Q for every x ∈ Q, it is enough to prove
this for x ∈ A. Indeed, given z ∈ Q, take x ∈ A with cos(2πx) = cos(2πz). Then
we have f (z) − z = g(cos(2πz)) = g(cos(2πx)) = f (x) − x, and so, if f (x) ∈ Q, then
f (z) = f (x) + z − x ∈ Q; in particular, if z ∈ Z then f (z) = z, since f (0) = 0.

Now we shall choose the constants cn inductively so that f will satisfy the desired
conditions in Theorem 2. The first requirements are cn = 0 for 1 ≤ n ≤ 5 and |cn| < 1/nn

for every positive integer n. On the other hand, for all y belonging to the open ball
B(0,R), one has that

|gn(y)| <
∏
b∈Bn

e|y−b| ≤ en(R+1),

where we use the fact that b ∈ [−1, 1]. Thus, since |cn| < 1/nn, we get |cngn(y)| ≤
(eR+1/n)n from which g (and so f ) is an entire function, since the series g(y) =∑∞

n=1 cngn(y), which defines g, converges uniformly in any of these balls. Moreover, for
x ∈ R, we have |g′n(x)| ≤ n, and so f ′(x) = 1 − 2π sin(2πx)

∑∞
n=1 cng′n(cos(2πx)) ∈ ( 1

2 ,
3
2 ),

since
∑∞

n=6 n/nn < 1
4π.

Suppose that c1, . . . , cn−1 have been chosen such that f (x1), . . . , f (xn) have the
desired property (notice that the choice of c1, . . . , cn−1 determines the values of
f (x1), . . . , f (xn), independently of the values of ck, k ≥ n; in particular, since ck = 0
for 1 ≤ k ≤ 5, we have f (xn) = xn for 1 ≤ n ≤ 6). Now we shall choose cn for which
f (xn+1) satisfies the requirements.

Let t ≤ n be positive integers with n ≥ 5. Then den(xn+1), den(xt) ≤ n (indeed,
den(x6) = 5 and den(xn+1) − den(xn) ≤ 1, for all n ≥ 1). Since cos(2πxn+1) , cos(2πxt),
we have |yn+1 − yt | ≥ 4/n3. Therefore

|sin (yn+1 − yt)| >
|yn+1 − yt |

3
>

4
3n3 >

1
n3

yielding |gn(yn+1)| > n−3n. Thus cngn(yn+1) runs through an interval of length larger
than 2/n4n. Now we may choose cn (in at least two ways) such that g(yn+1) is a rational
number with denominator at most n4n.

Given z ∈ Q, let q = den(z). If q = 1 then z ∈ Z and so f (z) = z and thus den( f (z)) =

1 ≤ q8q2
. Otherwise q > 1, and there is a positive integer k with cos(2πxk) = cos(2πz),

so xk and z have the same denominator; indeed, in this case, we have z − xk ∈ Z or
z + xk ∈ Z. Thus den( f (z) − z) = den(g(cos(2πz))) = den(g(cos(2πxk))) = den(g(yk)) ≤
(k − 1)4(k−1) < k4(k−1). Since q = den(z) = den(xk) ≥

√
k, we get den( f (z) − z) ≤
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k4(k−1) ≤ (q2)4(q2−1) = q8(q2−1). Then

den( f (z)) ≤ den(z) den( f (z) − z) = q den( f (z) − z) ≤ q · q8(q2−1) ≤ q8q2

as desired.
The proof that we can choose f to be transcendental follows because there is a

binary tree of different possibilities for f . (If we have chosen c1, c2, . . . , cn−1, different
choices of cn give different values of f (yn+1), which does not depend on the values
of ck for k > n, and so different functions f .) Thus, we have constructed uncountably
many possible functions, and the algebraic entire functions taking Q into itself must
be polynomials belonging to Q[z], which is a countable subset.

In fact, we can prove that all functions constructed above are transcendental, unless
cn = 0, for all n ∈ N: if such a function f is not transcendental, then f would be
polynomial, since it is an entire function. However, the property f (x + 1) = f (x) + 1
would imply f (x) = x + c, for some c > 0. Then g(sin(2πx)) is a constant, but this leads
to a contradiction, since g(y1) = 0 and g(yk+1) = ck

∏
b∈Bk

sin(yk+1 − b) , 0, where k is
minimal such that ck , 0. �
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[3] P. Erdős, ‘Representations of real numbers as sums and products of Liouville numbers’, Michigan

Math. J. 9 (1962), 59–60.
[4] J. Liouville, ‘Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même
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