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To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

1. Consider the positive and twice continuously differentiable solutions

u of the heat equation

in an open ί-strip Ω = Rnx{0,T) for some T > 0 , where Rn is the n-dimen-

sional Euclidean space.

In this note, we prove a theorem of Fatou type on u and, as its application,

the uniqueness theorem for the Cauchy problem of (1).

2. The following theorem corresponds to Fatou's theorem on harmonic

functions.

THEOREM 1. Let u be any positive solution of (1) in Ω. Then Urn u{x,t)
£—>0-{-

exists for almost every x = (xlf x2, , xn) e Rn.

Proof We begin with the Poisson-Stieltjes integral representation of u(x, t)

which is valid at least near the hyperplane ί = 0. The representation is

classical when n=l (cf. [5]).

Let t0 be any fixed value such that 0 < tQ<T and ε be any number such

that 0 < ε < T—tQ. Then we can represent u(x, t+ε) as follows:

(2) u{x,t + e) = \ k(y-x,t)u{y,ε)dy in Ωe ,

where k(y, t) = (4πt)-n<2 exp (~|2/l2/4if), I2/|2=Σ2/?

and Ωe = Rnx{0,T-ε) (e.g. [2] p. 42-48).
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By choosing x~0, t~t0 in (2), we see that the Borel measures

dμe = k{y,t0)u{y, ε)dy

are uniformly bounded for sufficiently small ε > 0. Hence, by Frostman's

selection theorem, there exists a sequence{//ey}7=1 of Borel measures converging

to some Borel measure μ as εx > ε2 > > ε; > -) 0. This means that

Km μεj{X) = μ(X) for each Borel set X with the boundary of ^-measure

zero. Hence, for any point {%, t) in Ω0 = Rnx(0, to)> we have

u(x, t+εj) = ̂ Rk(y-x, t)u{y, Sj)dy

where the passage to the limit is justified by noting the choice of μe. and by

the obvious estimate

o) = 0 ( ^ c o n s t ^l2) as \y\-+co .

By setting da~dμ\k{y, t0), we obtain the desired representation

(3) u(x,t) = \r?k(y-x>t)dσ in Ωo ,

where σ is obviously finite for the bounded Borel sets in Rn.

Now, we consider the Lebesgue decomposition of dσ\

dσ=φ{y)dy+ds ,

where the density φ ̂  0 is locally summable on Rn and 5 ̂  0 is singular. By

the strong version of Lebesgue's theorem and by the fact that the symmetric

derivative Dsyms(x) of s vanishes at almost every x e Rn> we have

(4) a-«\]y^βφ(y)~φ(x)\dy+ds(y)}-ϊθ as

for almost every x e Rn.

We may assume that (4) holds for x = 0. Then, for any ε > 0 , there exists

βQ > 0 such that the left hand side of (4) is less than ε whenever 0 < a< 2aQ.

Moreover, for any t such that 0 < t < Min {a\910) we choose a positive integer

N such that

By (3), we see

https://doi.org/10.1017/S0027763000012472 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012472


ON POSITIVE SOLUTIONS OF THE HEAT EQUATION 205

(ίι.κ»+S $*-
Estimating each integral, we see easily that

MO, t)-φ(O)I< Const. e+Const s Σ
yi

^ Const, ε as t -> 0+ ,

which proves our assertion.

Remark. P.C. Rosenbloom ([3], p. 191-200) remarked without proof the

validity of Fatou's theorem under a somewhat strong growth condition about

u{x, t).

3. Here, with the aid of Theorem 1, we prove the uniqueness theorem for

positive solutions under some weak conditions (cf. [5] and [3]). For the

purpose, we prepare the following lemma.

LEMMA. If σ ^ 0 is a Borel measure on Rn and if the upper symmetric derivative

Dsymσ(x) is finite at each point x e Rn, then a is absolutely continuous with respect to

the n-dimensional Lebesgue measure.

Although we could deduce its proof from Ward's decomposition theorem

([4], p. 151-152), we state here a direct proof along the way suggested by Prof.

S. Ito.

Proof. Assume that there exists a compact set K such that ΰ{K) > 0 and

such that the Lebesgue measure \K\ of K equals zero. Then, for a sufficiently

large M > 0 , there exists a compact subset Ko of K such that a(K0)>0 and

σ{S)lrn ̂  M whenever S is a closed sphere with center in Ko and of radius r

less than M~ι. On the other hand, on account of |ϋΓ0|=O, there exists a

sequence of open cubes {.Ij}l=i such that

(a) the diameter aj of 7y is less than M"1 ,

(b) U Ij 3 Ko and

(c) Σ|/ii<(^/2M)- ισ(ϋΓo)
. 7 = 1

By (b) and (c), we have, for at least one 7y0 ,
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Considering a closed sphere So with center in KoΠljoφφ and of radius aj0, we

have a contradiction.

Now we can prove the following.

THEOREM 2. If lint sup u{x, t)< +00 at each point x e Rn and if Urn u(x, t)

= 0 for almost every x e Rn, then u = 0 in Ω.

Proof Assume that, for some point, e.g., 8 = 0, we have Dsymσ{0) = +°°.

Then, there exists a sequence of radii {?γ}7=i converging to zero such that

where Sά denotes the closed sphere with center x = 0 and of radius rd. Thus,

for a sufficiently large j , we have by (3)

«(0, rfj ^ ί .^ k(y, r*-)dσ> Const.

which, by letting j ->+ooy leads us to a contradiction.

Hence, by the above lemma, a is absolutely continuous, that is, 5 = 0. On the

other hand, by our assumption and Theorem 1, we see that φ{x) = 0 for almost

every x e Rn. Thus, we have <y=0, that is, u{x, t) = 0 in ΩQ. Since t0 is arbi-

trary in (0, T), we conclude that &(#, 0 = 0 in i2.

4. By replacing k(y91) by the fundamental solution given in [1], we can

replace Laplacian Δ in our theorems by an elliptic differential operator A of

the following form:

where the matrix {a^x)) is symmetric and strictly positive definite for any

x e Rn and

x), Daυ{x), Dbi{x), c{x) and det (^-(αO)"1

are bounded and Holder continuous on Rn.
2^
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