T. Ono Nagoya Math. J. Vol. 59 (1975), 59-64

ON THE HOPF FIBRATION $S^7 \rightarrow S^4$ OVER Z

TAKASHI ONO

§1. Statement of the result

Let K be the classical quaternion field over the field Q of rational numbers with the quaternion units 1, i, j, k, with relations $i^2 = j^2 = -1$, k = ij = -ji. For a quaternion $x \in K$, we write its conjugate, trace and norm by \bar{x}, Tx and Nx, respectively. Put

$$A = K \times K$$
, $B = Q \times K$

and consider the map $h: A \to B$ defined by

(1.1)
$$h(z) = (Nx - Ny, 2\overline{x}y), \quad z = (x, y) \in A.$$

The map h is the restriction on Q^8 of the map $R^8 \to R^5$ which induces the classical Hopf fibration $S^7 \to S^4$ where each fibre is $S^{3,1}$. For a natural number t, put

(1.2)
$$S_A(t) = \{z = (x, y) \in A, Nx + Ny = t\},\$$

(1.3) $S_B(t) = \{ w = (u, v) \in B, \ u^2 + Nv = t \} .$

Then, h induces a map

$$(1.4) h_t: S_A(t) \to S_B(t^2) .$$

Now, let o be the unique maximal order of K which contains the standard order Z + Zi + Zj + Zk. As is well-known, o is given by

$$0 = Z\rho + Zi + Zj + Zk$$
, $\rho = \frac{1}{2}(1 + i + j + k)$.

The group o^{\times} of units of o is a finite group of order 24. The 24 units are: $\pm 1, \pm i, \pm j, \pm k, \frac{1}{2}(\pm 1 \pm i \pm j \pm k)$. We know that the number of quaternions in o with norm n is equal to $24s_0(n)$ where $s_0(n)$ denotes the sum of odd divisors of n.

Received November 6, 1974.

¹⁾ H. Hopf, Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension, Fund. Math. 25 (1935) 427-440.

Back to our geometrical situation, put

 $A_{\boldsymbol{z}} = \mathfrak{o} \times \mathfrak{o}$, $B_{\boldsymbol{z}} = \boldsymbol{Z} \times \mathfrak{o}$

and define $S_A(t)_z, S_B(t)_z$ by taking z, w in (1.2), (1.3) from A_z, B_z , respectively. Then, the map h_t in (1.4) induces a map

$$(1.5) h_{t,\mathbf{Z}} \colon S_A(t)_{\mathbf{Z}} \to S_B(t^2)_{\mathbf{Z}} .$$

Because of the presence of 2 in (1.1), $h_{t,z}$ is actually a map $S_A(t)_z \rightarrow S_B(t^2)_z^*$, where we have put

(1.6)
$$S_B(t^2)_Z^* = \{w = (u, v) \in S_B(t^2)_Z, v \in 20\}.$$

To each $w \in S_B(t^2)_Z^*$, we shall associate two numbers as follows. First, we denote by a_w the number of $z \in S_A(t)_Z$ such that $h_{t,Z}(z) = w$. Next, we denote by n_w the greatest common divisor of the following six integers:

(1.7)
$$\frac{1}{2}(t+u), \frac{1}{2}(t-u), \frac{1}{2}T(\rho v), \frac{1}{2}T(iv), \frac{1}{2}T(jv), \frac{1}{2}T(kv)$$

The purpose of the present paper is to prove the relation:

(1.8)
$$a_w = 24s_0(n_w)$$
, $w \in S_B(t^2)_Z^*$

This is a type of formula which the author has in mind for the algebraic fibration over Z and has proved for Hopf fibrations of type $S^3 \rightarrow S^{2,2^{2}}$

For proofs of facts concerning the arithmetic of quaternions the reader is referred to the report by Linnik.³⁾

§ 2. Change of the fibration.

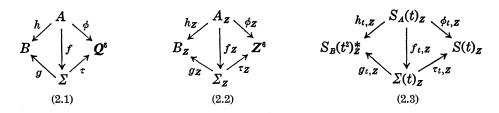
Our problem is to determine the fibre of the map $h_{t,z}$ in (1.5). To do this, it is convenient to replace the map h by a map f in the following way. Namely, put

$$\begin{split} \Sigma &= \{ \sigma = (a, \beta, c) \in \mathbf{Q} \times K \times \mathbf{Q}, \ N\beta = ac \} , \\ f(z) &= (Nx, \bar{x}y, Ny) , \qquad z = (x, y) \in A = K \times K , \\ g(\sigma) &= (a - c, 2\beta) , \qquad \sigma = (a, \beta, c) \in \Sigma , \\ \tau(\sigma) &= (a, T(\rho\beta), T(i\beta), T(j\beta), T(k\beta), c) \quad \text{and} \quad \phi = \tau f . \end{split}$$

²⁾ T. Ono, On the Hopf fibration over Z, Nagoya Math. J. Vol. 56 (1975), 201-207, T. Ono. Quadratic fields and Hopf fibrations (to appear).

³⁾ Yu V. Linnik, Quaternions and Cayley numbers. Some applications of quaternion arithmetic. (Russian), Uspehi Mat. Nauk, IV, 5(33), (1949) 49-98.

HOPF FIBRATION $S^7 \rightarrow S^4$



Clearly, the diagram (2.1) is well-defined and commutative. If we restrict everything on the integral part, we obtain naturally the commutative diagram (2.2), where

$$\Sigma_{\mathbf{Z}} = \Sigma \cap (\mathbf{Z} \times \mathfrak{o} \times \mathbf{Z}) \; .$$

Next, consider the portion of (2.2) corresponding to a natural number t as follows. Put

$$\begin{split} & \Sigma(t)_{\mathbf{Z}} = \{ \sigma = (a, \beta, c) \in \Sigma_{\mathbf{Z}}, \ a + c = t \} , \\ & S(t)_{\mathbf{Z}} = \{ s = (a, b_1, b_2, b_3, b_4, c) \in \mathbf{Z}^{\mathfrak{d}}, \ a + c = t \} . \end{split}$$

Then, f_Z, ϕ_Z induce the maps $f_{t,Z}, \phi_{t,Z}$, respectively. It is almost trivial to check that the diagram (2.3) is well-defined and commutative. The only non-trivial map is $g_{t,Z}$ and it is in fact a bijection: First of all, $g_{t,Z}$ is well-defined, because we have

$$g(\sigma) = (a - c, 2\beta)$$
 and $N(g(\sigma)) = (a - c)^2 + 4N\beta = (a + c)^2 = t^2$

for $\sigma = (a, \beta, c) \in \Sigma(t)_Z$. Next, suppose that $g(\sigma) = g(\sigma')$ with $\sigma = (a, \beta, c), \sigma'$ = $(a', \beta', c') \in \Sigma(t)_Z$. Then we have $\beta = \beta'$ and a - c = a' - c', but, since a + c = a' + c' = t, we have $\sigma = \sigma'$, i.e. $g_{t,Z}$ is injective. Finally, take an element $w = (u, v) \in S_B(t^2)_Z^*$, where $u \in Z$ and $v \in 20$ by (1.6). Put $a = \frac{1}{2}(t + u), \ \beta = \frac{1}{2}v, \ c = \frac{1}{2}(t - u)$. Then $\beta \in 0$. Substituting $v = 2\beta$ in the relation $u^2 + Nv = t^2$, we see that $a, c \in Z, \ a + c = t$ and $N\beta = ac$, i.e. $\sigma = (a, \beta, c) \in \Sigma(t)_Z$. Furthermore, we have $g(\sigma) = (a - c, 2\beta) = (u, v) = w$, which proves that $g_{t,Z}$ is surjective. Hence, the study of the map $h_{t,Z}$ is reduced to the study of the map $f_{t,Z}$. Now, we can make one more reduction in view of the equality

$$f_{t,\mathbf{Z}}^{-1}(\sigma) = f_{\mathbf{Z}}^{-1}(\sigma) , \qquad \sigma \in \Sigma(t)_{\mathbf{Z}} ,$$

which can be verified easily. Therefore, our problem is reduced to the determination of the structure of the fibre

$$X(\sigma) = f_{Z}^{-1}(\sigma)$$
 for $\sigma = (a, \beta, c) \in \Sigma_{Z}$ with $a + c \ge 1$.

61

§ 3. Number of solutions

We shall denote by I_{κ} the set of all non-zero fractional right ideals of K with respect to the maximal order \circ and by I_{κ}^{+} the subset of I_{κ} consisting of right ideals in \circ . For an *n*-tuple $(a_1, \dots, a_n) \neq (0, \dots, 0)$, $a_i \in K$, we denote by $\mathrm{id}_{\kappa}(a_1, \dots, a_n)$ the right ideal in I_{κ} generated by a_1, \dots, a_n . As is well-known, every right ideal α in I_{κ} is principal: $\alpha = \alpha \circ, \alpha \in K^{\times}$. Hence, we may define the norm of α by $N\alpha = N\alpha$.

LEMMA (3.1) The following diagram is commutative:

$$egin{aligned} A_{Z} &- \{0\} \stackrel{\operatorname{id}_{K}}{\longrightarrow} I_{K}^{+} \ \phi_{Z} & & iggle N \ Z^{6} &- \{0\} \stackrel{\operatorname{id}_{Q}}{\longrightarrow} N \ . \end{aligned}$$

Here, the map id_{Q} is to take the greatest common divisor of six integers and $\phi_{Z}(z) = \tau_{Z} f_{Z}(z) = (Nx, T(\rho \overline{x} y), T(i \overline{x} y), T(j \overline{x} y), Ny).$

Proof. Take an element $z = (x, y) \in A_z - \{0\}$. There is an $\alpha \in 0$ such that $id_{\kappa}(z) = x_0 + y_0 = \alpha_0$. We must prove that

(3.2)
$$(N\alpha)\mathbf{Z} = (Nx)\mathbf{Z} + T(\rho\bar{x}y)\mathbf{Z} + T(i\bar{x}y)\mathbf{Z} + T(j\bar{x}y)\mathbf{Z} + T(j\bar{x}y)\mathbf{Z} + T(k\bar{x}y)\mathbf{Z} + (Ny)\mathbf{Z}.$$

Now, since $x_0 + y_0 = \alpha_0$, we can write $x = \alpha \lambda$, $y = \alpha \mu$ with $\lambda, \mu \in 0$. Then, $Nx = (N\alpha)(N\lambda) \in (N\alpha)Z$, $Ny = (N\alpha)(N\mu) \in (N\alpha)Z$. Let ε be any one of the four quaternions ρ, i, j, k . Then we have

$$T(\varepsilon \overline{x} y) = T(\varepsilon \overline{\lambda} \overline{\alpha} \alpha \mu) = (N \alpha) T(\varepsilon \overline{\lambda} \mu) \in (N \alpha) \mathbf{Z} .$$

From these, we see that the right hand side of (3.2) is contained in the left hand side. To prove the other inclusion, write $\alpha = x\xi + y\eta$ with $\xi, \eta \in \mathfrak{0}$. Then, we have

$$egin{aligned} &Nlpha = (ar{\xi}ar{x}+ar{\eta}ar{y})(x\xi+y\eta)\ &=ar{\xi}ar{x}x\xi+ar{\eta}ar{y}y\eta+ar{\xi}ar{x}y\eta+ar{\eta}ar{y}x\xi\ &=(Nx)(N\xi)+(Ny)(N\eta)+T(ar{\xi}ar{x}y\eta)\ . \end{aligned}$$

Here, obviously, $(Nx)(N\xi) \in (Nx)Z$, $(Ny)(N\eta) \in (Ny)Z$. As for the term $T(\bar{\xi}\bar{x}y\eta)$, we have, first of all, $T(\bar{\xi}\bar{x}y\eta) = T(\eta\bar{\xi}\bar{x}y)$. Next, write $\eta\bar{\xi}$ as

$$\etaar{\xi}=a_1
ho+a_2i+a_3j+a_4k \quad ext{with} \quad a_
u\in Z, \ 1\leq
u\leq 4 \ .$$

Then we have

HOPF FIBRATION $S^7 \rightarrow S^4$

$$T(\eta\bar{\xi}\bar{x}y) = a_1T(\rho\bar{x}y) + a_2T(i\bar{x}y) + a_3T(j\bar{x}y) + a_4T(k\bar{x}y)$$

$$\in T(\rho\bar{x}y)Z + T(i\bar{x}y)Z + T(j\bar{x}y)Z + T(k\bar{x}y)Z,$$

which proves that the left hand side of (3.2) is contained in the right hand side, q.e.d.

For a natural number n, put

$$I_{\kappa}^{+}(n) = \{ \mathrm{j} \in I_{\kappa}^{+}, N \mathrm{j} = n \}$$
.

This set is non-empty for any n (Lagrange) and contains $s_0(n)$ elements.

Now, take an element $\sigma = (a, \beta, c) \in \Sigma_Z$ with $a + c \ge 1$ and take a $z = (x, y) \in X(\sigma) = f_Z^{-1}(\sigma)$. Using the same $\alpha \in \mathfrak{o}$ for z = (x, y) as in the proof of (3.1), we have, by (3.1),

$$N(\mathrm{id}_{K}(z)) = N\alpha = \mathrm{id}_{Q}(\phi_{Z}(z)) = \mathrm{id}_{Q}(\tau_{Z}f_{Z}(z)) = \mathrm{id}_{Q}(\tau_{Z}(\sigma)) .$$

Hence, if we put

 $n_{\sigma} = \mathrm{id}_{Q}(\tau_{Z}(\sigma)) = \mathrm{id}_{Q}(a, T(\rho\beta), T(i\beta), T(j\beta), T(k\beta), c)$

we obtain a map

 $d_{\sigma} \colon X(\sigma) \to I_{K}^{+}(n_{\sigma})$ defined by $d_{\sigma}(z) = \mathrm{id}_{K}(z)$.

Note that $n_{\sigma} = n_w$ in (1.7) if $w = g_{t,z}(\sigma)$ for $\sigma \in \Sigma(t)_z$.

LEMMA (3.3) The map d_{σ} is surjective.

Proof. Take any $j \in I_K^+(n_{\sigma})$ and write $j = \alpha 0$, $\alpha \in 0$. Since $a + c \ge 1$, either $a \ne 0$ or $c \ne 0$. Without loss of generality, we may assume that $a \ne 0$. Take $\omega \in 0$ such that $\mathrm{id}_K(a, \beta) = a_0 + \beta_0 = \omega_0$. Then, we have $a = \omega \theta$, $\beta = \omega \psi$ with $\theta, \psi \in 0$. From (3.1), it follows that

$$\begin{split} N\omega &= N(\operatorname{id}_{\kappa}\left(a,\beta\right)) = \operatorname{id}_{\boldsymbol{q}}\left(\phi_{\boldsymbol{z}}(a,\beta)\right) \\ &= \operatorname{id}_{\boldsymbol{q}}\left(Na, T(\rho a\beta), T(ia\beta), T(ja\beta), T(ka\beta), N\beta\right) \\ &= a \operatorname{id}_{\boldsymbol{q}}\left(a, T(\rho\beta), T(i\beta), T(j\beta), T(k\beta), c\right) = an_{\sigma} = aNj = aN\alpha \;. \end{split}$$

Hence we have $a = N(\omega \alpha^{-1})$. Put $\eta = \omega \alpha^{-1}$, $x = \eta^{-1}a$ and $y = \eta^{-1}\beta$. Since we can also write $x = \alpha \theta$, $y = \alpha \psi$, we see that $z = (x, y) \in A_Z - \{0\}$. We claim that z is an element $\in X(\sigma)$ such that $d_{\sigma}(z) = j$. In fact, firstly, we have

$$egin{aligned} f(z) &= (Nx, ar{x}y, Ny) = (N(\eta^{-1}a), aar{\eta}^{-1}\eta^{-1}eta, N(\eta^{-1}eta)) \ &= (N\eta)^{-1}(a^2, aeta, Neta) = (N\eta)^{-1}a(a, eta, c) = (a, eta, c) = \sigma \ , \end{aligned}$$

which shows that $z \in X(\sigma)$. Next, we have

 $d_{\sigma}(z) = \mathrm{id}_{Q}(x, y) = \eta^{-1} \alpha \mathfrak{o} + \eta^{-1} \beta \mathfrak{o} = \eta^{-1} \omega \mathfrak{o} = \alpha \mathfrak{o} = j ,$

which completes the proof of our assertion.

We shall now study the fibre $d_{\sigma}^{-1}(j)$ for a fixed $j \in I_{\kappa}^{+}(n_{\sigma})$. Write $j = \alpha 0$ as before, and put $\Gamma_{i} = \alpha 0^{\times} \alpha^{-1}$, this being a finite group of order 24 depending only on j and not on the choice of the generator α .

LEMMA (3.4) The group Γ_i acts on the fibre $d_s^{-1}(j)$ simply and transitively by $z = (x, y) \mapsto \lambda z = (\lambda x, \lambda y), \lambda \in \Gamma_i$.

Proof. We shall first check that the action is well-defined. This follows from the relations $f(\lambda z) = (N(\lambda x), \bar{x}\bar{\lambda}\lambda y, N(\lambda y)) = N\lambda(Nx, \bar{x}y, Ny)$ = $f(z) = \sigma$

and

$$d_{\alpha}(\lambda z) = \lambda x_0 + \lambda y_0 = \lambda d_{\alpha}(z) = \lambda \mathbf{j} = \lambda \alpha_0 = \alpha_{0} = \mathbf{j}$$
,

where $\varepsilon \in 0^{\times}$. Next, clearly, the isotropy group is trivial everywhere. Finally, let z = (x, y), z' = (x', y') be any two points of $d_{\sigma}^{-1}(j)$. Assume, for the moment, that both of x, y are $\neq 0$. Then, from the relation $f(z) = (Nx, \bar{x}y, Ny) = f(z') = (Nx', \bar{x}'y', Ny')$, we can find $\lambda, \mu \in K$ with $N\lambda = N\mu = 1$ such that $x' = \lambda x$ and $y' = \mu y$. Substituting these in the relation $\bar{x}'y' = \bar{x}y$, we get $\bar{\lambda}\mu = 1$ and hence $\lambda = \mu$. In case where one of x or y, say y = 0, then y' = 0 automatically, and we have $x' = \lambda x$, $y' = \lambda y, N\lambda = 1$, again. In any case, we claim that this λ belongs to Γ_i . In fact, the assumption $d_{\sigma}(z) = d_{\sigma}(z') = j$ implies that $j = \alpha 0 = x_0 + y_0 = x'_0 + y'_0 = \lambda \alpha 0$ and so $\lambda \alpha = \alpha \varepsilon$ for some $\varepsilon \in 0$. However, since $N\lambda = 1$, we must have $\varepsilon \in 0^{\times}$. Thus, $\lambda = \alpha \varepsilon \alpha^{-1} \in \Gamma_i$, q.e.d.

Combining (3.3) and (3.4), we obtain the following relation of cardinalities:

(3.5)
$$\operatorname{Card} (X(\sigma)) = \sum_{i} \operatorname{Card} (\Gamma_{i}) = 24 \operatorname{Card} (I_{K}^{+}(n_{\sigma})) = 24s_{0}(n_{\sigma}).$$

Our formula (1.8) is a translation of (3.5) through the bijection $g_{t,z}$ in the diagram (2.3).

The Johns Hopkins University

64