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1. Introduction. In two papers [3] and [4], the author has extended the inequality of
Schur (Theorem 319 of [2]) to cases involving kernels which satisfy identities of the form

The purpose of this paper is to prove a general inequality, which includes the above and also
the inequality of Young (Theorem 281 of [2]) as special cases. We shall give the results a
general setting by considering functions defined on abstract measure spaces. From this we
shall deduce an extension to n dimensions of the results given in [3], which also generalises a
similar extension of the Schur inequality given by Stein and Weiss. In fact some cases of the
other results given in [5] will follow directly from our theorem.

I am grateful to the referee for his helpful suggestions and comments, which have con-
siderably improved the paper.

We shall consider two measure spaces (Si,Al,ai) and (S2,A2, a2) respectively, and denote
by L" = LP(S) the space of complex-valued measurable functions on some measure space
(S, A, a) such that

UP

<oo.

The numbers p and p' will be connected by \/p+ \\p' = 1.
The Euclidean w-space will be denoted by En, so that xeEn implies x = (xux2,..-,xn),

where xux2,... are real numbers. The norm I. I in En is then given by

2. The general inequality.

THEOREM 2.1. Let p,r,nuy.2 be positive numbers such that 1 <p ^r,

Let also \j/ be a complex-valued function measurable on S2xSu and suppose that there exist
measurable functions <f>l:Si^ (0, + oo), <f>2: S2^> (0, + oo), and non-negative constants Mu

M2 such that

I x))" (a.e.onS2), (2.1.1)
Jsl

and

f (<t>2{x)Y\'Kx,t)\'*do2(x)£M2X<l>l(t)Y (a.e.onSJ. (2.1.2)
Js2
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(i) If T is given by

7-(/)(*)=f KW(x,0<M0 (xeS2), (2.1.3)
Js,

where feUiSi), then T: L"(5,) ->U(S2), am/,/or eac/j/eLp(S,),

(ii) //" T* w given by

T*(g)(t)=\ g{xM

3ei.r '(52), then T*: U(S2) -» l / (S , ) anrf,/or eacA geLr'(S2),

(iii) iffeL'iSJ and geLr'(S2), then

f f(t)T*(gyt)dox(t)= [ g(x)TU)(.x)do2(x).
Js, Js2

Proo/. Since 1 < r' ^ />' and r = (r')', the result (ii) follows immediately from (i). Further,
the identity in (iii) follows directly from (i) and (ii), in virtue of Fubini's theorem. It is there-
fore sufficient to prove (i).

Suppose first that r > p , and let c = 1 jp -1 jr. Then 0 0 and 1 jp' +1 \r+c = 1, whence,
by the three-term Holder inequality with indices/?', r, 1/c,

= f
JS

a.e. on S2. Raising both sides to the rth power, integrating over S2, and using Fubini's theorem
on the right, we deduce that

f \nf)\'do2zM\\\f\\'p"[ <t>r\f\"d\
JS2 JS, JSi

\f\-da,

as required.
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There remains the case r = p, where c = 0, and that follows by a closely related argument
using the two-term Holder inequality.

REMARK. If i// is a complex-valued function measurable on S2 x S^ such that

I)S2

where 1 ̂  r < + oo, M2 is a non-negative constant, and T(f) is given by 2.1.3., then

and, for e;

This is a familiar and simple application of Holder's inequality, which can be interpreted
as the case p = 1 of Theorem 2.1 (i).

3. Special cases. We shall now consider some special cases of Theorem 2.1. To start
with we have the following result.

THEOREM 3.1. (Young's Inequality). Let feLp(En), g eLq(En), p ^ 1, q ^ 1, 1/r = (l/p)+

T(fX*)= [ M9(x-t)dt (xeEn).
v En

Then

Proof. The conclusion is easily seen to correspond to the case S t = 5 2
 = £n(n ^ 0>

0i(O = W ) = l,/*i = /<2 = ?> <K*>0 = ff(*-0. Mj = M2 = ||ff | |, of Theorem 2.1.
Next we consider extensions of the results given in [3]. These will be applied in proving

some special cases of results involving fractional integrals obtained in [1] and [5].

THEOREM 3.2. Let p, r, /x1, \i2 be positive numbers such that

= l, (3.2.1)

let m, n be positive integers, and let K be a complex-valued function measurable on (0, oo) x (0, oo)
such that

(i) \K(au,av)\ = a-inlp'+mlr)\K(u,v)\ (a > 0,« > 0, v >0),
/*+ oo

(ii) ft, O"'+ (" '" / ' '>-1 |I :(1,D)| '"</O = M f < +oo,
Jo

|*+00

(iii) pm uy
+^2ir)-i \K(u,l)\»2du = M\ < +oo,

Jo
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where y is any given real number, and pn is the surface area measure of the unit sphere in En.
Then the conclusions (i), (ii), (iii), of Theorem 2.1 hold with Sj = En, S2 = Em, and ${x,t) =

*(I4M).
Proof. Suppose that, for some real number X, K satisfies the condition

\K(au,av)\= a~x\K(u,v)\ (a>0, u > 0,v > 0).
Taking <M0 = | ' | a . <W*) = |XI"> \j/(x,t) = K(\x\,\t\), we see that the condition (2.1.1) of
Theorem 2.1 becomes

£ f

and this is obviously^satisfied^for all xeEm if we take

P = a + nlp'-Xlillp' (3.2.2)
and

M(=[ \l\"'\K{\t\Z\)\"dl. (3.2.3)
jEn

Similarly the condition 2.1.2 of Theorem 2.1 is satisfied for all teEn if we take

oi = P+mlr-Xn2lr, (3.2.4)
and

M' 2 =f | , | " | X(| i,|,l) |«rfi,. (3.2.5)

By virtue of the second relation in 3.2.1, we see easily that 3.2.2 and 3.2.4 are satisfied if
and only if

and

If we choose this value'of X, so that K satisfies (i), and take

where y is any given real number, then the hypotheses of Theorem 2.1 are satisfied with Mu M2

given by 3.2.3 and 3.2.4. We note that, by 3.2.3,

= p uy

"Jo
r+oo

= Pn\ ul

Jo
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so that Mt satisfies (ii). Similarly M2 satisfies (iii), and this completes the proof of the theorem.

REMARK. Since 3.2 (i) implies that

the condition 3.2 (iii) may be replaced by

(iii)' p m \ w~yr+i'"'2l<'"> 1\K(l,w)\"1dw = M2 < +00.
Jo

We see immediately that the integrals in (ii) and (iii) are identical if y = 0 and jt, = p 2 . On
using the second relation in 3.2.1, we obtain the following result.

THEOREM 3.3. Let 1 <p^r < + 00, let l//i = \jp' + 1/r, let m, n be positive integers, and
let K be a complex-valued function measurable on (0,00) x (0, 00) such that

(i) \K(au,av)\ = a-Wp'+m">\K(u,v)\ (a > 0, « > 0, v > 0),
p+00

(ii) vni"p'~1\K(l,v)\''dv = N < +00.
Jo

77ien /Ac conclusions (i), (ii), (iii) of Theorem 2.1 hold with 5 t = £„, 52 = £m, ^(JC, /) = AT(| * |, | f |),

In particular, the case r =p,m = n, /t = 1, is Lemma 2.1 of [5].

Before considering examples to illustrate 3.3 (in the next Section), we first prove a result
involving Fourier type kernels which extends Theorem 8 of [4].

THEOREM 3.4. Let p, r, fiu \i2 be positive numbers such that

K p ^ r , lijp'+li2lr=l. (3.4.1)

Let m, n be positive integers, and let L be a complex-valued function measurable on
(0, oo) x (0, oo) such that

(i) |L(ula,av)\ = a""--"' |L(u,v)\, {a > 0, u > 0, v > 0),
r+oo

(ii) pn\ vfp'*l"ll"')-1\Lil,v)\l'1dv = M'i < +oo,
Jo

(iii) p m \ u- ' r + ( m"j / r ) -1 |L(w,l) | ' I 2d« = Mr
2< +oo,

Jo
where y is any given real number. Then the conclusions (i), (ii), (iii), of Theorem 2.1 hold with
St = En, S2 = Em and ij,(x,t) = L(\x\,\t|).

Proof. Suppose that, for some real number A, L satisfies the condition

|L(w/a,au) | = a~x\ L(u,v)\ (a>0,u>0,v> 0).
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As in 3.2, if we take #,(*) = 11 \", 4>2{x) = \x\p, \ji{x, t) = L{\ x \, \ 11), we see that condition 2.1.1
of Theorem 2.1 becomes

Ml Z\x\

— I Y-\~PP'~"P'~''

_ I v |-0p'-«p'-iH
jEn

and this is satisfied for all xeEm if we take

f
JE

p' (3.4.2)
and

)\»dt. (3.4.3)

Similarly, the condition 2.1.2 is satisfied for all teEn if we take

a+J?= -m/r-XnJr (3.4.4)

and

) | w dx . (3.4.5)

In view of the second relation of 3.4.1, we see that 3.4.2 and 3.4.4 are satisfied if and only if
X = n\p'—m\r and P+mnJ(p'r) = —<x—nn2l(p'r). If we choose this value of X, so that K
satisfies (i), and take

a = y-nn2/(p'r), 0 = -y-mnJ(p'r),

where y is any given real number, then the hypotheses of Theorem 2.1 are satisfied with Mv and
M2 given by 3.4.4 and 3.4.5. Again as in 3.2, if pn denotes the surface area measure of the unit
sphere in En, then by 3.4.3 and the second relation of 3.4.1,

/•+oo

= Pn Vy"'~"11 ""'/P') + n - ' 1 1 ( 1 , V) I"' dv,
Jo

so that Mv satisfies (ii). We prove similarly that M2 satisfies (iii), and this concludes the proof
of the theorem.

REMARK. Since 3.4 (i) implies that
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the condition 3.4 (iii) may be replaced by

p+oo
(iii)' pm w-v+e»'*ip')-i \m,w)\"3dw = M\ < +00.

J

p+oo

Jo
We see that the integrals of 3.4 (ii) and (iii)' are identical if y = 0, ^ t = n2- O n using the

second relation of 3.4.1, we obtain the following result.

THEOREM 3.5. Let 1 < p £ r < +00, l//i = \jp' + 1/r, let m, n be positive integers, and let
L be a complex-valued function measurable on (0,00) x (0, 00) such that

(i) IL(uja,av)| = a""-*"'|L(u,v)\ (a>0,u>0,v> 0),

/•+00

(ii) d-wip)-»I L(l, v) |" du = N < + 00.
Jo

77je/j the conclusions (i), (ii), (iii) of Theorem 2.1 AoW wi/A Si = £„, S2 = Em, tf/(x,t) =
L(\x\,\t\) andM,M2 = J V ^ + ^ p J " / * ' ' .

4. Example.

As stated in the introduction, we can now deduce some special cases of the other results
proved in [5]. In fact we give an example which involves some of the more general results
proved by Cotlar and Ortiz in [1].

It will be convenient in the definition of the fractional integral H ^ ( / ) to regard the
Euclidean spaces as being relatively embedded. (That is, if m < n, we shall regard Em as a
subspace of £„, so that x e Em implies x = (xj, x2,..., xm, 0 , . . . , 0) e En.)

F o r / i n L"(En), p > 1, the integral H $ ( J ) is defined by

Hiii0Xx) = |x| ( ?~*"i )"f \t\nX\t-x\^-l'>n (t)dt (xeEJ. (4.1)
jE n

For 0 < 6 < 1 it is easily seen that

^ e X ) l \\x\\\\\\v1} (4.1.1)

Our main result will apply to the larger kernel given by the right hand side of 4.1.1. In this
case we apply Theorem 3.3 to obtain our next result.

THEOREM 4.2. Let 1 <p :g r < +00, n/p'+m/r = (1 — v)n, and suppose that the following
conditions hold:

Then H[x)
e: L

p(En) -> E(Em) and there is a constant M s M(9,1, v,p, r) such that

\\Hixl(f)\\rZM\
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Proof. In view of the remarks made earlier, this result is easily verified by taking

K(u, v) = ui'-'-** v"x\u-v | ( a"1)n

in Theorem 3.3. Note that in this case —(n/p'+m/r) = (v — 1)« and the integral 3.3 (ii) is
finite if the conditions of the theorem are satisfied.
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