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CONVOLUTION DIRICHLET SERIES AND

A KRONECKER LIMIT FORMULA FOR

SECOND-ORDER EISENSTEIN SERIES

JAY JORGENSON and CORMAC O’SULLIVAN

Abstract. In this article we derive analytic and Fourier aspects of a Kronecker
limit formula for second-order Eisenstein series. Let Γ be any Fuchsian group
of the first kind which acts on the hyperbolic upper half-space H such that the
quotient Γ\H has finite volume yet is non-compact. Associated to each cusp of
Γ\H, there is a classically studied first-order non-holomorphic Eisenstein series
E(s, z) which is defined by a generalized Dirichlet series that converges for
Re(s) > 1. The Eisenstein series E(s, z) admits a meromorphic continuation
with a simple pole at s = 1. Classically, Kronecker’s limit formula is the
study of the constant term K1(z) in the Laurent expansion of E(s, z) at s =
1. A number of authors recently have studied what is known as the second-

order Eisenstein series E∗(s, z), which is formed by twisting the Dirichlet series
that defines the series E(s, z) by periods of a given cusp form f . In the work
we present here, we study an analogue of Kronecker’s limit formula in the
setting of the second-order Eisenstein series E∗(s, z), meaning we determine
the constant term K2(z) in the Laurent expansion of E∗(s, z) at its first pole,
which is also at s = 1. To begin our investigation, we prove a bound for
the Fourier coefficients associated to the first-order Kronecker limit function
K1. We then define two families of convolution Dirichlet series, denoted by
L+

m and L−

m with m ∈ N, which are formed by using the Fourier coefficients
of K1 and the weight two cusp form f . We prove that for all m, L+

m and L−

m

admit a meromorphic continuation and are holomorphic at s = 1. Turning our
attention to the second-order Kronecker limit function K2, we first express K2

as a solution to various differential equations. Then we obtain its complete
Fourier expansion in terms of the cusp form f , the Fourier coefficients of the
first-order Kronecker limit function K1, and special values L+

m(1) and L−

m(1) of
the convolution Dirichlet series. Finally, we prove a bound for the special values
L+

m(1) and L−

m(1) which then implies a bound for the Fourier coefficients of K2.
Our analysis leads to certain natural questions concerning the holomorphic
projection operator, and we conclude this paper by examining certain numerical
examples and posing questions for future study.
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§1. Introduction and statement of results

Let Γ contained in PSL2(R) be a Fuchsian group of the first kind acting

on the upper half plane H with non-compact quotient Γ\H. As usual, we

write x + iy = z ∈ H. Set V equal to the hyperbolic volume of Γ\H.

Assuming there is a cusp at ∞, let Γ∞ = {γ ∈ Γ | γ∞ = ∞}, and, for

simplicity we may assume that Γ∞ is generated by z 7→ z + 1. The first-

order non-holomorphic Eisenstein series is defined by the series

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s

which converges for Re(s) > 1 and has a meromorphic continuation to all s

in C (see, for example, Chapter 6 of [Iw1]). The function E(z, s) is known

to have a simple pole at s = 1 with residue V −1, so then, when denoting

the constant part at s = 1 by K1, we can write

E(z, s) =
V −1

s− 1
+ K1(z) +O(s− 1) as s→ 1.

The first result which is known as Kronecker’s first limit formula is the

following. If Γ = PSL2(Z), then

(1.1) K1(z) =
−1

4π
log(y12|∆(z)|2) +

3

π
(γ − log 4π)

where

∆(z) = e2πiz
∞
∏

n=1

(

1 − e2πinz
)24

is the discriminant function, a weight 12 holomorphic cusp form for

PSL2(Z), and γ is Euler’s constant. Kronecker’s second limit formula, which

for brevity we do not state here, is a determination of the constant term at

the first pole of the first-order non-holomorphic Eisenstein series obtained

by twisting the series definition of E(z, s) with a unitary character of Γ.

We refer to [La], [Si], or [Za1] for proofs of these classical results.

Many generalizations of the Kronecker limit formulas exist, and the

results have diverse applications. In [La], [Si], and [Za2], formulas for class

numbers of algebraic number fields are obtained; in [C-P] and [P-W], the

limit formulas are used to find values of |η(z)| at quadratic irrationalities; in

[B-C-Z] and [Ra], special values of the Rogers-Ramanujan continued frac-

tion are evaluated; and in [R-S], the limit formulas are used to explicitly
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evaluate analytic torsion for flat line bundles on elliptic curves. The ana-

logue of Kronecker’s first limit formula to Hilbert modular varieties has

been studied, beginning with [As] for totally real fields and [E-G-M] for

imaginary quadratic fields, then [J-L] for general number fields. Returning

to the setting of PSL2(R), the limit function K1(z) has been determined for

other groups in [Gn]; specific results for the Hecke congruence subgroups

Γ0(N) are given in Section 10 below.

Our focus in this paper is to find formulas for the constant part at s = 1

of second-order Eisenstein series, which are defined by twisting the classi-

cal non-holomorphic Eisenstein series by a modular symbol. In general,

a non-holomorphic second-order Eisenstein series E∗(z, s) is associated to

the following data: A Fuchsian group Γ of the first kind; a parabolic sub-

group of Γ; and a weight two holomorphic form which vanishes in each

cusp of Γ. The precise definition is given below. The series E∗(z, s) was

first defined and studied in [Gd] in order to provide another approach to

the ABC-conjecture, which itself is connected to a number of fundamental

and motivating problems in number theory, such as: Mordell’s conjecture

(a theorem of Faltings); Szpiro’s conjecture; the degree conjecture; Gold-

feld’s period conjecture; and various questions and assertions regarding the

Shafarevich-Tate group. In particular, we refer the reader to [Gd2] where

Goldfeld states what he calls the Modular Symbol Conjecture, together with

a summary of the inter-relations between the aforementioned conjectures

as well as the role played by the Modular Symbol Conjecture. In [M-M],

Manin and Marcolli generalized the classical Gauss-Kuzmin theorem having

to do with the distribution of continued fractions. Going further, the au-

thors develop connections between weighted averages of modular symbols,

such as E∗(z, s), and the distribution of continued fractions. The distribu-

tion of modular symbols themselves is elaborated by Petridis and Risager in

[P-R] with their work on E∗(z, s) and its generalizations. In [K-Z], Kleban

and Zagier studied crossing probabilities and free energies for conformally

invariant critical 2-D systems, which they derive from conformal field the-

ory and certain stochastic integrals. It is shown in [K-Z] that the crossing

probabilities and partition functions they encountered may be expressed as

values of what should now be viewed as holomorphic second-order modular

forms. As discussed in the concluding remarks of [K-Z], second-order forms

in general can, in certain cases, be viewed as components of vector-valued

modular forms associated to certain representations of the Fuchsian group

https://doi.org/10.1017/S0027763000025605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025605


50 J. JORGENSON AND C. O’SULLIVAN

Γ into SL2. In this way, the non-holomorphic second-order Eisenstein se-

ries, and second-order forms in general, are manifest in all aspects of the

spectral theory, holomorphic function theory, number theory, and algebraic

geometry of certain vector-valued functions on Riemann surfaces. In sum-

mary, second-order forms, which include E∗(z, s), have at the present an

established place in number theory [Gd2], [M-M], [P-R] and in physics [K-Z];

furthermore, additional connections to converse theorems in number theory,

to spectral theory and to algebraic geometry are pending. As a result, any

and all results regarding second-order forms should be viewed as interesting

for their own sake as well as having wide yet unforeseen consequences.

For the purposes of narrowing our attention, we will concentrate on two

aspects of the Kronecker limit formula: Differential equations, and Fourier

expansions, with the latter necessarily requiring the study of the growth of

the Fourier coefficients. Before stating our results, let us establish necessary

background material and notation.

Let Sk(Γ) be the space of holomorphic weight k cusp forms for Γ, mean-

ing the vector space of holomorphic functions g on H which satisfy the

transformation property

g(γz) = j(γ, z)kg(z) with j
((

a b
c d

)

, z
)

= cz + d for
(

a b
c d

)

∈ Γ,

and decay rapidly in each cusp in the quotient space Γ\H. As usual, we

equip the vector space Sk(Γ) with the well-known Petersson inner product.

Since the analytic transformation z 7→ z + 1 corresponds to an element of

Γ, we have that any f ∈ Sk(Γ) admits a Fourier expansion, for which we

use the notation

f(z) =

∞
∑

n=1

ane(nz) where e(z) = e2πiz ,

and from which we define

F (z) =

∞
∑

n=1

an

n
e(nz) = 2πi

∫ z

i∞
f(w) dw.

For the remainder of this paper we set f to have weight two: f ∈ S2(Γ).

The modular symbol 〈 · , f〉 associated to f is the homomorphism from Γ

to C given by

〈γ, f〉 = 2πi

∫ γz

z
f(w) dw = F (γz) − F (z).
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The second-order non-holomorphic Eisenstein series associated to f is de-

fined as

E∗(z, s) =
∑

γ∈Γ∞\Γ

〈γ, f〉 Im(γz)s.

In [O’S1] it is shown that this series converges absolutely and uniformly for

Re(s) > 2. The result (7.7) in Section 7 implies that

〈γ, f〉 � | log Im(γz)| + | log Im(z)| + 1.

With this bound it follows that the series E∗(z, s) is convergent for Re(s) >

1. In [P-R] and [Ri] they also show convergence for Re(s) > 1 using a

different method.

For any γ, τ ∈ Γ, the non-holomorphic Eisenstein series satisfy the

transformation properties

E(γz, s) −E(z, s) = 0,(1.2)

E∗(γτz, s) −E∗(γz, s) −E∗(τz, s) +E∗(z, s) = 0.(1.3)

In general, any function that transforms like (1.2) (resp. (1.3)) is called a

first-order automorphic form (resp. second-order automorphic form). Both

Eisenstein series are eigenfunctions of the hyperbolic Laplacian

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

= −4y2 d

dz

d

dz
,

meaning

∆E(z, s) = s(1 − s)E(z, s),

∆E∗(z, s) = s(1 − s)E∗(z, s).

The second-order Eisenstein series E∗(z, s) is known to have a meromorphic

continuation to all s ∈ C (see [Gd], [O’S1], [Pe]). In [G-O’S] it is shown

that E∗(z, s) has a simple pole at s = 1 with residue −F (z)V −1, meaning

lim
s→1

(

E∗(z, s) + F (z)
V −1

s− 1

)

exists.

Recalling that the first-order Eisenstein series E(z, s) has a simple pole at

s = 1 with residue V −1, we also can say that

lim
s→1

(

E∗(z, s) + F (z)E(s, z)
)

exists.
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We take as the second-order analogue of the Kronecker limit formula the

study of the function

K2(z) = lim
s→1

(

E∗(z, s) + F (z)E(z, s)
)

for the following reason. By the definition of F , we have that

E∗(z, s) + F (z)E(z, s) =
∑

γ∈Γ∞\Γ

F (γz) Im(γz)s,

which can be observed to be automorphic with respect to Γ for all s, in

particular when s approaches 1. Therefore, the function K2 is necessarily

Γ-invariant. Thus, in this notation,

lim
s→1

(

E∗(z, s) + F (z)
V −1

s− 1

)

= K2(z) − F (z)K1(z).

Before describing our results concerning the second-order Kronecker

limit function K2(z), we need the following theorem concerning the first-

order Kronecker limit function K1(z).

Theorem 1.1. The first-order Kronecker limit function K1 admits the

Fourier expansion

(1.4) K1(z) =
∑

n<0

k(n)e(nz) + y +K − V −1 log y +
∑

n>0

k(n)e(nz)

with constants K and k(n). Furthermore, k(−n) = k(n) and k(n) � |n|1+ε,

with an implied constant which depends solely on Γ and ε > 0.

We now can state the main results we obtain in our study of the second-

order Kronecker limit function K2. To begin, we have the following theorem

regarding the convolution Dirichlet series referred to in the title of the

article.

Theorem 1.2. Fix a positive integer m, and let k(0) = K + (γ +
log 4πm)/V where K refers to a component of the constant term in the

Fourier expansion (1.4) of K1 and V is the hyperbolic volume of Γ\H.

Formally, for s ∈ C, define the convolution Dirichlet series

L+
m(s) =

∞
∑

n=1

ank(m− n)

ns
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and

L−
m(s) =

∞
∑

n=1

an

n

k(−m− n)

(m+ n)s−1
,

which are formed from the Fourier coefficients of f and K1. Then the series

L+
m and L−

m converge for Re(s) > 3, admit a meromorphic continuation to

all s in C with Re(s) > 1/2, and are holomorphic at s = 1.

The usefulness of Theorem 1.2 will be evident in the results below

regarding the Fourier expansion of K2.

It is known, and indeed is a elementary exercise, that by combining the

differential equation for E(z, s) with its Laurent expansion at s = 1, one

can prove the differential equation ∆K1(z) = −V −1. As we will see below,

the second-order analogue of this formula is the equation

∆K2(z) = −8πiy2f(z)
d

dz
K1(z).

A more basic result would be to compute the differential equation satisfied

by d
dz K2(z) or by d

dz K2(z). We carry out these derivations, ultimately

proving the following two theorems.

Theorem 1.3. Let Πhol denote the holomorphic projection operator

for the space of smooth, weight two automorphic forms into S2(Γ). Then

1

2πi

d

dz
K2(z) = f(z)K1(z) − Πhol

(

f(z)K1(z)
)

.

Furthermore, if we set

(1.5) K+
1 (z) =

∑

n>0

k(n)e(nz),

then we have

Πhol

(

f(z)K1(z)
)

=

∞
∑

m=1

mL+
m(1)e(mz) − 1

2πi
F (z)

d

dz
K+

1 (z) +
1

4π
F (z).

Theorem 1.4. Let Ws(z) be the classical Whittacker function associ-

ated to PSL2(R) and set

W ∗(z) =
d

ds
Ws(z)

∣

∣

∣

∣

s=1

= Γ(0, 4πy)e4πye(z),
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where Γ(s, a) denotes the incomplete gamma function

Γ(s, a) =

∫ ∞

a
e−tts−1 dt.

Then

d

dz
K2(z) =

−2πi

V

∞
∑

n=1

anW
∗(nz) +

i

2V y
F (z)

+ F (z)
d

dz
K1(z) + 2πi

∞
∑

m=1

mL−
m(1)e(−mz).

As one would hope, Theorem 1.3 and Theorem 1.4 express the deriva-

tives of K2 in terms of the initial information, namely K1 and f . Observe

that either Theorem 1.3 or Theorem 1.4 can be used to compute ∆K2;

however, neither result can be used to derive the other.

Theorem 1.3 is appealing because of its relatively concise statement.

Theorems 1.3 and 1.4 indicate the necessity in studying the Dirichlet series

which are defined in Theorem 1.2. At this point, it must be noted that, in

order to make sense out of Theorems 1.3 and 1.4, we need to have some idea

as to the growth of the special values L+
m(1) and L−

m(1). Before doing so,

we state the following result, which gives the complete Fourier expansion

of the second-order Kronecker limit function K2.

Theorem 1.5. With notation as described above, the second-order

Kronecker limit function K2(z) admits the Fourier expansion

K2(z) =
−1

V

∞
∑

n=1

an

n
W ∗(nz) −

∞
∑

m=1

L+
m(1)e(mz)

−
∞

∑

m=1

L−
m(1)e(−mz) + F (z)K1(z).

Theorem 1.5 gives a complete description of the second-order Kronecker

limit function associated to E∗(z, s) at s = 1. The new ingredients that are

not fully understood are the special values L+
m(1) and L−

m(1). Theorem 1.2

asserts that L+
m(1) and L−

m(1) are finite for all m, but to show that the

Fourier expansion in Theorem 1.5 makes sense we bound the special values

L+
m(1) and L−

m(1). These bounds will imply that the series expansions in

Theorems 1.3, 1.4 and 1.5 converge for all z ∈ H.
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Theorem 1.6. With the notation as above, we have the bounds

L+
m(1), L−

m(1) � m1+ε

with an implied constant that depends solely on Γ, f and ε > 0. In addition,

if : (i) the Fourier coefficients an of f are in R for all n, and (ii) we have

that ι(Γ) = Γ where
(

a b
c d

)

ι−→
(

−a b
c −d

)

,

then the special values L+
m(1) and L−

m(1) are also in R for all m > 1.

To summarize, Theorem 1.1 establishes the Fourier expansion of the

first-order Kronecker limit function K1 and sets notation to be used later.

Theorem 1.2 defines two families of convolution Dirichlet series and asserts

their meromorphic continuation and holomorphicity at s = 1. Theorem 1.3

and Theorem 1.4 state two different first-order differential equations which

are satisfied by the second-order Kronecker limit function K2, and Theo-

rem 1.5 gives its Fourier expansion. Bounds for the Fourier coefficients of

K1 are given in Theorem 1.1, and Theorem 1.6 gives analogous bounds for

the Fourier coefficients of K2. We believe that these results provide a com-

plete investigation into analytic aspects of the Fourier series development

for K2.

The outline of the paper is as follows. In Section 2 we initiate the

development of the Fourier expansion of K2 and quickly find that

K2(z) = A(z) +B(z) + F (z)K1(z)

where FK1 is understood and A is very similar to F/V but non-holomorphic

(in fact ∆A = F/V ). The main work in this paper is in understanding the

term

B(z) =

∞
∑

n=1

(

bne(nz) + b−ne(−nz̄)
)

.

The barrier to explicitly finding the constants bn is that they come from

the Fourier coefficients φ∗n(s) of the second-order Eisenstein series E∗(z, s).

These coefficients involve Kloosterman sums twisted by modular symbols

and their values are not known inside the critical strip 0 6 Re(s) 6 1 even

for the simplest congruence groups.
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In Section 3 we state, but do not prove, three key results: two on the

analytic aspects of Poincaré series, both holomorphic of weight 2 and non-

holomorphic, and a third concerning the holomorphic projection operator.

Taken together these tools are powerful enough to probe the elements bn.

Because the proofs are so involved, we postpone verifying the statements of

these results until later in the paper.

In Section 4, we obtain information about the holomorphic part of B

by considering the holomorphic projection of the smooth, weight 2 function
d
dzK2(z). In the next section we show that the coefficients bm, for m > 0,

are given by the values of the convolution Dirichlet series L+
m(s) at s = 1.

This proves Theorem 1.3. A similar idea is used in Section 6 to find the anti-

holomorphic part of B in terms of L−
m(1), proving Theorem 1.4. Combining

these two theorems produces Theorem 1.5. There seems to be no symmetry

between the holomorphic and anti-holomorphic parts of B. This is to be

expected since the definition of E∗ includes a holomorphic cusp form f ,

breaking the symmetry.

In Section 7 we complete the proof of Theorem 1.1 (bounding the

Fourier coefficients of K1) and prove Theorem 1.6 concerning the bounds on

bn. All results in Section 7 come from careful considerations involving the

asyptotics of E(z, s) and E∗(z, s) as z approaches cusps. The crude bounds

coming from the meromorphic continuation of these series are improved

by a type of bootstrapping procedure. These results are independent of

those in previous sections. At this time, there are a few remaining pieces

to complete: The proofs of the results in Section 3 as well as the mero-

morphic continuations and regularity at s = 1 of L+
m(s) and L−

m(s). In

Section 8 we use the spectral theory of automorphic forms to prove The-

orem 3.1 and Theorem 3.2, and in Section 9 we prove Proposition 3.3 as

well as the remaining properties regarding L+
m and L−

m by introducing a

type of non-holomorphic Poincaré series, Qm(z, s;F ), that includes F in its

definition.

Finally, in Section 10 we conclude with two types of examples: The

first example shows how to explicitly evaluate the first-order Kronecker

limit function K1 for the congruence subgroups Γ0(N) for square-free N ,

and the second example poses, as well as numerically investigates, a problem

related to Theorem 1.3 involving the holomorphic projection operator.

The detailed, technical results in this paper begin in Section 7, then

carry through to Sections 8 and 9. These precise calculations are used to
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prove the statements in Section 3 and the meromorphic continuation of

L+
m and L−

m, the details of which comprise the most difficult parts of our

work. The arrangement of sections in this paper is meant to provide the

motivation for each new result as it is needed and is purposefully consistent

with our order of discovery.

§2. The Fourier expansion of K2

Our starting point is the Fourier expansions for the functions E∗(z, s),

E(z, s) and F (z), from which we obtain a somewhat general Fourier expan-

sion for K2(z). From [O’S1], page 164, we have that the Fourier expansion

for the second-order Eisenstein series E∗(z, s) is

(2.1) E∗(z, s) =
∑

n6=0

φ∗n(s)Ws(nz)

where Ws is the Whittaker function

Ws(nz) = 2|n|1/2y1/2Ks−1/2(2π|n|y)e(nx)

and Ks is the K-Bessel function

Ks(z) =
1

2

∫ ∞

0
e−z(u+1/u)/2us du

u
for Re(s) > 0.

Note that we have also used Corollary 4.3 of [O’S1] which proves that, in

this instance, the second-order Eisenstein series has no constant term in its

Fourier expansion. Exact formulas in terms of number theoretic functions

are known for the Fourier coefficients of the first-order Eisenstein series

E(z, s) in the case when Γ is a congruence subgroup. In general, no such

formulas are known for the coefficients φ∗
n(s). Let us use the following

Laurent series:

E(z, s) =
V −1

s− 1
+ K1(z) +O(s− 1),

φ∗n(s) =
bn(−1)

s− 1
+ bn(0) +O(s− 1),

Ws(z) = e(z) +W ∗(z)(s− 1) +O((s− 1)2)

where W ∗(z) = d
dsWs(z)

∣

∣

s=1
. In Corollary 2.2 below, we will prove the

formula for W ∗(z) asserted in Theorem 1.4. Note that, by definition,
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Ws(z) = Ws(z̄) for z in the lower half plane. Substituting these expan-

sions into the definition

K2(z) = lim
s→1

(

E∗(z, s) + F (z)E(z, s)
)

yields the expression

K2(z) = lim
s→1

[

∑

n6=0

bn(−1)

s− 1
e(nz) + F (z)

V −1

s− 1

+
∞
∑

n=1

(

bn(0)e(nz) + b−n(0)e(−nz̄)
)

+
∑

n6=0

bn(−1)W ∗(nz) + F (z)K1(z)

]

.

Since the limit which defines K2(z) exists, it is evident that we must have

bn(−1) =











−an

n
V −1 n > 1

0 otherwise











.

Set bn = bn(0) and, at this time, we can write

(2.2) K2(z) = A(z) +B(z) + F (z)K1(z)

where

A(z) =
−1

V

∞
∑

n=1

an

n
W ∗(nz),(2.3)

B(z) =
∞

∑

n=1

(

bne(nz) + b−ne(−nz̄)
)

.(2.4)

To go further, we compute the resulting formula obtained by applying the

Laplacian to K1, K2, A, and B. Using that

∆

[

lim
s→1

(

E(z, s) − V −1

s− 1

)]

= lim
s→1

[

∆

(

E(z, s) − V −1

s− 1

)]

= lim
s→1

[

s(1 − s)E(z, s)
]

one shows that

(2.5) ∆K1(z) = −V −1.
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Similarly, we now consider

∆ lim
s→1

(

E∗(z, s) + F (z)E(z, s)
)

= lim
s→1

∆
(

E∗(z, s) + F (z)E(z, s)
)

,

which can be easily computed. Since

∆
(

E∗(z, s) + F (z)E(z, s)
)

= s(1 − s)
(

E∗(z, s) + F (z)E(z, s)
)

− 8πiy2f(z)
d

dz
E(z, s),

we then obtain, by taking s→ 1, the formula

(2.6) ∆K2(z) = −8πiy2f(z)
d

dz
K1(z).

Also ∆B(z) = 0, so then we have by (2.2) that

∆K2(z) = ∆A(z) + ∆(F (z)K1(z)),

which, when combined with (2.5) and (2.6), yields the equality

(2.7) ∆A(z) = F (z)V −1.

In order to examine A(z) more explicitly, we shall study W ∗(nz) by

means of its definition in terms of K-Bessel functions. For this, we use that

the K-Bessel function can be written as

(2.8) Ks−1/2(2πy) =

√
π

Γ(s)
(πy)s−1/2

∫ ∞

1
(t2 − 1)s−1e−2πty dt.

(see page 205, [Iw1]). The integral in (2.8) converges absolutely for Re(s) >

0 and y > 0. We want to find W ∗(z) = d
dsWs(z)

∣

∣

s=1
.

Lemma 2.1. For all y > 0, we have

d

ds
Ks−1/2(2πy)

∣

∣

∣

∣

s=1

= Γ(0, 4πy)
e2πy

2
√
y
.

Proof. Trivially, we have

d

ds

∫ ∞

1
(t2 − 1)s−1e−2πty dt

∣

∣

∣

∣

s=1

=

∫ ∞

1
e−2πty log(t− 1) dt+

∫ ∞

1
e−2πty log(t+ 1) dt

= e−2πy

∫ ∞

0
e−2πuy log u du+ e2πy

∫ ∞

2
e−2πuy log u du.
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Now
∫ ∞

0
e−u log u du = Γ′(1),

where Γ(s) denotes the classical gamma function. Therefore,
∫ ∞

0
e−2πuy log u du =

1

2πy
(Γ′(1) − log 2πy).

Through elementary computations, using integration by parts, one can show
that

∫ ∞

2
e−2πuy log u du =

1

2πy

(

Γ(0, 4πy) + e−4πy log 2
)

.

Combining these formulas, we obtain the relation

d

ds

∫ ∞

1
(t2 − 1)s−1e−2πty dt

∣

∣

∣

∣

s=1

=
1

2πy

(

Γ(0, 4πy)e2πy + (Γ′(1) − log πy)e−2πy
)

.

To complete the proof, one simply computes the derivative of (2.8) with
respect to s and sets s = 1. Using that

∫ ∞

1
(t2 − 1)s−1e−2πty dt

∣

∣

∣

∣

s=1

=
e2πy

2πy
,

the result follows from the standard rules of calculus.

Corollary 2.2. For z in H and n > 1, we have the following formu-

las:

W ∗(nz) = Γ(0, 4πny)e4πnye(nz),

d

dz
W ∗(nz) =

i

2y
e(nz),

d

dz
W ∗(nz) =

−i
2y
e(nz) + 2πinW ∗(nz),

∆W ∗(nz) = −e(nz).

Proof. The first identity follows directly from the definition of the
Whittacker function in terms of the K-Bessel function, together with Lem-
ma 2.1 and elementary calculus. The remaining three formulas are direct
computations from the first expression, using nothing more than the fun-
damental theorem of calculus and standard formulas for differentiation of
functions of one complex variable.
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These computations allow us to give a precise description of A(z). In-

deed, by definition we have

A(z) =
−1

V

∞
∑

n=1

an

n
W ∗(nz),

so then Corollary 2.2 allows one to compute various derivatives of A(z).

§3. Poincaré series and holomorphic projection

In order to continue studying the computations given in the previous

section, we will use the holomorphic projection operator, whose basic prop-

erties we recall in the present section.

For any two smooth functions ϕ1, ϕ2 which transform with weight

k, and have exponential decay at the cusps, the Petersson inner product

between ϕ1 and ϕ2 is defined by

〈ϕ1, ϕ2〉k =

∫

Γ\H
ykϕ1(z)ϕ2(z) dµ(z),

where dµ(z) = dxdy/y2 is the usual hyperbolic volume form. It can be

shown that the Petersson inner product is non-degenerate on the space of

holomorphic weight k cuspforms Sk(Γ). Consequently, for any ϕ1 as above,

there exists a form Πhol(ϕ1) in Sk(Γ) such that for every g in Sk(Γ)

〈ϕ1, g〉k = 〈Πhol(ϕ1), g〉k.

The image Πhol(ϕ1) of ϕ1 into Sk(Γ) is called the holomorphic projection

of ϕ1.

In the appendix of [Za1], beginning on page 286, it is shown that the

Fourier coefficients of Πhol(ϕ1) can be computed by taking g in the inner

product above to be the weight k holomorphic Poincaré series. In Section 8

we construct and study aspects of these series relevant for our work. In

order to proceed with the computations from the previous section, we shall

state here various results regarding these Poincaré series, leaving the proofs

of the assertions until Section 8.

Thus far we have only concerned ourselves with a single cusp, which we

assumed was uniformized to be at the point at ∞. Let us now consider the

possibility that an arbitrary (finite) number of Γ-inequivalent cusps exists.

If there are other inequivalent cusps, let us fix representatives, label them
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a, b, c, . . . and use the scaling matrices σa, σb, σc, . . . to give local coordinates

near these cusps (see Chapter 2 of [Iw1] as well as [O’S1]). The subgroup

Γa is the set of elements of Γ which fixes the cusps equivalent to a, and we

have that

σ−1
a Γaσa = Γ∞ =

{

±
(

1 m
0 1

)
∣

∣

∣

∣

m ∈ Z

}

.

Following Selberg [Se], for each m > 1, we define the non-holomorphic

Poincaré series associated to the cusp a as

Uam(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)se(mσ−1

a γz).

We shall also need U ′
am = d

dzUam(z, s), the termwise derivative of Uam.

To examine the growth of Uam and other automorphic functions, we

follow the convention set in (2.42) of [Iw1] and introduce the useful notation

yΓ(z) = max
a

max
γ∈Γ

(Im(σ−1
a γz)).

Heuristically, the function yΓ(z) measures how close the point z ∈ Γ\H
is to a cusp. If ψ (or |ψ|) is a smooth weight zero form (i.e., Γ-invariant

function), then it is more convenient to write

ψ(z) � yΓ(z)A,

than, for example, writing that ψ(σaz) � yA for each cusp a as y → ∞.

Theorem 3.1. For all m > 1 and Re(s) > 1, the series Uam(z, s) and
d
dzUam(z, s) are pointwise absolutely convergent and uniformly convergent

for s in compact sets. Furthermore, both series admit meromorphic contin-

uations to all s ∈ C which are analytic at s = 1. For Re(s) > 1/2 we have

the growth conditions

Uam(z, s) � |m|−1/2
√

yΓ(z)

and

yU ′
am(z, s) � |m|−1/2

√

yΓ(z)

with an implied constant depending on s and Γ alone.
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Going further, let us define

Vam(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)se(mσ−1

a γz)j(σ−1
a γ, z)−2

which can be viewed as a weight two version of Uam. Formally, we would like

to define our weight two holomorphic Poincaré series, which we will denote

by Pam(z)2, to be given by Vam(z, 0). However, as will be evident from the

analysis of Section 8, the series defining Vam(z, s) is absolutely convergent

only for Re(s) > 0. In order to address this difficulty, we proceed as follows.

By a direct computation, one can easily show that for any z ∈ H and

γ ∈ PSL2(R), we have the identity

2i
d

dz

[

Im(γz)se(mγz)
]

= s
Im(γz)s−1

j(γ, z)2
e(mγz) − 4πm

Im(γz)s

j(γ, z)2
e(mγz).

By summing over all coset representatives γ ∈ Γa\Γ, this implies the for-

mula

(3.1) sVam(z, s− 1) = 2i
d

dz
Uam(z, s) + 4πmVam(z, s),

which necessarily holds only in the half-plane of absolute convergence for

both series which define Uam and Vam. Therefore, in the light of The-

orem 3.1, it makes (formal) sense to define the Poincaré series Pam(z)2
through the formula

Pam(z)2 = 2i
d

dz
Uam(z, 1) + 4πmVam(z, 1).

We verify in Theorem 3.2 below that this does indeed give us a weight two

holomorphic cusp form. Let us now examine how one can evaluate various

inner products involving Pam(z)2.

Given a suitable function ϕ, we propose to evaluate 〈ϕ, Pam( · )2〉2 by

first studying the meromorphic function

(3.2) 〈ϕ, Vam( · , s− 1)〉2 =

∫ ∞

0

∫ 1

0
ϕ(z)ys−1e(mz) dxdy.

Under certain restrictions on ϕ the unfolded inner product on the right of

(3.2) will converge for Re(s) large and may be computed to yield a function

with a natural meromorphic continuation (for example involving gamma

functions) to s = 1. In this way (3.2) at s = 1 yields an evaluation of

〈ϕ, Pam( · )2〉2. Indeed, we will follow this method to prove the following

theorem.
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Theorem 3.2. The weight two Poincaré series Pam(z)2 is in S2(Γ),
the vector space of holomorphic weight two cusp forms with respect to Γ.

Furthermore, for any f in S2(Γ) with

j(σa, z)
−2f(σaz) =

∞
∑

n=1

aa(n)e(nz)

we have that

〈f, Pam( · )2〉2 = aa(m)/(4πm).

Frequently, we will assume that the cusp in question has been uni-

formized to be at ∞, so then, for ease of notation, we will set Um = U∞m,

Vm = V∞m and Pm = P∞m. From the above discussion, we have the follow-

ing. If ϕ is a smooth, bounded, continuous function on H which transforms

like a weight two form with respect to the action by Γ, we then have

(3.3) Πhol(ϕ) =

∞
∑

m=1

dme(mz) where dm = 4πm〈ϕ, Pm( · )2〉2.

As stated above, the proofs of Theorem 3.1 and Theorem 3.2 will be given

in Section 8 below.

In the forthcoming work, we will make use of the following proposition.

Proposition 3.3. Let ϕ1 be a smooth weight zero form (function) and

ϕ2 a smooth form of weight two. Then:

(i) The form d
dzϕ1 is a weight two form;

(ii) The form y2 d
dzϕ2 is a weight zero form;

(iii) Assuming appropriate growth conditions on the functions near the

cusps, we have the inner product formula

〈 d

dz
ϕ1, ϕ2

〉

2
= −

〈

ϕ1, y
2 d

dz
ϕ2

〉

0
.

The growth conditions are satisfied, for example, if ϕ1 and d
dzϕ1 have at

most polynomial growth in y in the cusps and if ϕ2 and y2 d
dzϕ2 have expo-

nential decay in the cusps.
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Proposition 3.3 will be proved as a corollary to Proposition 9.3, which

states a more general result involving the Maass weight raising and lowering

operators. We state the specific result here in order to continue with the

calculations given in Section 2. We note that the proof of Proposition 2.1.3

of [Bu], which involves Stokes’s theorem, may be adapted to yield a proof of

Proposition 3.3. Rather than following this approach, our proof of Propo-

sition 9.3 involves integration by parts together with some aspects of the

first-order Eisenstein series, which gives an argument that extends to con-

sider others pairs of forms with complementary weights.

Directly from Proposition 3.3, we have the following.

Corollary 3.4. Let ϕ be a smooth, weight 0 function on H which is

Γ invariant. Assume that ϕ and d
dzϕ have at most polynomial growth in

the cusps of Γ\H. Then

Πhol

(

d

dz
ϕ

)

= 0.

Proof. From Theorem 3.2, we have that the weight two Poincaré series
is holomorphic, i.e.

d

dz
Pm(z)2 = 0.

Corollary 3.4 now follows by using the second part of Theorem 3.2 together
with Proposition 3.3.

To re-iterate, the proofs of Theorem 3.1 and Theorem 3.2 will be given

in Section 8, and the proof of Proposition 3.3 will be given in Section 9.

§4. K2 and the holomorphic projection of fK1

Using the material stated in Section 3, we now continue with the cal-

culations from Section 2. Specifically, we will complete the proof of Theo-

rem 1.3 in this section and the next.

Recall from (2.2) that we have written

K2(z) = A(z) +B(z) + F (z)K1(z),
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with A(z) and B(z) defined in (2.3) and (2.4), respectively. Using Corol-

lary 2.2, we then get the formula

(4.1)
d

dz
K2(z) =

d

dz
A(z) +

d

dz
B(z) +

d

dz
(F (z)K1(z))

=
−i

2V y
F (z) + 2πi

∞
∑

n=1

nbne(nz) + F (z)
d

dz
K1(z) + 2πif(z)K1(z).

The right-hand side of (4.1) is a sum of two weight two forms. Since the

holomorphic projection operator is linear, we then have

Πhol

(

d

dz
K2(z)

)

= Πhol

( −i
2V y

F (z) + 2πi
∞

∑

n=1

nbne(nz) + F (z)
d

dz
K1(z)

)

+ Πhol(2πif(z)K1(z)).

By Corollary 3.4, if K2(z) and d
dzK2(z) have polynomial growth at the cusps

then

Πhol

(

d

dz
K2(z)

)

= 0.

We prove this polynomial growth in Lemma 4.1 at the end of this section.

Continuing with our argument,

Πhol

( −i
2V y

F (z) + 2πi

∞
∑

n=1

nbne(nz) + F (z)
d

dz
K1(z)

)

+ Πhol(2πif(z)K1(z)) = 0.

Let

(4.2) g(z) =
−i

2V y
F (z) + 2πi

∞
∑

n=1

nbne(nz) + F (z)
d

dz
K1(z).

We now will show that (4.2) is actually a holomorphic cusp form, and hence

equal to its own holomorphic projection. Therefore g = −2πiΠhol(fK1) and

substituting this back into (4.1) will complete the proof of the first part of

Theorem 1.3.
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Using the differential equation (2.5) for K1, we get

d

dz̄
g(z) =

d

dz̄

( −i
2V y

F (z) + F (z)
d

dz
K1(z)

)

=
−i
2V

F (z)
d

dz̄
(y−1) + F (z)

d2

dzdz̄
K1(z)

=
−i
2V

F (z)
1

2i
y−2 + F (z)

(

− 1

4y2
(−V −1)

)

= 0,

hence g is holomorphic. It thus remains to show that g has exponential

decay in each cusp, which will follow by studying its Fourier expansion in

each cusp. In this generality, there are a number of analytic quantities asso-

ciated with the cusp a. Using an obvious extension of notation established

thus far, we define:

Ea(z, s) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)s,

E∗
a(z, s) =

∑

γ∈Γa\Γ

〈γ, f〉 Im(σ−1
a γz)s,

Fa(z) = 2πi

∫ z

a

f(w) dw,

K1a(z) = lim
s→1

(

Ea(z, s) −
V −1

s− 1

)

,

K2a(z) = lim
s→1

(

E∗
a(z, s) + Fa(z)Ea(z, s)

)

.

The relevant Fourier expansions at the cusp b are:

Ea(σbz, s) = δaby
s + φab(s)y

1−s +
∑

n6=0

φab(n, s)Ws(nz),(4.3)

E∗
a(σbz, s) = φ∗ab(0, s)y

1−s +
∑

n6=0

φ∗ab(n, s)Ws(nz),(4.4)

j(σb, z)
−2f(σbz) =

∞
∑

n=1

ab(n)e(nz),

Fa(σbz) = Tab +

∞
∑

n=1

ab(n)

n
e(nz),(4.5)

where we define the period Tab = 2πi
∫ b

a
f(w) dw. We refer to equation

(3.20) [Iw1] for a proof of (4.3), and to equation (1.1) of [O’S1] for a proof
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of (4.4). Note that by Corollary 4.3 of [O’S1] we have that φ∗
aa(0, s) = 0

which agrees with (2.1). We write the Laurent expansion of φ∗
ab

(n, s) at

s = 1 as

φ∗ab(n, s) =
bab(n,−1)

s− 1
+ bab(n, 0) +O(s− 1).

The analogue of (2.2) for K2a at the cusp b is then

(4.6) K2a(σbz) =
Tab

V
log y + bab(0, 0) +

−1

V

∞
∑

n=1

ab(n)

n
W ∗(nz)

+

∞
∑

n=1

(

bab(n, 0)e(nz) + bab(−n, 0)e(−nz)
)

+ Fa(σbz)K1a(σbz).

Assuming the Fourier expansion

K1a(σbz) =
∑

n<0

kab(n)e(nz) + δaby + kab(0) − V −1 log y(4.7)

+
∑

n>0

kab(n)e(nz),

which we will establish in this section below, we see that

d

dz
K2a(σbz) = 2πi

∞
∑

n=1

nbab(n, 0)e(nz)(4.8)

+ Fa(σbz)

(−i
2
δab +

d

dz

(

∑

n>0

kab(n)e(nz)

))

+ 2πi j(σb, z)
−2f(σbz)K1a(σbz).

Therefore, it follows that

j(σb, z)
−2g(σbz) =

d

dz
K2(σbz) − 2πi · j(σb, z)

−2f(σbz)K1(σbz)(4.9)

= 2πi
∞

∑

n=1

nbab(n, 0)e(nz)

+ Fa(σbz)

(−i
2
δab +

d

dz

(

∑

n>0

kab(n)e(nz)

))

.

If a 6= b, then (4.9) has rapid decay, which is seen by combining (4.5)

together with the fact that δab = 0. If a = b, then in (4.5) we have that

Tab = 0, so we again conclude that (4.9) has rapid decay.
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It needs to be verified that the expansion (4.7) holds. Indeed, this

expansion follows directly from the Fourier expansion for the first-order non-

holomorphic Eisenstein series, as stated in (4.3), together with the special

function calculations given in the proof of Corollary 2.2. The important

point is that the coefficient of log y is V −1, which is implied by the fact

that the Eisenstein series (4.3) has a first order pole at s = 1 with residue

equal to V −1. All of these properties of the Eisenstein series are proved in,

for example, [Iw1] and [Kub]. This argument, which follows the method

of calculation given in Section 2, gives the first part of Theorem 1.1. The

bounds on the Fourier coefficients of K1, claimed in the second part of

Theorem 1.1, are achieved in Section 7.

Lemma 4.1.

K1a(z), y
d

dz
K1a(z), y

d

dz
K1a(z) � yΓ(z)

K2a(z), y
d

dz
K2a(z), y

d

dz
K2a(z) � yΓ(z).

Proof. With the Fourier expansion (4.7) we have that K1a(z) � yΓ(z).
We used here the bound kab(n) � |n|1+ε from Theorem 1.1 and proved in
Section 7. Also, with (4.7), d

dz K1a(σbz) � 1 as y → ∞ so that y d
dz K1a(z) �

yΓ(z) and similarly for y d
dz K1a(z).

To treat K2a(z) we use (4.6) and the following results:

ab(n) � n,(4.10)

Fa(σbz) � 1 as y → ∞,(4.11)

W ∗(nz) � (ny)−1/2e−2πny,(4.12)

bab(n, 0) � |n|1+ε.(4.13)

The estimate (4.11) follows from (4.5) and (4.10) which is the standard
bound for the Fourier coefficients of cusp forms (see (5.7) of [Iw2]). The
incomplete gamma function satisfies

|Γ(0, a)| =

∣

∣

∣

∣

∫ ∞

a
e−tt−1 dt

∣

∣

∣

∣

6

√

∫ ∞

a
e−2t dt

√

∫ ∞

a
t−2 dt =

e−a

√
2a
.

Combine this with the first part of Corollary 2.2 to get (4.12). Lastly (4.13)
is proved in Corollary 7.5.
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Now (4.6) and (4.10)–(4.13) imply that K2a(z) � yΓ(z). Similarly, with
(4.8) and the equivalent result for d

dz K2a(z) we obtain the remaining parts
of the lemma.

With all this, the proof of the first statement of Theorem 1.3 is com-

plete, and, indeed, we have shown that for any cusp a,

1

2πi

d

dz
K2a(z) = f(z)K1a(z) − Πhol

(

f(z)K1a(z)
)

.

It remains to give the stated expression for Πhol

(

f(z)K1a(z)
)

in the second

part of Theorem 1.3. This is carried out next.

§5. The Dirichlet series L+
m and the holomorphic projection of

fK1

We continue by studying the Fourier coefficients of Πhol

(

f(z)K1a(z)
)

.

As in the previous section, we will use the results stated in Section 3, whose

proofs we will give in Section 8. In the notation established in Section 1,

let us write

(5.1) L++
m (s) =

∞
∑

n=m+1

ank(m− n)

ns
,

so then, referring to the notation from Theorem 1.2, we have

L+
m(s) =

m−1
∑

n=1

ank(m− n)

ns
+
am

ms

(

K +
γ + log 4πm

V

)

+ L++
m (s).

Proposition 5.1. With notation as above and for Re(s) sufficiently

large, we have the identity

〈fK1, Vm( · , s− 1)〉2 =
Γ(s)

(4π)s
L++

m (s) +
Γ(s)

(4πm)s

m−1
∑

l=1

alk(m− l)

+
am

(4πm)s

(

Γ(s+ 1)

4πm
+KΓ(s) +

−Γ′(s) + Γ(s) log 4πm

V

)

.

Proof. This is carried out using the ideas of Section 3, in particular
(3.2), and follows the line of standard computations. First, expand f and
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K1 in their Fourier expansions, i.e.

f(z)K1(z) =

( ∞
∑

n=1

ane(nz)

)

×
(

∑

n<0

k(n)e(nz) + y +K − V −1 log y +
∑

n>0

k(n)e(nz)

)

.

Next, unfold the integral in question, similar to (3.2), and carry out the
integral, ultimately using standard formulas for the classical Γ function.

Remark 5.2. As already mentioned, the trivial bound for coefficients
of a weight two cusp form states that an � n. In Section 7 below we
will prove, as asserted in Theorem 1.1, that k(n) � |n|1+ε. Therefore, it
follows that L+

m(s) is absolutely and uniformly convergent for Re(s) > 3,
as claimed in Theorem 1.2. The meromorphic continuation of L+

m(s) will
follow from the expression derived in Proposition 5.1 together with a study
of the Poincaré series Vm( · , s).

We now work with the expression

〈fK1, Pm( · )2〉2 = 〈fK1, Vm( · , s− 1)〉2|s=1,

in order to compute the Fourier coefficients of Πhol(f(z)K1(z)). Recall The-

orem 3.2 and the discussion preceding it where the natural holomorphic,

weight 2 Poincaré series, Pm(z)2, is defined as Vm(z, s) analytically contin-

ued to s = 0. To begin, let us make sure that we have, or will, establish

enough results regarding Vm(z, s) to proceed. Assuming Theorem 3.1, from

which we obtained (3.1), then Vm(z, s) has a meromorphic continuation to

all s ∈ C. Again, Theorem 3.1 will be proved in Section 8, at which time

it also will be shown that Vm(z, s) has at most polynomial growth in y at

the cusps. Therefore, 〈fK1, Vm( · , s − 1)〉2 converges to a meromorphic

function. Proposition 5.1 holds for Re(s) > 3, as stated in Remark 5.2, so

then we now have the meromorphic continuation of the Dirichlet L++
m (s),

and hence L+
m(s), to all s ∈ C. The continuation L+

m(s) will not have a

pole at s = 1 once it has been shown that Vm(z, s− 1) does not have a pole

at s = 1. Hence, the stated results in Section 3, together with the growth

condition for Vm(z, s) which also comes from Section 8, are sufficient to

allow us to continue our calculations.
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Working directly with the Fourier expansion, (1.4), of K1 and recalling

the definition of K+
1 in (1.5) we show that

d

dz
K1(z) =

d

dz
K+

1 (z) +
i

2V y
− i

2
.

Combining this with equation (4.2), as well as subsequent discussion, we

get

Πhol(f(z)K1(z))(5.2)

=
1

2πi

(

i

2V y
F (z) − F (z)

d

dz
K1(z)

)

−
∞

∑

n=1

nbne(nz),

=
1

2πi

(

i

2
F (z) − F (z)

d

dz
K+

1 (z)

)

−
∞

∑

n=1

nbne(nz).

Let us write the Fourier expansion of Πhol(f(z)K1(z)) as

Πhol(f(z)K1(z)) =

∞
∑

m=1

dme(mz).

If we now substitute the Fourier expansions of F and K1 into (5.2) we find

the formula

dm = −mbm +
am

4πm
−

m−1
∑

l=1

al

l
(m− l)k(m− l).

However, from Theorem 3.2 and Proposition 5.1, for all m > 1, we also

have that

dm = mL++
m (1) +

am

4πm
+

m−1
∑

l=1

alk(m− l) + am

(

K +
γ + log 4πm

V

)

.

Therefore, by the definition of the Dirichlet series L+
m, as first stated in

Theorem 1.2, we conclude that for all m > 1, we have

(5.3) bm = −L+
m(1).

Substituting (5.3) into (5.2) yields the Fourier expansion claimed in Theo-

rem 1.3, whose proof is now complete.
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§6. The Dirichlet series L−
m and the proofs of Theorems 1.4 and 1.5

Let us first prove Theorem 1.4. To do so, we start with (2.2) and, using

Corollary 2.2, obtain the formula

(6.1)
d

dz
K2(z) =

−i
2V y

F (z)+
2πi

V

∞
∑

n=1

anW ∗(nz)+
d

dz
B(z)+F (z)

d

dz
K1(z)

which, in particular, implies that

(6.2) Πhol

(

d

dz
K2(z)

)

= Πhol

( −i
2V y

F (z) +
2πi

V

∞
∑

n=1

anW ∗(nz)

+
d

dz
B(z) + F (z)

d

dz
K1(z)

)

.

By Corollary 3.4 and Lemma 4.1, the left-hand-side of (6.2) is zero. Us-

ing Theorem 3.2 and equations (3.2) and (3.3), we can compute the m-th

Fourier coefficient of the right-hand-side, which, since the left-hand-side

vanishes, is necessarily zero. That is, we have that

0 = 4πm

∫ ∞

0

∫ 1

0

(−iF (z)

2V y
+

2πi

V

∞
∑

n=1

anW ∗(nz)

+
d

dz
B(z) + F (z)

d

dz
K1(z)

)

ys−1e(mz) dxdy

∣

∣

∣

∣

s=1

.

In order to evaluate this, substitute the Fourier expansions for F and K1,

as well as the formula,

W ∗(nz) = Γ(0, 4πny)e4πnye(nz).

Upon integrating with respect to x, we produce the equality

(2πi)4πm

∫ ∞

0

(

mb−me
−4πmy +

∞
∑

l=1

al

l
(m+ l)k(−m− l)e−4π(m+l)y

)

ys−1 dy

=
2πimΓ(s)

(4π)s−1

(

b−m

ms−1
+ L−

m(s)

)

,

where

L−
m(s) =

∞
∑

n=1

an

n

k(−m− n)

(m+ n)s−1
.
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Now, by taking s = 1, we get that

(6.3) b−m = −L−
m(1)

for all −m < 0 or m > 0, provided, of course, that L−
m(s) has an analytic

continuation to s = 1 which would then allow for the above computations.

The verification that L−
m(s) admits a meromorphic continuation to, (and

is analytic at), s = 1 will be completed in Section 9. In effect, we will

argue as follows. Recall that we have already used the bounds an � n and

k(n) � |n|1+ε. Observe that these bounds prove L−
m(s) is absolutely and

uniformly convergent to an analytic function for Re(s) > 3. In Section 9

we will prove the functional equation

(6.4) L−
m(s) = mL−

m(s+ 1) +
2i(4π)s

Γ(s+ 1)

〈

y2f(z)
d

dz
K1(z), Um(z, s)

〉

,

where the Poincaré series Um(z, s) was introduced in Section 3. From (6.4),

it is immediate that L−
m does not have a pole at s = 1, which then completes

the proof of Theorem 1.4.

Furthermore, this work yields Theorem 1.5. Indeed, from (5.3) and

(6.3) we have shown that

bm =







−L+
m(1) m > 1

−L−
−m(1) m 6 −1







.

Substituting into (2.2), and using the equations (2.3) and (2.4), then com-

pletes the proof of Theorem 1.5.

Remark 6.1. As an aside, let us study the right-hand-side of (6.2) and
show that it can be reduced further. Let H(z) = F (z) d

dz K1(z), so then,
when using the relation F (γz) = F (z) + 〈γ, f〉, we have that

(6.5) H(γz) = j(γ, z)2
(

H(z) + 〈γ, f〉 d
dz

K1(z)

)

.

In other words, H(z) is a weight two, second-order automorphic form. For
any g ∈ S2(Γ), we claim that 〈H, g〉 is well-defined. To see this, first choose
a fundamental domain F for Γ\H and, for now, let

〈H, g〉F =

∫

F

y2H(z)g(z) dµ(z).
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For any γ ∈ Γ, it is easy to show, using the transformation property for g
and (6.5), that

〈H, g〉γF =

∫

γF

y2H(z)g(z) dµ(z)

=

∫

F

y2H(z)g(z) dµ(z) + 〈γ, f〉
∫

F

y2 d

dz
K1(z)g(z) dµ(z).

By Corollary 3.4,
〈 d

dz
K1, g

〉

= 0,

which shows that 〈H, g〉F is Γ invariant, hence 〈H, g〉 is well-defined as
claimed. Consequently, Πhol(H) makes sense and hence exists. Similar
reasoning applies to the remaining part on the right-hand-side of (6.2). As
a result, since

Πhol

(

d

dz
K2(z)

)

= 0,

by Corollary 3.4, (6.2) can be written as

0 = Πhol

(

− i

2V y
F (z) +

2πi

V

∞
∑

n=1

anW ∗(nz) +
d

dz
B−(z)

)

+ Πhol

(

F (z)
d

dz
K1(z)

)

.

Possible implications of this identity have not been investigated here.

§7. Bounding the Fourier coefficients of K1 and K2

In this section we estimate the size of the Fourier coefficients of E(z, s)

and E∗(z, s). The calculations are used to bound k(n), L+
m(1), and L−

m(1).

To begin, we need the following general result.

Lemma 7.1. Suppose D(z) = D(x + iy) is a smooth function on H

which is Γ invariant. Assume there is a continuous function B(y) such that

for each cusp a of Γ, we have that |D(σaz)| 6 B(y) as y → ∞. Then we

also have

D(σaz) � 1 as y → 0, if B is decreasing and

D(σaz) � B(C/y) as y → 0, if B is increasing

where both implied constants and C > 0 depend only on D and Γ (and are

independent of x).

https://doi.org/10.1017/S0027763000025605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025605


76 J. JORGENSON AND C. O’SULLIVAN

Proof. By conjugation we may assume (as we have been doing all
along) that ∞ is a cusp of Γ\H and that Γ∞ is generated by the trans-
lation z 7→ z + 1. Let F∞ =

{

z ∈ H | |Re(z)| 6 1/2
}

, and let F
be the (Ford) fundamental domain for Γ\H defined by F =

{

z ∈ F∞ |
1 < |j(γ, z)| for all γ ∈ Γ − Γ∞

}

.
The first statement of the Lemma is easy to prove. If B is decreasing

then, since D is smooth, D(z) is bounded on F and hence on H since it is
Γ invariant. The bound D(σaz) � 1 as y → 0 follows trivially.

Let us assume now that B(y) is increasing as y → ∞. For the cusp at
infinity, by assumption,

D(w) � B(Im(w)) as Im(w) → ∞.

We next consider what happens as w ∈ F approaches a cusp a ∈ R. Set
w = σaw

′ so that w → a as Im(w′) → ∞. It is easy to check that

1

Im(w′)
� Im(σaw

′) � 1

Im(w′)
as Im(w′) → ∞

if σa is not upper triangular and that

Im(w′) � Im(σaw
′) � Im(w′) as Im(w′) → ∞

if σa is upper triangular. Since Im(w) → 0 as Im(w′) → ∞ it must be the
case that σa is not upper triangular and hence, for some C > 0,

Im(w′) 6
C

Im(w)
.

By assumption

D(σaw
′) � B(Im(w′)) as Im(w′) → ∞.

Therefore
D(w) � B(C/ Im(w)) as w → a

in F and it follows that, for a possibly larger C,

D(w) � B(Im(w) + C/ Im(w))

for all w ∈ F .
Now, for any z ∈ F∞−F , there exists γ ∈ Γ−Γ∞ such that γz = w ∈ F .

It can be show that

y 6 Im(w) � 1

y
,
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where the first inequality comes from the definition of F and the second
from Lemma 1.25 of [Sh] (see also Proposition 2.5 of [G-O’S]). The implied
constant in the upper bound depends only on Γ. It now follows that, for
any z in H, we have

D(z) � B(C/y) as y → 0

with the implied constant and (larger) C depending only on D and Γ.
Finally, to prove the same bound for D(σaz) we may use the same proof
applied to the conjugate group Γ′ = σ−1

a Γσa. Specifically, let D′(z) =
D(σaz) then D′ is a smooth Γ′ invariant function. Now if a, b, c, . . . are a set
of inequivalent cusps for Γ\H then a′ = σ−1

a a = ∞, b′ = σ−1
a b, c′ = σ−1

a c, . . .
are a set of inequivalent cusps for Γ′\H with corresponding scaling matrices
σa′ = σ−1

a σa, σb′ = σ−1
a σb, σc′ = σ−1

a σc, . . . . Therefore, for any cusp b′ of Γ′

we have

|D′(σb′z)| = |D(σbz)| 6 B(y) as y → ∞.

It now follows from our previous work that D ′(z) � B(C/y) as y → 0,
completing the proof.

To continue, we recall that equation (6.19) of [Iw1] states an explicit

bound for the Fourier coefficients of the first-order Eisenstein series, namely

φab(n, s) � |n|σ + |n|1−σ,

with an implied constant depending on s and Γ. We will prove our stated

bounds for the Fourier coefficients of K2 by making this bound for φab(n, s)

more precise, as well as extend the result to the functions φ∗
ab

(n, s). The

main technical result of this section is the following.

Proposition 7.2. For each compact set S in C there exist smooth

functions ψ1(s), ψ2(s) and holomorphic functions ξ1(s), ξ2(s) so that

|φab(n, s)| 6
ψ1(s)

|ξ1(s)|
(

|n|σ + |n|1−σ
)

,(7.1)

|φ∗ab(n, s)| 6
ψ2(s)

|ξ2(s)|
(log |n| + 1)

(

|n|σ + |n|1−σ
)

(7.2)

for all s in S and all n 6= 0. The functions ψ1, ξ1 depend on S and Γ, and

the functions ψ2, ξ2 depend on S, Γ and f .
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Proof. The bound (7.1) will follow from the proof of the meromorphic
continuation of the first-order Eisenstein series Ea(z, s) as given in Propo-
sition 6.1 of [Iw1]. After proving (7.1), we then employ the same method
of proof, this time using the meromorphic continuation of the second-order
Eisenstein series E∗

a(z, s) as given in Theorem 3.8 of [O’S1]. For ease of
notation, ψ and ξ will always represent smooth and holomorphic functions
respectively, though the functions themselves may change from line to line.

From Proposition 6.1 of [Iw1], we have the following (weaker) form of
the stated result. Given a compact subset S of C, there exist functions
Aa(s) 6≡ 0 on S and Aa(z, s) on H× S such that:

(1) Aa(z, s) = Aa(s)Ea(z, s) on {s | Re(s) > 1} ∩ S,

(2) Aa(s) and Aa(z, s) are holomorphic in s,

(3) Aa(σbz, s) � eεy for each cusp b and y > 1 say. The implied constant
depends on ε > 0, s and Γ.

Furthermore, from the proof of Proposition 6.1 in [Iw1], specifically (6.1),
we conclude there exists a smooth function ψ(s) on S so that

Aa(σbz, s) �
ε,Γ

ψ(s) eεy.

The Fourier expansion of Ea(z, s), namely

Ea(σbz, s) = δaby
s + φab(s)y

1−s +
∑

n6=0

φab(n, s)Ws(nz)

then gives

φab(n, s) · 2
√

|n|yKs−1/2(2π|n|y) =

∫ 1

0
Ea(σbz, s)e

−2πinx dx.

Using (1) above and Lemma 7.1, we then obtain the bound

(7.3) φab(n, s) · 2
√

|n|yKs−1/2(2π|n|y) �
ψ(s)

|Aa(s)|
eε/y

as y → 0. The K-Bessel function can be bounded using the estimate

(7.4)
√
yKs−1/2(y) =

√

π

2
e−y

(

1 +O

(

1 + |s|2
y

))

https://doi.org/10.1017/S0027763000025605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025605


SECOND-ORDER KRONECKER LIMIT FORMULA 79

for y > 1 + |s|2, which we quote from [Iw1], formula B.36. With this, and
upon setting y = 1/

√

|n|, we get the auxiliary estimate

φab(n, s) �
ψ(s)

|Aa(s)|
e3π

√
|n|.

Consequently,

|Ea(σbz, s)| =

∣

∣

∣

∣

∣

δaby
s + φab(s)y

1−s +
∑

n6=0

φab(n, s)Ws(nz)

∣

∣

∣

∣

∣

� yσ + |φab(s)|y1−σ +
ψ(s)

|ξ(s)|
∑

n6=0

e3π
√

|n|−2π|n|y

� ψ(s)

|ξ(s)|
(

yσ + y1−σ + e2π(1/2−y)
)

for y > 1 say. Now, repeat the argument yielding (7.3) with this new bound
to get

(7.5) φab(n, s) �
ψ(s)

|ξ(s)|
y−σ + y−(1−σ)

√

|n|yKs−1/2(2π|n|y)
.

Letting y = 1/|n|, the proof of (7.1) is complete.

An easy consequence of (7.1) that we shall need shortly is the next
result.

Corollary 7.3. For each compact set S in C there exist ψ smooth

and ξ holomorphic such that

Ea(σbz, s) − δaby
s − φab(s)y

1−s � ψ(s)

|ξ(s)| e
−2πy

as y → ∞ and

(7.6) Ea(σbz, s) �
ψ(s)

|ξ(s)|
(

yσ + y−σ + y1−σ + yσ−1
)

for all y in (0,∞) and all s ∈ S. The implied constants depending only on

S and Γ.

The proof of (7.2) follows the same pattern, in this case using Theo-
rem 3.8 of [O’S1] rather than Proposition 6.1 of [Iw1]. To begin, for any
compact S ⊂ C, there are functions A∗

a(s) 6≡ 0 on S and A∗
a(z, s) on H× S

such that:
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(1) A∗
a(z, s) = A∗

a(s)E
∗
a(z, s) on {s | Re(s) > 2} ∩ S,

(2) A∗
a(s) and A∗

a(z, s) are holomorphic in s,

(3) A∗
a(σbz, s) � eεy for each cusp b, y > 1 and implied constant depend-

ing on ε > 0, s, f and Γ.

Following the method of proof of Proposition 6.1 in [Iw1], the analysis in
[O’S1] yields the bound

A∗
a(σbz, s) �

ε,f,Γ
ψ(s)eεy.

Lemma 7.1 applies to a weight zero function (Γ invariant). For this, we
study

Ga(z, s) = E∗
a(z, s) + Fa(z)Ea(z, s),

which, as stated in Section 1, is Γ invariant. Let us write

Fa(σbz) = 2πi

∫ σbz

a

f(w) dw = 2πi

∫ z

σ−1
b

a

g(w) dw

with g(z) = f(σbz)/j(σb, z)
2 ∈ S2(σ

−1
b

Γσb). Therefore,

∫ z+1

z
g(w) dw = 0 and g(z) � 1/y

(see (5.3), [Iw2]). Consequently, we have, for each pair of cusps a, b and all
y in (0,∞), the bound

(7.7) Fa(σbz) �
f,Γ

| log y| + 1.

(Note: This estimate improves Lemma 1.1 of [O’S1]; see also [Ri], [P-R] for
a different approach to this and similar bounds.) Continuing, the bounds
for the Eisenstein series E∗(z, s) and E(z, s), together with (7.7) imply that
as y → ∞, we have

Ga(σbz, s) �
ψ(s)

|ξ(s)| e
εy.

Thus by Lemma 7.1,

Ga(σbz, s) �
ψ(s)

|ξ(s)| e
ε/y as y → 0.
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With (7.6) and (7.7), we then obtain

E∗
a(σbz, s) �

ψ(s)

|ξ(s)| e
ε/y as y → 0.

By repeating the argument used to prove (7.1), we get the auxiliary estimate

φ∗ab(n, s) �
ψ(s)

|ξ(s)| e
3π
√

|n|

so then

E∗
a(σbz, s) �

ψ(s)

|ξ(s)| y
1−σ as y → ∞.

Therefore

Ga(σbz, s) �
ψ(s)

|ξ(s)| (| log y| + 1)(yσ + y1−σ) as y → ∞,

implies Ga(σbz, s) �
ψ(s)

|ξ(s)| (| log y| + 1)(y−σ + yσ−1) as y → 0,

implies E∗
a(σbz, s) �

ψ(s)

|ξ(s)| (| log y| + 1)(y−σ + yσ−1) as y → 0.

With this improved bound the equality (7.2) follows in the same manner
that (7.1) was proved. This completes the proof of Proposition 7.2.

The analogue of Corollary 7.3 follows from Proposition 7.2.

Corollary 7.4. For s contained in a compact set S in C we have ψ
smooth and ξ holomorphic with

E∗
a(σbz, s) − φ∗ab(0, s)y

1−s � ψ(s)

|ξ(s)| e
−2πy

as y → ∞ and the implied constant depending only on S, f and Γ.

Another consequence of Proposition 7.2 gives our desired bounds for

the sequence {bn}.

Corollary 7.5. For every n, write

φ∗ab(n, s) =
∞
∑

m=−1

bab(n,m)(s− 1)m.
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Then for every m > −1 and every ε > 0 we have

bab(n,m) �
m,ε,f,Γ

|n|1+ε.

In particular bn = b(n, 0) � |n|1+ε.

Proof. Let Cε be a circular loop around 1 with small radius ε. We
know that

bab(n,m) =
1

2πi

∫

Cε

φ∗ab(n, s)

(s− 1)m+1
ds

and by (7.2) the desired conclusion follows.

Bounding the coefficients k(n) of K1: The proof of Corollary 7.5

also applies directly to the definition of K1 (on replacing (7.2) with (7.1))

to give the bounds

k(n), k(−n) � n1+ε

for any ε > 0, as asserted in Theorem 1.1. The identity k(n) = k(−n)

follows from the symmetry E(z, s) = E(z, s) because Ws(z) = Ws(−z) and

therefore φ−n(s) = φn(s). With this, the proof of Theorem 1.1 is complete.

Bounding the Fourier coefficients of K2: The Fourier coefficients

of K2 are expressed in terms of the Fourier coefficients of F , K1, and the

sequence {bn}. Known results bound the Fourier coefficients of F , Theo-

rem 1.1 (whose proof is now complete) bounds the Fourier coefficients of

K1, and Corollary 7.5 bounds the elements of the sequence {bn}. Though it

remains to prove that bm = L+
m(1) for m > 1 and bm = L−

−m(1) for m 6 −1,

the Fourier coefficient bounds are complete nonetheless. To continue, let us

further analyze the Fourier coefficients {bm}.
If f has Fourier coefficients {an} in R for all n > 0 then we want to

show that the Fourier coefficients of K2 {bm} are also in R, provided we have

ι(Γ) = Γ for
(

a b
c d

) ι−→
(

−a b
c −d

)

. The map ι is an automorphism of PSL2(R),

and it is easily verified that γ(−z) = −(ι(γ)z) for any γ ∈ PSL2(R). From

this it follows that E(−z, s) = E(z, s) for any subgroup Γ of PSL2(R) with

ι(Γ) = Γ, and hence φm(s) = φ−m(s). Since f has real Fourier coefficients

we see that

〈ι(γ), f〉 = 〈γ, f〉,
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and then

E∗(z, s) =
∑

γ∈Γ∞\Γ

〈γ, f〉 Im(γz)s =
∑

γ∈Γ∞\Γ

〈ι(γ), f〉 Im(ι(γ)z)s

=
∑

γ∈Γ∞\Γ

〈γ, f〉 Im(γ(−z))s = E∗(−z, s).

Therefore, φ∗m(s) = φ∗m(s) which implies that bm = bm.

§8. Poincaré series: Proofs of Theorems 3.1 and 3.2

We now prove Theorem 3.1 and Theorem 3.2. In essence, the material

in this section is based on [Se], Chapter 17 of [Iw3] and [Ne]. The weight k

Poincaré series is defined by the series

(8.1) Pam(z)k =
∑

γ∈Γa\Γ

e(mσ−1
a γz)

j(σ−1
a γ, z)k

.

The series (8.1) converges absolutely and uniformly if k > 2 but not when

k = 2. Hecke addressed this problem by introducing a complex parameter

s and taking a limit. We will follow this approach employing the non-

holomorphic Poincaré series Uam(z, s) from Section 3. If m = 0 we have

that Ua0(z, s) = Ea(z, s). Since the non-holomorphic Eisenstein series is

absolutely convergent for Re(s) > 1, we have that the function Ea(z,Re(s))

is a majorant of Uam(z, s) for m > 0.

Lemma 8.1. For m > 1 and Re(s) > 1 the Poincaré series Uam(z, s)
is square integrable, i.e. Uam(z, s) is in L2(Γ\H).

Proof. We first examine the size of Uam in the neighborhood of each
cusp. Setting s = σ + it, we have

|Uam(σaz, s)| � yσe−2πmy +
∑

γ∈Γa\Γ
γ 6=identity

Im(σ−1
a γσaz)

σ

� yσe−2πmy + |Ea(σaz, σ) − yσ| � 1.

At any other cusp b 6= a

Uam(σbz, s) � Ea(σbz, σ) � φab(s)y
1−σ � 1.

In other words, Uam is bounded on Γ\H and hence in L2(Γ\H) since Γ\H
has finite volume.

https://doi.org/10.1017/S0027763000025605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025605


84 J. JORGENSON AND C. O’SULLIVAN

We will study the Poincaré series Uam(σaz, s) by means of its spec-

tral expansion, which we now recall (see, for example, [Iw1] and references

therein for further background information and complete proofs). The hy-

perbolic Laplacian ∆ operates on the space L2(Γ\H), and any element ξ

of L2(Γ\H) may be decomposed into constituent parts from the discrete

and continuous spectrum of ∆. This decomposition, often referred to as

the Roelcke-Selberg expansion, amounts to the identity

ξ(z) =

∞
∑

j=0

〈ξ, ηj〉ηj(z)(8.2)

+
1

4π

∑

b

∫ ∞

−∞
〈ξ, Eb( · , 1/2 + ir)〉Eb(z, 1/2 + ir) dr,

where {ηj} denotes a complete orthonormal basis of Maass forms, with cor-

responding eigenvalues λj = sj(1− sj), which forms the discrete spectrum.

For notational convenience, we wrote 〈 · , · 〉 = 〈 · , · 〉0 for the inner product

on Γ\H of weight zero forms (i.e. Γ-invariant functions). As always, we will

write sj = σj + itj , chosen so that σj > 1/2 and tj > 0, and we enumerate

the eigenvalues, counted with multiplicity, by 0 = λ0 < λ1 6 λ2 6 · · · . For

each j, the Fourier expansion of ηj is

(8.3) ηj(σaz) = ρaj(0)y
1−sj +

∑

m6=0

ρaj(m)Wsj
(mz).

For all but finitely many of the j (corresponding to λj < 1/4) we have

σj = 1/2 and ρaj(0) = 0. The expansion (8.2) is absolutely convergent for

each fixed z and uniform on compact subsets of H, provided ξ and ∆ξ are

smooth and bounded (see, for example, Theorem 4.7 and Theorem 7.3 of

[Iw1]). By taking ξ = Uam, we then obtain the spectral expansion for the

Poincaré series, which yields the identity

Uam(z, s)π−1/2(4πm)s−1/2Γ(s)(8.4)

=

∞
∑

j=1

Γ(s− sj)Γ(s− 1 + sj)ρaj(m)ηj(z)

+
1

4π

∑

b

∫ ∞

−∞
Γ(s− 1/2 − ir)Γ(s− 1/2 + ir)

× φab(m, 1/2 + ir)Eb(z, 1/2 + ir) dr.
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The expansion (8.4) includes the identity

〈Uam( · , s), ηj〉 =
π1/2Γ(s− sj)Γ(s− 1 + sj)

(4sm)s−1/2Γ(s)
ρaj(m),

with a similar formula which evaluates the inner product of the Poincaré

series Uam(z, s) with the Eisenstein series Ea(z, s). The proofs of these

formulas come from unfolding the integrals under study and unfolding the

series which defines the Poincaré series. These calculations we leave for the

interested reader. When looking toward Theorem 3.2, the appearance of

the coefficients ρaj(m) and φab(m, 1/2 + ir) is natural since Uam isolates

m-th Fourier coefficients (see Theorem 3.2, and, more specifically, see [Ne]

or Chapter 17 of [Iw3]).

Initially, (8.4) is valid for Re(s) > 1. The remainder of this section

shows that (8.4) converges absolutely and uniformly in s in compact subsets

not containing a number of the form sj − n or 1 − sj − n for n ∈ N. These

points are poles caused by the factors Γ(s− sj)Γ(s−1+ sj). Going further,

we will prove bounds regarding the growth in z of Uam(z, s) and d
dzUam(z, s).

These computations will yield the proofs of Theorem 3.1 and Theorem 3.2.

To control the size of ρaj(m) and φab(m, 1/2 + ir) we appeal to the

following formula of Bruggeman and Kuznetsov, as stated in (9.13) of [Iw1].

With notation as above, let

Na(T ) =
∑

|tj |<T

|Γ(sj)Γ(1 − sj)||ρaj(m)|2

+
1

4π

∑

b

∫ T

−T
|Γ(1/2 + ir)Γ(1/2 − ir)||φab(m, 1/2 + ir)|2 dr.

Then

(8.5) Na(T ) =
T 2

2π|m| +O(T ) as T → ∞,

with an implied constant which depends solely on the discrete group Γ. Re-

call that Stirling’s formula states that the classical gamma function satisfies

the bound

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2 as |t| → ∞.
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For simplicity, we may assume that T > 0. By combining Stirling’s formula

with (8.5), we get the bounds

(8.6) |ρaj(m)|2 � |tj |2
|m| e

π|tj |,

and

(8.7)

∫ T+1

T
|φab(m, 1/2 + ir)|2 dr � T 2

|m| e
πT .

We next need bounds concerning K-Bessel functions and Whittacker func-

tions.

Lemma 8.2. For any integer k > 0 we have, for σ > 1/2 − k, the

bounds

(8.8) |Ks−1/2(y)| �
|s|2k + 1

y2k−1/2+σ
|Γ(s)|

and

(8.9)

∣

∣

∣

∣

d

dy
Ks−1/2(y)

∣

∣

∣

∣

� |s|2k+1 + 1

y2k+1/2+σ
|Γ(s)|,

where the implied constant depends solely on σ and k.

Proof. First consider the case k = 0. From page 205 of [Iw1], we have
the expression

(8.10) Ks−1/2(y) =
1√
π

Γ(s)
( y

2

)1/2−s
∫ ∞

0
(u2 + 1)−s cos(uy) du

which is absolutely convergent for σ > 1/2. Trivially, this gives (8.8) with
k = 0. Next, we recall the recursive formula

Ks−1/2(y) =
2s+ 1

y
Ks+1/2(y) −Ks+3/2(y)

which comes from integrating (8.10) through integration by parts. The
recursive relation provides the inductive step by which (8.8) follows from
(8.10) for all k > 0. Similarly, (8.9) follows from (8.10) with k = 0, and the
general case is then derived using the identity

d

dy
Ks−1/2(y) =

s− 1/2

y
Ks−1/2(y) −Ks+1/2(y).
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Recall that

Ws(z) = 2y1/2Ks−1/2(2πy)e(x).

Therefore, from Lemma 8.2, we see that for any k > 0 and σ > 1/2− k, we

have the bounds

(8.11) Ws(nz) �
|s|2k + 1

(|n|y)2k−1+σ
|Γ(s)|,

and

(8.12)
d

dz
Ws(nz) �

(

1 +
|s| + 1

y

) |s|2k + 1

(|n|y)2k−1+σ
|Γ(s)|,

where the implied constants depend solely on σ and k.

Recall the definition of yΓ(z) before Theorem 3.1. The estimates (8.6),

(8.11), and (8.12) now can be combined with the Fourier expansion (8.3)

to show that if σj = 1/2, then

(8.13) ηj(z) � yΓ(z)1/2 + |tj|7/2yΓ(z)−3/2,

and

(8.14) y
d

dz
ηj(z) � yΓ(z)1/2 + |tj |9/2yΓ(z)−3/2

(compare, for example, with (8.3’) and (8.4) of [Iw1]). Our argument at

this point shows that

∞
∑

j=1

Γ(s− sj)Γ(s− 1 + sj)ρaj(m)ηj(z) � |m|−1/2yΓ(z)1/2,

where the implied constant depends on s and Γ. Clearly, the dependence of

this bound on s is uniform on compact sets not containing sj −n, 1−sj −n
for n ∈ N. In other words, the term in (8.4) associated to the discrete

spectrum admits a meromorphic continuation to all s ∈ C and, as claimed

in Theorem 3.1, we have the desired growth in the cusps. It remains to

consider the integral term in (8.4). For this, we begin with the following

proposition, which can be compared to (7.10) of [Iw1].

Proposition 8.3. For any cusp a and z ∈ Γ\H, we have the bounds

(8.15)

∫ T+1

T
|Ea(z, 1/2 + ir)|2 dr � yΓ(z)T 10,
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and

(8.16)

∫ T+1

T

∣

∣

∣

∣

y
d

dz
Ea(z, 1/2 + ir)

∣

∣

∣

∣

2

dr � yΓ(z)T 12,

where the implied constant depends solely on Γ.

Proof. The proof will follow by studying the Fourier expansion (4.3).
From the functional equation for the scattering matrix (Theorem 6.6 of
[Iw1]), we obtain the estimate

φab(1/2 + ir) � 1.

Therefore, with (8.11),

Ea(σbz, 1/2 + ir)

� √
y +

∑

m6=0

|φab(m, 1/2 + ir)|(|r|2k + 1)|Γ(1/2 + ir)|(|m|y)2k−1/2.

Consequently

∫ T+1

T
|Ea(σbz, 1/2 + ir)|2 dr

� y + T 2ke−πT/2y1−2k

∫ T+1

T

∑

m6=0

|φab(m, 1/2 + ir)||m|1/2−2k dr

+ T 4ke−πT y1−4k

∫ T+1

T

∑

m1 6=0

∑

m2 6=0

|φab(m1, 1/2 + ir)φab(m2, 1/2 + ir)|

× |m1m2|1/2−2k dr.

To complete the proof of Proposition 8.3 we need to interchange integration
and summation in the above expression. The following lemma allows one
to employ the Lebesgue dominated convergence theorem, for example, to
do this.

Lemma 8.4. For r ∈ [T, T + 1] we have

φab(m, 1/2 + ir) � |m|2

for an implied constant depending on T , Γ only.
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Proof. As in Proposition 7.2, we write Ea(z, s) as a quotient of holo-
morphic functions Aa(z, s)/Aa(s), which is valid for s in S where, in this
instance, S is the line segment between 1/2 + iT and 1/2 + i(T + 1). The-
orem 6.11 of [Iw1] states that Ea(z, s) has no poles on S, in particular,
so we may assume, after multiplying the numerator and denominator of
Aa(z, s)/Aa(s) by a polynomial if necessary, that Aa(s) has no zeros on S.
As in the proof of (7.5), and noting that |φab(1/2 + ir)| 6 1, we arrive at
the bound

φab(m, 1/2 + ir) � ψ(1/2 + ir)

|Aa(1/2 + ir)|
y−1/2

√

|m|yKir(2π|m|y)

where ψ is a smooth function, and the consideration is valid for r ∈ [T, T+1]
and y < 1, say. If we set y = (log |m|)/(2π|m|), we get

φab(m, 1/2 + ir) �
√

|m|
log |m|Kir(log |m|) ,

with an implied constant depending on T and Γ. By using the asymptotic
(7.4), the proof of Lemma 8.4 is complete.

Let us now continue with the proof of Proposition 8.3. We apply (8.7)
to see that

∫ T+1

T
|Ea(σbz, 1/2 + ir)|2 dr � y + y1−2kT 2k+1 + y1−4kT 4k+2

for any k > 2, with an implied constant depending on k and Γ. Estimate
(8.15) of the proposition now follows when taking k = 2. Estimate (8.16)
is proved similarly using (8.12) instead of (8.11). With this, the proof of
Proposition 8.3 is complete.

We now analyze the integral in (8.4). Using (8.7), (8.15), and the

Cauchy-Schwartz inequality we find

∫ T+1

T
|Γ(s− 1/2 − ir)Γ(s− 1/2 + ir)φab(m, 1/2 + ir)Eb(z, 1/2 + ir)| dr

� |Γ(s− 1/2 − iT )Γ(s− 1/2 + iT )|

×
(

∫ T+1

T
|φab(m, 1/2 + ir)|2 dr

∫ T+1

T
|Ea(σbz, 1/2 + ir)|2 dr

)1/2

� |(T + t)(T − t)|σ−1Te−π|T−t|/2−π|T+t|/2+πT/2|m|−1/2
√

yΓ(z)T 10.
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Thus, for s in a compact set S, the continuous spectrum contribution to the

spectral expansion of Uam(z, s) is absolutely and uniformly convergent, and

is bounded by |m|−1/2
√

yΓ(z). The meromorphic continuation of Uam(z, s)

is therefore given by (8.4) to the right of the line of integration at Re(s) =

1/2. Were we to consider s ∈ C to the left of Re(s) = 1/2, then we would

express Uam(z, s) by (8.4) together with Eisenstein series that arise when

the line of integration is crossed (see Satz 6.6 of [Ne] or Section 6 of [C-O’S]).

However, we are only concerned with s near 1. It may now be seen from

(8.4) that Uam(z, s) is holomorphic in s at s = 1.

We note that Selberg was the first to prove the meromorphic continu-

ation of Uam(z, s), see [Se]. Our proof above shows that

(8.17) Uam(z, s) � |m|−1/2
√

yΓ(z)

for Re(s) > 1/2 with an implied constant depending on s.

Let U ′
am(z, s) = d

dzUam(z, s). By the same arguments, using (8.14) and

(8.16), we see that U ′
am(z, s) also has a meromorphic continuation to all s

in C and satisfies

(8.18) yU ′
am(z, s) � |m|−1/2

√

yΓ(z)

for Re(s) > 1/2. It is also true that U ′
am(z, s) is holomorphic in s at s = 1.

With all this, the proof of Theorem 3.1 is complete.

For the reasons given in Section 3, we define the holomorphic, weight

two, Poincaré series by

(8.19) Pam(z)2 = 2iU ′
am(z, 1) + 4πmVam(z, 1).

It is elementary to show that the right hand side of (8.19) has weight two.

Using the series definition for Vam and the differential equation
(

∆ − s(1 − s)
)

Uam(z, s) = 4πmsUam(z, s+ 1),

it is easy to show that d
dzPam(z)2 = 0, i.e. the form Pam(z)2 is holomorphic.

Therefore, we have the Fourier expansion

j(σb, z)
−2Pam(σbz)2 =

∑

n∈Z

pb(n)e(nz).

By adapting the proof of Lemma 8.1, one shows that

(8.20) j(σb, z)
−2Vam(σbz, 1) � y−1 as y → ∞.
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Using (8.18), (8.19), and (8.20), we conclude that we must have pb(n) = 0

for n 6 0. Consequently Pam(z)2 is in S2(Γ) as we wanted to show. This

proves the first part of Theorem 3.2. The remaining aspect of Theorem 3.2

follows from a direct computation using (3.2) that we leave to the reader.

§9. Proofs of Proposition 3.3 and the meromorphic continuation

of L+
m and L−

m

In this section we tie up the remaining ‘loose ends’ by completing the

proof of Proposition 3.3 and the meromorphic continuation of L+
m and L−

m,

as claimed in Theorem 1.2.

For Re(s) sufficiently large, f ∈ S2(Γ) and F = 2πi
∫

f , define the

automorphic series

Qm(z, s; f) =
∑

γ∈Γ∞\Γ

f(γz) Im(γz)se(mγz),

and

Qm(z, s;F ) =
∑

γ∈Γ∞\Γ

F (γz) Im(γz)se(mγz).

Proceeding formally, if we unfold the inner product of K1 and Qm( · , s;F ),

we get

〈K1, Qm( · , s;F )〉 =

∫ ∞

0

∫ 1

0
K1(z)F (z)e(mz)ys−2 dxdy,

which in turn can be explicitly evaluated using the Fourier expansions of F

and K1, yielding

∫ ∞

0

∫ 1

0
K1(z)F (z)e(mz)ys−2 dxdy =

Γ(s− 1)

(4π)s−1
L−

m(s).

As we will see, we can manipulate this inner product to obtain (6.4), which

will provide a meromorphic continuation of L−
m.

From the bound (7.7), we get that

F (γz) � 1 + | log Im(γz)|.

By mimicking the proof of Lemma 8.1, we immediately arrive at the follow-

ing estimate.
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Lemma 9.1. For any f ∈ S2(Γ) and integer m > 0, the series Qm(z, s;
F ) is absolutely convergent for Re(s) > 1. Furthermore, if s = σ + it with

σ > 1, we have

Qm(z, s;F ) � yΓ(z)1−σ

with the implied constant depending on s, f and Γ alone.

For the remainder of this section, we let C∞(Γ\H, k) denote the space

of smooth functions ψ on H that transform as

ψ(γz) = ε(γ, z)kψ(z)

for γ in Γ and ε(γ, z) = j(γ, z)/|j(γ, z)|. For example, one element of this

space is given by the series

(9.1) Uam(z, s, k) =
∑

γ∈Γa\Γ

Im(σ−1
a γz)se(mσ−1

a γz)ε(σ−1
a γ, z)−k,

which is the weight k non-holomorphic Poincaré series, or, in particular,

the Eisenstein series

Eka(z, s) := Ua0(z, s, k)

in the special case when m = 0. (Warning: It should be clear from the con-

text whether we mean this new notion of weight or the previous definition

of weight.) Trivially, if ψ ∈ C∞(Γ\H, k) then |ψ| has weight zero (in either

definition), and 〈 · , · 〉 = 〈 · , · 〉0 is an inner product for C∞(Γ\H, k). We

define the Maass raising and lowering operators by

Rk = 2iy
d

dz
+
k

2
, Lk = −2iy

d

dz̄
− k

2
.

It is an elementary exercise to show that

Rk : C∞(Γ\H, k) −→ C∞(Γ\H, k + 2),

Lk : C∞(Γ\H, k) −→ C∞(Γ\H, k − 2),

and, furthermore, the hyperbolic Laplacian ∆ can be realized as

(9.2) ∆ = −L2R0 = −R−2L0.

By direct verification we have the next lemma (see also Lemma 4.1 of

[C-O’S]).
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Lemma 9.2. For any γ ∈ PSL2(R) and any smooth function F , let

µ(s, k, F ) = F (γz) Im(γz)se(mγz)ε(γ, z)−k .

Then

Rkµ(s, k, F ) = 2iµ

(

s+ 1, k + 2,
d

dz
F

)

+ (s+ k/2)µ(s, k + 2, F )

− 4πmµ(s+ 1, k + 2, F ),

Lkµ(s, k, F ) = −2iµ
(

s+ 1, k − 2,
d

dz
F

)

+ (s− k/2)µ(s, k − 2, F ).

Lemma 9.2 applies in the special case F ≡ 1 to yield the weight k

non-holomorphic Poincaré series identities

RkUam(z, s, k) = (s+ k/2)Uam(z, s, k + 2) − 4πmUam(z, s+ 1, k + 2)

and

LkUam(z, s, k) = (s− k/2)Uam(z, s, k − 2).

Using this last identity, together with our established notational conven-

tions, we see that

Qm(z, s; f) = f(z)
∑

γ∈Γ∞\Γ

j(γ, z)2 Im(γz)se(mγz)(9.3)

= yf(z)
∑

γ∈Γ∞\Γ

Im(γz)s−1e(mγz)ε(γ, z)2

= yf(z)Um(z, s− 1,−2) = yf(z)
L0Um(z, s− 1)

s− 1
.

Next, combine Lemma 9.2 (this time with F = 2πi
∫

f as usual) and the

identity (9.2) to get

(∆ − s(1 − s))Qm(z, s;F ) = 4πsQm(z, s+ 1; f) + 4πmsQm(z, s+ 1;F ).

Finally, by taking the inner product with K1, we get

4πs〈K1, Qm( · , s+ 1; f)〉 + 4πms〈K1, Qm( · , s+ 1;F )〉(9.4)

= 〈K1, (∆ − s(1 − s))Qm( · , s;F )〉
= 〈(∆ − s(1 − s))K1, Qm( · , s;F )〉
= 〈∆K1, Qm( · , s;F )〉 − s(1 − s)〈K1, Qm( · , s;F )〉.
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All calculations yielding (9.4) are correct providing the inner products make

sense and we can justify moving ∆ from one side to the other. For example,

if all functions were bounded on Γ\H, then the manipulations are correct

(see Lemma 4.1 of [Iw1]). Unfortunately, the functions in (9.4) are not

bounded, so further analysis is required. The following proposition proves

the bounds required to validate (9.4).

Proposition 9.3. Suppose φ1 ∈ C∞(Γ\H, k) and φ2 ∈ C∞(Γ\H, k+
2). Let A,B ∈ R with A+B < 0. If

φ1(z), Rkφ1(z) � yΓ(z)A and Lk+2φ2(z), φ2(z) � yΓ(z)B ,

then

〈Rkφ1, φ2〉 + 〈φ1, Lk+2φ2〉 = 0.

Proof. Let ε > 0 be such that A+ B < −ε, and choose s ∈ (1, 1 + ε).
Since Ea(z, s) � yΓ(z)s the inner products in the sum

〈Rkφ1, φ2E( · , s)〉 + 〈φ1, (Lk+2φ2)E( · , s)〉
are absolutely convergent, so then we may unfold the integrals to get

〈Rkφ1, φ2E( · , s)〉 + 〈φ1, (Lk+2φ2)E( · , s)〉(9.5)

=

∫ ∞

0

∫ 1

0
(Rkφ1(z))φ2(z)y

s−2 dxdy

+

∫ ∞

0

∫ 1

0
φ1(z)(Lk+2φ2(z))y

s−2 dxdy.

It is clearer to now replace
∫ ∞
0 with

∫ D
1/D and then later let D → ∞. With

the definitions of Rk and Lk+2, (9.5) becomes
∫ D

1/D

∫ 1

0

[(

(

iy
d

dx
+y

d

dy

)

φ1(z)

)

φ2(z)+φ1(z)
(

iy
d

dx
+y

d

dy

)

φ2(z)

]

ys−2 dxdy

−
∫ D

1/D

∫ 1

0
φ1(z)φ2(z)y

s−2 dxdy.

Now use integration by parts with respect to both x and y. Observing that
most terms cancel, we are left with

∫ 1

0

[

φ1(x+ iD)φ2(x+ iD)Ds−1 − φ1(x+ i/D)φ2(x+ i/D)D1−s
]

dx

− s

∫ D

1/D

∫ 1

0
φ1(z)φ2(z)y

s−2 dxdy.
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By assumption, φ1(z)φ2(z) � yΓ(z)A+B , hence we obtain the bounds

φ1(z)φ2(z) � yA+B as y → ∞

and, by Lemma 7.1,

φ1(z)φ2(z) � 1 as y → 0,

and, indeed, the asymptotics are independent of x. These bounds are just
enough to show that the first integral above vanishes as D → ∞. Therefore

〈Rkφ1, φ2E( · , s)〉 + 〈φ1, Lk+2φ2E( · , s)〉

= −s
∫ ∞

0

∫ 1

0
φ1(z)φ2(z)y

s−2 dxdy

= −s〈φ1, φ2E−2( · , s)〉

for the weight −2 Eisenstein series defined by (9.1) for m = 0, k = −2.
This is valid for s in (1, 1 + ε). By analytic continuation this is true for all
s with 1/2 < Re(s) < 1 + ε say. Finally, equating residues at s = 1 yields
the theorem because E−2(z, s) is holomorphic at s = 1.

Corollary 9.4. Assume φ1(z) and φ2(z) are smooth of weight zero

with A+B < 0, and suppose

φ1, R0φ1, ∆φ1 � yΓ(z)A,

and

φ2, R0φ2, ∆φ2 � yΓ(z)B .

Then

〈∆φ1, φ2〉 = 〈φ1,∆φ2〉.

Proof. One applies Proposition 9.3 twice and uses the identity which
expresses the Laplacian in terms of the raising and lowering operators.

Proof of Proposition 3.3. The proof is an immediate consequence of
Proposition 9.3 when taking k = 0 together with the definitions of the
functions under consideration. More specifically, given the functions in
Proposition 3.3, one applies Proposition 9.3 with φ1(z) = ϕ1(z) and φ2(z) =
Im(z) ·ϕ2(z), after which one then easily computes the derivatives in ques-
tion.
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Meromorphic continuation of L−
m: Corollary 9.4 implies that (9.4)

holds for Re(s) sufficiently large. Using (2.5), we then have that

(9.6) 〈∆K1, Qm( · , s;F )〉 = 〈−V −1, Qm( · , s;F )〉 = 0

where the last equality comes from unfolding the integral in question and

using that f is a holomorphic cusp form. If we now combine (9.3), (9.4)

and (9.6), we then get

(9.7)
Γ(s+ 1)

(4π)s−1
L−

m(s) = m
Γ(s+ 1)

(4π)s−1
L−

m(s+ 1) + 4π〈K1, yf(z)L0Um(z, s)〉.

However, the structure of the operators L and R are such that we have the

relation

〈K1, yf(z)L0Um(z, s)〉 = 〈yf(z)K1, R0Um(z, s)〉
= −〈yf(z)L0K1, Um(z, s)〉.

Substituting this into (9.7) completes the proof of the identity

(9.8) L−
m(s) = mL−

m(s+ 1) +
2i(4π)s

Γ(s+ 1)

〈

y2f(z)
d

dz
K1(z), Um(z, s)

〉

.

We see that Qm(z, s;F ) does not appear in (9.8) and a second proof of

(9.8) is to simply unfold the inner product on the right side. The bounds

on the Fourier coefficients {an} and {k(n)} are such that the Dirichlet series

which defines L−
m(s) converges for Re(s) > 3. The bound (8.17) and identity

(9.8) provide the meromorphic continuation to Re(s) > 1/2, as claimed in

Theorem 1.2.

Meromorphic continuation of L+
m: The argument to prove the

meromorphic continuation of L+
m is similar, in spirit, to that of L−

m. Recall

equation (3.1), which shows that

(9.9) sVam(z, s− 1) = 2i
d

dz
Uam(z, s) + 4πmVam(z, s)

for Re(s) sufficiently large. By comparing the series Vam(z, s) with Ea(z, s+

1) we see that it converges absolutely and uniformly to a holomorphic func-

tion of s for Re(s) > 0. The techniques of Lemma 8.1 apply to Vam to give,

for Re(s) > 0,

yVam(z, s) � 1.
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Combining this with (8.18) and (9.9) easily shows that the analytic contin-

uation of yVam(z, s − 1) down to Re(s) > 1/2 is bounded by a polynomial

in yΓ(z). Therefore the inner product 〈fK1, Vm( · , s− 1)〉2 admits a mero-

morphic continuation for Re(s) > 1/2, which is holomorphic at s = 1.

By Proposition 5.1, this implies the meromorphic continuation of L++
m to

Re(s) > 1/2. Since L++
m and L+

m differ by a Dirichlet polynomial, this part

of Theorem 1.2 is now complete.

§10. Examples

To conclude this work, we will remind the reader of certain known com-

putations as well as pose a question that can lead to future investigations.

Let us consider the discrete subgroup PSL2(Z). In this case, the Fourier

expansion of the first-order Kronecker limit function is well-known, namely

(10.1) K1(z) =
∑

n<0

k(n)e(nz) + y +K − 3

π
log y +

∑

n>0

k(n)e(nz)

where K = 3
π (γ − log 4π), σ(n) =

∑

d|n d and

k(n) =
6

π

σ(|n|)
|n| .

Also, let us set the notation that for l > 0, we define the function σl(n) =
∑

d|n d
l. Now consider the congruence subgroup Γ0(N), and, for simplicity,

assume that N is square-free. As stated in [C-I], one can express the first-

order non-holomorphic Eisenstein series on Γ0(N) through the formula

E(z, s)Γ0(N) = ζN (2s)
∑

d|N

µ(d)(dN)−sE(Nz/d, s),

where ζN (s) is the incomplete zeta-function

ζN (s) =
∏

p|N

(1 − p−s)−1

where the product is over all primes p dividing N , µ is the Möbius function

and E(z, s) denotes the Γ = PSL2(Z) Eisenstein series. In effect, this

formula is a consequence of the Artin formalism associated to the spectral

theory on the quotient space Γ0(N)\H viewed as a finite degree cover of
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PSL2(Z). In the special case when N is equal to a prime, which we denote

by p, then we have that

E(z, s)Γ0(p) =
1

1 − p−2s

(

p−sE(pz, s) − p−2sE(z, s)
)

.

Recall that the volume of Γ0(p)\H is p+1 times the volume of PSL2(Z)\H.

Therefore, one can compute the first-order Kronecker limit function on

Γ0(N) to be

K1(z)Γ0(p) =
1

p2 − 1

(

pK1(pz) −K1(z)
)

for p prime. Therefore, for any prime level p, we have, in effect, computed

the Fourier coefficients of the second-order Kronecker limit function in terms

of the divisor sums and the Fourier coefficients of the chosen degree two

form f ∈ S2(Γ0(N)). Of course, the computations required to extract the

special values L+
m(1) and L−

m(1), which require analytic continuation, could

be formidable.

For general Fuchsian groups, the first-order Kronecker limit function K1

is studied in [Gn]. The analogue of the Dedekind η function and Dedekind

sums are also studied there. We refer the interested reader to [Gn] for

additional information.

Finally, we now highlight a question that arises from Theorem 1.3.

Given a Fuchsian group Γ of the first kind and a parabolic subgroup, one

then has a first-order Kronecker limit function K1. With this, consider the

map from Sk(Γ) to itself given by

(10.2) f 7−→ Πhol(fK1).

Are there any interesting characteristics of this map which can then lead

to further simplifications in Theorem 1.3 ? Consider the special case when

Γ = PSL2(Z) and k = 24. In this setting, we will examine two different

holomorphic forms. The Dedekind delta function

∆(z) = e(z)

∞
∏

n=1

(1 − e(nz))24

is a weight twelve holomorphic form, as is the Eisenstein series

G12(z) = −B12/24 +
∞
∑

n=1

σ11(n)e(nz),
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with −B12/24 = 691/65520. The vector space S24(PSL2(Z)) is two-dimen-

sional with basis ∆2, ∆G12, [Za1]. The analogue of the inner product

formula (3.3) for weight 24 forms is the identity

Πhol(ϕ) =
∞
∑

m=1

dme(mz) for dm =
(4πm)23

22!
〈ϕ, Pm( · )24〉24

(see (8.1)). With this high weight there will be no problem with the conver-

gence of the Poincaré series. In general, let f(z) =
∑

n>0 ane(nz) ∈ S24(Γ)

and let Πhol(fK1) =
∑

m>0 dme(mz). Then when using (10.1), we can

compute, as in the beginning of Section 6, the formula

πdm = 6

m
∑

l=1

alσ(m− l)

m− l
+ 6m23

∞
∑

l=m+1

alσ(l −m)

l23(l −m)

+
23am

4m
+ 3am(2γ + logm−H22);

Hn denotes the harmonic number 1 + 1
2 + 1

3 + · · · + 1
n , and we have used

the formula
∫ ∞

0
yn · log y · e−y dy = n!(Hn − γ)

which holds for n > 0. This general formula allows for precise numerical

computations. Specifically, we have computed that

(10.3) Πhol(∆
2K1) ≈ −0.852857∆2 + 0.0000214526∆G12

and

(10.4) Πhol(∆G12K1) ≈ 0.220305∆2 + −0.591762∆G12 ,

and these computations are correct to the number of decimal places shown.

In conclusion, these computations suggest that the linear map S24(PSL2(Z))

→ S24(PSL2(Z)) given by f 7→ Πhol(fK1) to be neither zero nor diagonal.

At this time, a host of natural questions arise. For example, given a

Fuchsian group Γ and a parabolic subgroup, is the map (10.2) diagonaliz-

able? If so, then is there a natural basis of Sk(Γ) such that the map (10.2)

is diagonal? Is there any numerical significance to the coefficients in (10.3)

and (10.4)? These issues certainly warrant future investigation.

https://doi.org/10.1017/S0027763000025605 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025605


100 J. JORGENSON AND C. O’SULLIVAN

References

[As] T. Asai, On a certain function analogous to log η(z), Nagoya Math. J., 40

(1970), 193–211.

[B-C-Z] B. Berndt, H. Chan and L. C. Zhang, Ramanujan’s class invariants with appli-

cations to the values of q-continued fractions and theta functions, Special func-

tions, q-series and related topics (Toronto, ON, 1995), Fields Inst. Commun.,

vol. 14, Amer. Math. Soc., Providence, R.I. (1997), pp. 37–53.

[Bu] D. Bump, Automorphic forms and representations, Cambridge University

Press, Cambridge, 1997.

[C-D-O’S] G. Chinta, N. Diamantis and C. O’Sullivan, Second Order Modular Forms,

Acta Arith., 103 (2002), 209–223.

[C-O’S] G. Chinta and C. O’Sullivan, Non-holomorphic Poincaré series constructed
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