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ASSESSING A LINEAR NANOSYSTEM’S
LIMITING RELIABILITY FROM
ITS COMPONENTS
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Abstract

Nanosystems are devices that are in the size range of a billionth of a meter (1×10−9) and
therefore are built necessarily from individual atoms. The one-dimensional nanosystems
or linear nanosystems cover all the nanosized systems which possess one dimension that
exceeds the other two dimensions, i.e. extension over one dimension is predominant over
the other two dimensions. Here only two of the dimensions have to be on the nanoscale
(less than 100 nanometers). In this paper we consider the structural relationship between
a linear nanosystem and its atoms acting as components of the nanosystem. Using such
information, we then assess the nanosystem’s limiting reliability which is, of course,
probabilistic in nature. We consider the linear nanosystem at a fixed moment of time,
say the present moment, and we assume that the present state of the linear nanosystem
depends only on the present states of its atoms.
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1. Introduction

Over the past several years, nanoscience and nanotechnology have become two of the most
important fields at the forefront of physics, chemistry, engineering, and biology. Nanoscience
is the study of the world on the nanometer scale, from approximately one nanometer to
several hundred nanometers. Nanoscience occurs at the intersection of traditional science and
engineering, quantum mechanics, and the most basic processes of life itself. Nanotechnology,
on the other hand, encompasses how we harness our knowledge of nanoscience to manipulate
atoms to fabricate nanodevices. Manufacturing, also referred to as ‘bottom-up nanostructure
preparation’, is based on building nanodevices by putting atoms together with chemical bonding
or through other means. Properties of manufactured nanosystems depend on how atoms
are rearranged, and their reliabilities will be limited by the strengths of the bonds holding
them together. We refer the reader to Drexler (1992), Ratner and Ratner (2003), Poole and
Owens (2003), Bahar et al. (2005), Bhushan (2007), Tabata and Tsuchiya (2008), and the
references therein for an introduction and advances in both fields.

In the fields of nanoscience and nanotechnology, much attention has been given to the dual
problem of designing nanosystems with novel physical properties and how such systems can be
fabricated. Receiving less attention has been the question of nanosystem reliability: how does
a nanosystem fail and how long does a nanosystem survive under typical operation conditions?
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Today, high reliability is necessary to guarantee the advancement and utilization of nanosystems
due to the fact that they account for a high proportion of costs of newly designed multiscale
systems.

Our goal in this paper is to develop general statistical methodologies for assessing the
reliability of linear nanosystems. Our analysis uses a probability modeling formulation that
exploits the internal structure of a linear nanosystem. Specifically, we consider a linear
nanosystem consisting of N atoms A = {1, 2, . . . , N} acting as components of the system.
Usually, for a linear nanosystem, N is very large (N → ∞). The formation of a linear
nanosystem essentially involves putting its atoms where they should be. The system can fail
because its atoms rearrange. To indicate the state of each atom i, the binary indicator variable
Xi is defined by

Xi =
{

1 if atom i is displaced,

0 if atom i is not displaced,
(1)

for i = 1, . . . , N . Usually, displacement occurs owing to one atom being either attracted or
repelled by another atom. It should be emphasized that, for a linear nanosystem, atoms can
move in one direction only. Without loss of generality, we assume that the atoms can move in
the x-direction only. Examples of such nanosystems are solid nanofibers, nanowires, nanorods,
and nanotubes.

We should note that in the conventional reliability theory Xi is defined to be 1 if the
component is functioning and 0 if the component fails; see Barlow and Proschan (1981) and
Ebrahimi (1990). Also, see Natvig (2007), which covers multistate reliability theory. For a
linear nanosystem, however, defining Xi in this way does not make sense because elements
chosen to create linear nanosystems are usually those with stable nuclei and, therefore, in
principle, they are ageless.

In order to explore complex partial patterns of atoms in three dimensions, we represent (1)
in the following way. Suppose that Xijk is the state of the atom located at the point (i, j, k) in
DN1,N2,N3 , where DN1,N2,N3 = {(i1, i2, i3) : 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, 1 ≤ i3 ≤ N3}. Here,

Xijk =
{

1 if the atom located at the point (i, j, k) is displaced,

0 if the atom located at the point (i, j, k) is not displaced,
(2)

for i = 1, . . . , N1, j = 1, . . . , N2, and k = 1, . . . , N3. It should be noted that in this
formulation N = N1N2N3 and N1 is very large compared to N2 and N3. Throughout this
paper, we use (2).

Let d1 < d2 < · · · < dr be the r smallest distances between the points in DN1,N2,N3 , and
define

S(N1, N2, N3) =
∑

DN1,N2,N3

Xijk (3)

and

Y�(N1, N2, N3) = 1

4

( ∑
A�(N1,N2,N3)

XijkXi′j ′k′
)

, (4)

where � = 1, . . . , r and A�(N1, N2, N3) is the set of all points (i, j, k) ∈ DN1,N2,N3 and
(i′, j ′, k′) ∈ DN1,N2,N3 satisfying d2

� = (i − i′)2 + (j − j ′)2 + (k − k′)2.
In order to find the joint distribution of Xijk for i = 1, . . . , N1, j = 1, 2, . . . , N2, and

k = 1, . . . , N3, we must first determine how these atoms are linked. Suppose that the atoms
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are identical, i.e. P(Xijk = 1) does not depend on i, j , and k, and that the interdependence
between the atoms declines with distance.

To capture the above properties, we assume that the joint distribution of Xijk, i = 1, . . . , N1,
j = 1, . . . , N2, k = 1, . . . , N3, is of the form

P(Xijk = xijk; i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3) = C−1 exp

[
γ s +

r∑
�=1

θ�y�

]
,

(5)

where xijk is either 0 or 1, C is a normalizing constant, and s and y1, . . . , yr represent the
values of S(N1, N2, N3) and Y1(N1, N2, N3), . . . , Yr (N1, N2, N3) described in (3) and (4),
respectively, when Xijk = xijk for i = 1, . . . , N1, j = 1, . . . , N2, and k = 1, . . . , N3. In (5),
γ, θ1, θ2, θ3, . . . , θr are real-valued parameters. Random variables Xijk, i = 1, . . . , N1, j =
1, . . . , N2, k = 1, . . . , N3, having distributions given by (5) are particular examples of Markov
random fields. For more properties of (5), we refer the reader to Besag (1974) and Banerjee et al.
(2004, pp. 76–84). Throughout this paper, we will use the model (5). We cannot overemphasize
the fact that the model entailed in (5) is only one of the many different models that is encountered
in practice.

Several remarks are in order with respect to (5). Firstly, note that (5) can be written as

P(Xijk = xijk; i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3)

= (M(θ1, θ2, θ3, . . . , θr ))
−1psqN−s exp

[ r∑
�=1

θ�y�

]
, (6)

where p = eγ /(1 + eγ ), q = 1 − p, and M(θ1, . . . , θr ) is the moment generating function
of Y1(N1, N2, N3), . . . , Yr (N1, N2, N3) evaluated at θ1, θ2, . . . , θr and computed under the
assumption that the Xijks are independent, identically distributed Bernoulli variables having
success parameter p; see Saunders et al. (1979) for more details.

Secondly, let

Mθ(t0, t1, . . . , tr ) = E

{
exp

[
t0S(N1, N2, N3) +

r∑
i=1

tiYi(N1, N2, N3)

]}

be the joint moment generating function of

S(N1, N2, N3), Y1(N1, N2, N3), . . . , and Yr(N1, N2, N3)

when θ = (θ1, . . . , θr ). Then

Mθ(t0, t1, . . . , tr ) = M∗(t0, t1 + θ1, . . . , tr + θr)

M∗(0, t1, . . . , tr )
, (7)

where M∗ is the joint moment function of

S(N1, N2, N3), Y1(N1, N2, N3), . . . , and Yr(N1, N2, N3)

under the assumption that θ1 = θ2 = · · · = θr = 0.
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Finally, for any (i, j, k), 1 < i < N1, 1 < j < N2, 1 < k < N3,

P(Xijk = 1 | Xi′j ′k′ , (i′, j ′, k′) ∈ T�(i, j, k), � = 1, . . . , r)

= p exp[∑r
�=1 θ�(

∑
T�(i,j,k) Xi′j ′k′)]

q + p exp[∑r
�=1 θ�(

∑
T�(i,j,k) Xi′j ′k′)] , (8)

where T�(i, j, k) = {(i′, j ′, k′) : (i′, j ′, k′) ∈ DN1,N2,N3 −{(i, j, k)} and (i − i′)2 + (j −j ′)2 +
(k − k′)2 = d2

� } and, for any two sets A and B, A-B is the complement of B with respect to A.
For example, if i = j = k = 2 and � = 1 then it is clear that d1 = 1,

T1(2, 2, 2) = {(i′, j ′, k′) : (i′, j ′, k′) ∈ DN1,N2,N3 − {(2, 2, 2)} and

(2 − i′)2 + (2 − j ′)2 + (2 − k′)2 = 1}
= {(2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2)},

and (8) is
P(X222 = 1 | Xi′j ′k′ , (i′, j ′, k′) ∈ T1(2, 2, 2))

= p exp[θ1(X221 + X212 + X122 + X223 + X232 + X322)]
q + p exp[θ1(X221 + X212 + X122 + X223 + X232 + X322)] .

In this paper we focus on two types of linear nanosystems. Both cases describe the
relationship between the failure of a linear nanosystem and its atoms.

Type 1. We assume that the system fails if at least � + 1 atoms are displaced. We refer to
this type of system as an �-out-of N : F linear nanosystem.

Type 2. For given integers r1, r2, and r3 (1 ≤ ri ≤ Ni, i = 1, 2, 3), let Cr1,r2,r3(i, j, k) =
{(i1, i2, i3) : i − r1 + 1 ≤ i1 ≤ i, j − r2 + 1 ≤ i2 ≤ j, k ≤ i3 ≤ k + r3 − 1} for i =
r1, . . . , N1, j = r2, . . . , N2, and k = 1, . . . , N3 − r3 + 1. Define Wijk = ∑ ∑ ∑

Xabc,
where the sum is taken over all possible values of a, b, and c in Cr1,r2,r3(i, j, k). We assume
that the system fails if at least one of Wijk, i = r1, . . . , N1, j = r2, . . . , N2, k = 1, . . . , N3 −
r3 + 1, exceeds �. In this case the system will survive if all the Wijk, i = r1, . . . , N1, j =
r2, . . . , N2, k = 1, . . . , N3 − r3 + 1, are less than or equal to �.

It should be noted that in practical situations there are different tools, such as scanning
probe microscopy, scanning force microscopy, scanning tunneling microscopy, and atomic
microscopy, to provide information about � for types 1 and 2 linear nanosystems.

This paper is organized as follows. In Section 2 we consider an �-out-of N : F linear
nanosystem (type 1) and assess its limiting reliability when N is assumed to be very large
(N → ∞). In Section 3 we consider a type 2 linear nanosystem.

2. Assessing the reliability of an �-out-of N : F linear nanosystem (type 1)

Using (3), it is clear that the reliability of an �-out-of N : F linear nanosystem is

R1(N, �) = P(S(N1, N2, N3) ≤ �).

That is, the probability of failure is

F1(N, �) = 1 − R1(N, �) = P(S(N1, N2, N3) ≥ � + 1).

Since, for a linear nanosystem, N is usually very large, we will compute R1(N, �) when
N → ∞.
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Theorem 1. If N → ∞ and � ≥ 1,

R1(N, �) = �

(
� − Np√

Np(1 − p)

)
, (9)

where p = eγ /(1 + eγ ).

Proof. From (7), it is clear that the distribution of S(N1, N2, N3) for any θ1, . . . and θr is
equivalent to the distribution of S(N1, N2, N3) under the assumption that θ1 = θ2 = · · · =
θr = 0. Using this result and the central limit theorem, we obtain (9).

As an application of Theorem 1, consider the following example.

Example 1. Suppose that N = 106 and that the linear nanosystem fails if at least 1001 atoms
are displaced, i.e. 1000-out-of-106 : F linear nanosystem. In (5), suppose that γ = −7. It is
clear that p ≈ 9.2 × 10−4. Then, from Theorem 1,

R1(106, 1000) = �

(
1000 − 920

30.5

)
= �(2.62) = 0.996.

That is, the limiting reliability of the system with this specification is about 0.996.

3. Assessing the reliability of a type 2 linear nanosystem

It is clear that, for a type 2 linear nanosystem, the reliability is

R2(N, r1, r2, r3, �) = P(Wijk ≤ �; i = r1, . . . , N1, j = r2, . . . , N2,

k = 1, . . . , N3 − r3 + 1)

= P(max(Wijk) ≤ �), (10)

where the maximum is taken over all points (i, j, k) such that r1 ≤ i ≤ N1, r2 ≤ j ≤ N2, and
1 ≤ k ≤ N3 − r3 + 1.

To calculate R2(N, r1, r2, r3, �) in (10), instead of working directly with the Wijks, we
first construct an equivalent parallel sequence of random variables and then use this sequence
to obtain R2(N, r1, r2, r3, �). The problem is thus to make sure that both sequences are
asymptotically equivalent.

In (5), first we assume that θ� = 0 and � = 1, . . . , r . Then

R2(N, r1, r2, r3, �) = P(max(W ∗
ijk) ≤ �), (11)

where W ∗
ijk is binomial with parameters r∗ = r1r2r3 and p, and the maximum is over all (i, j, k)

such that r1 ≤ i ≤ N1, r2 ≤ j ≤ N2, and 1 ≤ k ≤ N3 − r3 + 1. Below, we calculate (11)
for different values of �. We assume that N → ∞, p → 0 (displacement of an atom is a rare
event), and Np → η (η > 0).

Case I: � = 0. For this case, it is equivalent to saying that the nanosystem will survive if all
its atoms do not move. Thus,

R2(N, r1, r2, r3, 0) = (1 − p)N =
(

1 − η

N

)N

.

Now, as N → ∞, R2(N, 0) = e−η.
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Case II: � = 1. Since Xijk, i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3, are inde-
pendent, we find that W ∗

ijk, i = r1, . . . , N1, j = r2, . . . , N2, k = 1, . . . , N3 − r3 + 1, are
associated random variables. (For the definition of associated random variables, see Barlow
and Proschan (1981, pp. 29–32).) Thus,

R2(N, r1, r2, r3, 1) = P(W ∗
ijk ≤ 1; i = r1, . . . , N1, j = r2, . . . , N2,

k = 1, . . . , N3 − r3 + 1)

≥
N1∏

i=r1

N2∏
j=r2

N3−r3+1∏
k=1

P(W ∗
ijk ≤ 1)

= (r∗p(1 − p)r
∗−1 + (1 − p)r

∗
)N

∗
, (12)

where N∗ = (N1 − r1 + 1)(N2 − r2 + 1)(N3 − r3 + 1) and r∗ = (r1)(r2)(r3). Since
N∗/N → 1, (12) reduces to

R2(N, r1, r2, r3, 1) ≥ (r∗p(1 − p)r
∗−1 + (1 − p)r

∗
)N . (13)

The right-hand side of (13) can be written as

(r∗p(1 − p)r
∗−1 + (1 − p)r

∗
)N = ((1 − p)r

∗−1(1 − p + r∗p))N

=
((

1 − η

N

)r∗−1(
1 − η

N
+ r∗η

N

))N

.

It follows that

lim
N→∞

((
1 − η

N

)r∗−1(
1 − η

N
+ r∗η

N

))N

= 1.

Consequently, for this case, as N → ∞, R2(N, r1, r2, r3, 1) = 1.
From case II, it is clear that, for θ1 = θ2 = · · · = θr = 0, R2(N, r1, r2, r3, �) = 1 for � ≥ 1.

Keeping the assumptions that N → ∞, p → 0, and Np → η (η > 0), and following similar
arguments to those in Saunders et al. (1979, p. 558), we can easily show that

P(max(Wijk) ≤ �) ≈ P(max(W ∗
ijk) ≤ �),

where the max is taken over all possible values of (i, j, k), r1 ≤ i ≤ N1, r2 ≤ j ≤ N2,
1 ≤ k ≤ N2 − r3 + 1. Thus, similar results are obtained for any real numbers θ1, θ2, . . . , θr .
The above results can be summarized in the following theorem.

Theorem 2. If N → ∞, p → 0, and Np → η(η > 0), then

(a) R2(N, r1, r2, r3, 0) = e−η,

(b) R2(N, r1, r2, r3, �) = 1 for � ≥ 1.

Next we move to the case in which N → ∞, p → 0, and Np2 → λ (λ > 0). To compute
R2(N, r1, r2, r3, �), we first prove the following lemma.

Lemma 1. As N → ∞, p → 0, and Np2 → λ (λ > 0),

P(Xijk = xijk; i = 1, . . . , N1, j = 1, . . . , N2, k = 1, . . . , N3)

=
r∏

�=1

exp[λ� − λ� exp[θ�]]ps(1 − p)N−s exp

[ r∑
�=1

θ�y�

]
,
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where λ� = λa� and 4a� is the number of (i1, i2, i3) ∈ DN1,N2,N3 such that (i − i1)
2 + (j −

i2)
2 + (k − i3)

2 = d2
� for a given (i, j, k). Here 1 < i < N1, 1 < j < N2, and 1 < k < N3.

Proof. Using similar arguments to the proof of Theorem 2 of Saunders et al. (1979), we
can show that Y1(N1, N2, N3), . . . , Yr (N1, N2, N3) are independent and that Y�(N1, N2, N3)

is a Poisson random variable with mean λa�, � = 1, . . . , r . Now, from (6) and the fact that,
for a Poisson distribution with mean µ, the moment generating function is exp[−µ + µet ], we
obtain the result.

If � = 0 then, using Theorem 1 and Theorem 2 of Saunders et al. (1979),

R2(N, r1, r2, r3, 0) = P(S(N1, N2, N2) = 0) ≈ �

(
(1/2 − Np)√
Np(1 − p)

)
≈ 0.

Now consider the case in which � > 0, N → ∞, p → 0, Np2 → λ (λ > 0), and
θ1 = · · · = θr = 0. For this case,

R2(N, r1, r2, r3, �) = P(W ∗
ijk ≤ �; i = r1, . . . , N1, j = r2, . . . , N2, k = 1, . . . , N3 −r3 +1).

First note that, for any (i, j, k), for � = 1 and N → ∞,

P(W ∗
ijk ≤ 1) = lim

N→∞((1 − p)r
∗ + pr∗(1 − p)r

∗−1)

= lim
N→∞

((
1 −

√
λ√
N

)r∗

+ r∗
( √

λ√
N

)(
1 −

√
λ√
N

)r∗−1)
= 1.

Again, since the W ∗
ijks are associated, we obtain

P(max(W ∗
ijk) ≤ 1) = 1.

That is, as N → ∞, R2(N, r1, r2, r3, 1) = 1. Thus, as N → ∞, R2(N, r1, r2, r3, �) = 1 for
� ≥ 1.

It should be noted that, from (8), if θ1, θ2, . . . , θr ≥ 0 then the Xijks are conditionally
increasing in sequence and, therefore, they are associated random variables. For the definition
of conditionally increasing in sequence, see Barlow and Proschan (1981, pp. 146–148). Using
this fact and similar arguments to Theorem 2, the Wijks are also associated random variables
and, thus, for this case, R2(N, r1, r2, r3, �) = 1 as well.

Below we summarize the above results.

Theorem 3. Suppose that N → ∞, p → 0, and Np2 → λ (λ > 0). Then

(a) R2(N, r1, r2, r3, 0) = 0,

(b) if θi ≥ 0, i = 1, 2, . . . , r , R2(N, r1, r2, r3, �) = 1, � ≥ 1.

For other cases, it is difficult to directly assess the reliability R2(N, r1, r2, r3, �). We obtain
it through simulations that are carried out in two stages. It should be noted that the technique
we describe below can also be used for small N as well.

Stage 1. At this stage we compute λijk = P(Wijk > �, i = r1, . . . , N1, j = r2, . . . , N2,

k = 1, . . . , N3 − r3 + 1). There are many situations where it is hard to compute the λijks
analytically. For those situations, using conditional probabilities in (8) for a given (i, j, k), r1 ≤
i ≤ N1, r2 ≤ j ≤ N2, 1 ≤ k ≤ N3 − r3 + 1, and techniques like the Gibbs sampler, we can

https://doi.org/10.1239/jap/1222441834 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1222441834


886 N. EBRAHIMI

generate Wijk and then use it to estimate λijk = P(Wijk > �). For more details about the Gibbs
sampler, see Casella and George (1992).

Stage 2. Suppose that

λ =
∑

i

∑
j

∑
k

λijk and Vijk =
{

1 if Wijk > �,

0 otherwise.

Then it is clear that R2(N, r1, r2, r3, �) = 1 − P(V > 0), where

V =
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

Vijk.

Here V represents the total number of Wijks that exceed �.
Now, let I be a random variable independent of the random vector

(Vr1r21, . . . , VN1N2(N3−r3+1))

and defined on {(i, j, k); r1 ≤ i ≤ N1, r2 ≤ j ≤ N2, 1 ≤ k ≤ N3 − r3 + 1} such that

P(I = (i, j, k)) = 1

(N1 − r1 + 1)(N2 − r2 + 1)(N3 − r3 + 1)
.

Then,

P(I = (i, j, k) | VI = 1) = λijk

λ
.

Let

R =
⎧⎨
⎩

0, V = 0,
1

V
, V > 0.

Then
P(V > 0) = E{RV }

=
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

E{RV ijk}

=
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

E{RV ijk | Vijk = 1}λijk

=
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

λijk E{R | Vijk = 1}. (14)

Using the fact that

E{R | VI = 1} =
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

E{R | I = (i, j, k), VI = 1} P(I = (i, j, k) | VI = 1)

=
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

λijk

λ
E{R | Vijk = 1}
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and (14),

P(V > 0) = λ E

{
1

V
|VI = 1

}
.

At this stage, we simulate the value of J , a random variable with probability function

P(J = (i, j, k)) = λijk

λ

for i = r1, . . . , N1, j = r2, . . . , N2, and k = 1, . . . , N3 − r3 + 1. Note that the random
variable J has the same distribution as P(I = (i, j, k) | VI = 1). Now, we set Vijk = 1 for
J = (i, j, k), generate Wi′j ′k′ for r1 ≤ i′ ≤ N1 and r2 ≤ j ′ ≤ N2, 1 ≤ k′ ≤ N3 − r3 + 1 such
that (i′, j ′, k′) is not equal to J , and compute Vi′j ′k′ and, consequently,

V ∗ =
N1∑

i=r1

N2∑
j=r2

N3−r3+1∑
k=1

Vijk.

It should be noted that V ∗ ≥ 1. Now, we estimate R2(N, r1, r2, r3, �) = 1 − P(V > 0) by
1 − λ(1/V ∗).
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