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ON THE CENTRAL SERIES OF A RING

BY
R. G. BIGGS

The study of group types was completed by Meldrum [1]. The concept of ring
type described here is based on analogous definitions.

The series R=Ry @ Ry > * -+ > R,=R,,, is the lower central series for the ring
R if R,;;=RR,+R,R for ordinal number y and R,=N,, R, if y is a limit
ordinal. The upper central series for R is the series 0=J, < J, < -+ < Jy;=Jp
where J,,,={x € R:xR+Rx < J,} for every ordinal number y and J,= U, . J, if
y is a limit ordinal. The length of the upper central series is the smallest ordinal
number B for which J;=J;.;. The length of the lower central series is defined
similarily. We shall say the ring has type (B, «) if the length of the upper central
series is B and the length of the lower central series is a.

In this paper, ring types are determined for three important classes of rings:
nilpotent, power nilpotent, and commutative. Although ring types for non-
commutative rings are not completely determined, a partial result is given in

Theorem 5.
The following lemma is very useful since it shows how to construct rings of many

types from the few examples given in this paper.

LemMA 1. If R=A @B, A has type (ky, ky) and B has type (1, ,), then R has type
(max{kl’ ll}’ max{kz, 12})'

The proof is based on the fact that the ideals R, and J, in the lower and upper
central series for R are the direct sums of the corresponding terms in the lower and
upper central series for 4 and B.

The following theorem is easy to prove:

THEOREM 1. If R is a nilpotent ring such that R"#0 while R"*'=0, then R has
type (n, n).

COROLLARY. There are nilpotent rings of type (n, n) for every natural number n.

The ring R is power nilpotent if the last term in its lower central series is 0; R is
weakly nilpotent if the last term in its upper central series is R.
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The following example shows that for every ordinal number f>w (w is the
first nonfinite ordinal) there are rings of type (8, w) which are both weakly nil-
potent and power nilpotent.

ExAMPLE 1. Let f=9+n where y is a limit ordinal number and » is a non-
negative integer. Let R be the commutative ring generated by the set S={x,:a is
an ordinal number, but not a limit ordinal and « </} with the relations:

(1) x2=0 for all x, € S where «<f; if § is not a limit ordinal, then xp#0
while x3*'=0.

(2) Suppose that x, €S for all i in [1, m]. Then the product x; .. ... x5, =0 if
o, the smallest of the ordinal numbers {d,, . . ., ,,}, has the form a=7%-+k where
7 is zero or a limit ordinal number and k is a natural number less than m.

If x,, , stands for an arbitrary element in S, if z is a nonzero element in R, and

ifz=>7_, Li(l‘[ff;1 X,, )» Where L; € Z, then every factorization of z in R has fewer

than h+1 factors where h=max{h,, ..., h,}. It follows that z ¢ R*?* and hence
z ¢ R, the w-th term of the lower central series for R.

Let A be any ordinal number smaller than § and adopt the convention that
x;=0if 6=0 or a limit ordinal. Then it can be shown by induction on 4 that J,, the
A-th term of R’s upper central series, is spanned as an additive group by the set of
all monomials x; -+ X5, 0, <0, < -+ - L6, where either §,<A or §;=A+k,
k € N and m>k. It follows from this that x, first occurs in R’s upper central series
at J, for all ordinal numbers a <p. Hence R’s upper central series does end at
J;=R.

The next example shows that there exist power nilpotent rings of type (n, y +n)
where 7 is any nonnegative integer and y is any limit ordinal number.

ExAMPLE 2. Let R be the ring of all (y +n) by (y+nr) matrices with only a finite
number of nonzero integer entries and with only zeros on the main diagonal and
to the left of the main diagonal. Addition and multiplication in R are the usual
matrix addition and multiplication. Let R have the lower central series R =
R, > -+ > R,,,. Computation shows that R, is the ring of all matrices in R in
which all the entries are zeros on the « diagonals parallel to the main diagonal and
just to the right of the main diagonal. Since there are exactly y-+n such diagonals,
R,,,=0, while R, ,70. Whenever m<n, J,,, the m-th term of R’s upper central
series, is the subring of R consisting of all matrices in R in which all the entries are
zeros on the last m diagonals parallel to the main diagonal and to the right of it.
The subring J,, of R is the last term of the upper central series since in the matrices
in R there are no “last” n+1 diagonals to the right of the main diagonal.

THEOREM 2. A power nilpotent ring must have one of the following ring types:
(n, n) where n is a nonnegative integer or (m, y+n) where n is a nonnegative integer,
y is a limit ordinal number, and m is an ordinal number > n.
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Proof. Let R be a power nilpotent ring. If R has a finite lower central series,
then R is nilpotent and therefore has type (n, n) for some nonnegative integer n.
If the lower central series for R is not finite, suppose that R’s lower central series
has length y+n where » is a nonnegative integer and y is a limit ordinal number.
Then it is easy to see that R, < J,,, where J, is the a-th term of R’s upper central
series and R, is the p-th term of R’s lower central series. However, if R, < J,,_,,
then R,,, =0, which is a contradiction. Hence J,,%J,_; and R must have type
(m, y+n) where m is an ordinal number >n.

From the fact that a direct sum of power nilpotent rings is a power nilpotent ring
and the results given above it follows that there exist power nilpotent rings of each
type mentioned in the statement of Theorem 2.

Example 3 will show that there are rings of type (0, £) for every ordinal number
&. We will fix the value of & for the rest of this paper. The example is based on
certain properties of central series and the ordinal numbers which are established
in several lemmas below.

Let A, be the class of all ordinal numbers. Let 4,=1; define 4,,;=4,0, and if «
is a limit ordinal number, let A,=inf{0 € 4y:0>4, for all y<a}. Let 4, be the
smallest subclass of 4, with the properties:

(1) j‘a € Aaa

(2) if 6, n € 4,, then 6+n € 4,, and

(3) if B < A4, and B is a set, then the inf{d € 4,: 6> for all 5 € B} € 4,.

Note that Ay > 4,2 -+ > A, > +--, and that if « is a limit ordinal number,
then 4, = N, . 4, since 4, =inf{d € 4,: 1,<6 for all y<«}is an element in 4, for
all y<a.

LemMA 2. Let Q be any commutative ring with lower central series Q > Q; > - - -
D Qy=Q0p1. Then:

(1) 0,9, S Quyy for all ordinal pairs (a, ) for which « is a limit ordinal, and

D Nuen (23" S Quy,yy» Where N is the set of natural numbers.

It is easy to prove (1) by transfinite induction and (2) follows easily from (1).

Now let 6 be any nonzero ordinal number. Let «, be the largest ordinal number
such that 4, <4, and let 6, be the largest ordinal number in 4, such that 6, <.
For every natural number j>2 let «; be defined recursively as the largest ordinal
number such that 6,4 - - - +6,~_1+lal <4, and let §; be the largest ordinal number
in A,, such that 6,4 -+ - 4+0;< 9. Eventually, for some natural number n, ;+ - -+
+6,=4 since a;, %, . . . , &, is a strictly decreasing set of ordinal numbers.

The representation d=4,+ - * * +6, of an ordinal number given above will be
called its limit form.

LEMMA 3. The limit form of every nonzero ordinal number is unique.
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Proof. Given an ordinal number 0, the ordinal number J,, the first term in &’s
limit form, is uniquely determined. The ordinal number ¢, is uniquely determined
once the ordinals d,, ..., d,; have been determined. Hence the sum, d=4J,+

- +4,, is composed of uniquely determined terms.

There exists an ordinal number p such that 4,>&. Let G be the set of all ordinal
numbers less than 4,. Let R be the ring generated by the set {x;:6 € G} with the
defining relations:

(1) R is commutative.

(2) If 6 has the limit form =6, - - - +0,, where 6,, € 4, ~A, i1, then 4,
must be the n-th ordinal in the usual ordering of the ordinals in A4, for some
natural number n. We impose the condition on R that every generator x, satisfies
the relationship: (x;)"*'=x; 4, > forevery d €G.

m—1"

LeMMA 4. Let R have the lower central series R> R; > +++ > Ry=Ry,,. Let
be an ordinal number. Then x5 € R; if 6 € G N A4,.

Proof. If a=1, then d € G N A4, implies that J is a limit ordinal number. Since
x;=(xs,)"* for every natural number n, it follows that x; € R,=R, . Suppose
that x; € R, for all 6 € G N A4,. Also suppose that 0 € G N A4,,;. Then 0 must be
the y-th ordinal number in 4,, where y is a limit ordinal.

Let p, be the (y-n)-th ordinal in 4,, namely, 04 (4,)n. Then (xun)"+1=x9 and
hence x, € (R,lﬂ)"+1 for all natural numbers n. By Lemma 2, x, € R Tper If wisa
limit ordinal number, then 4,=[,., 4,- Hence 6 € G N 4, implies that de
G N A, for all y<a, and therefore x, € N, ., R,17=R,1a. By transfinite induction
on « the lemma follows.

Let y € R. Then y can be expressed in the form: y=37_, Ly, where L, is a non-
zero integer for all j in [1, p] and where the y; are distinct elements of R of the
form y,--]_—Im_1 X5, . where J;,,, € G for all j in [1, p] and all m in [1,j,]. If
Vi ¢ R, for at least one / in [1, p], then y ¢ Ry. For y € Ry 1mplxes that a sum of
distinct terms, each of which lies in R~R, and has the form L, Hm_1 X5, ., must
equal a sum of distinct terms of the same general form in Ry. This is 1mposs1ble
since there are no additive relations given in the defining relations for the ring R.

Let L,=R, and let L,=R,,_, for all natural numbers »n. Let L,=R, for all non-
finite ordinal numbers «.

LeMMA 5. Suppose that L, ,),=(L;,)". Then L, ,Lo=L,)nte if 0 <A, Hence

L= (L))"

Proof. If 0=1, L(;,,L1=L3,)nR=L(;4)n+1- Suppose that L;,),L,=L(; )y and
N<Ae Then L uLyi1=LiipnLqR= L0 ninR=L3ynins1- Let 0 be a limit ordinal
number <2,. Suppose that L, ,y,L,=L;,n+y for all ordinal numbers 7 <0. Then
Ny<o Lopnln=MNy<o Lopnin=Lgnte since (2 n-+0 is a limit ordinal. If
Y& L))" ¥ €Nyeo Liapaly, then y expressed in terms of the generators,
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{x5:0 € G}, equals D7, L;y; where the y,’s are distinct, where for some j, y,=
Xgponnnn XgpXpyooooe X4, Where x; € L, foralliin [1,n]and x, .. ... X4y & Lsge
This expression for y; is unique up to the order of the factors if all simplifications
permitted by defining relations (2) are made. Hence x4, - - - - X4s € Ny<o Ly, and
hence y; € L,n Nyco Ly=L1,nLe- Every y; is either an elementin (L,,)** =
L;9nLg, OT y; has the same properties as y;, and therefore y; € L(;,),L, for all iin
[1, p]. Hence, y=37_; y: € LugynLo a0d L;n40=LisgnLo- By Lemma 2, L; Ly <
L3 ,)n+6- Hence by transfinite induction, L(;,),Ls= L ;,)n+o if 0 is an ordinal number
<4,

LEMMA 6. L;,),=[I({x5:0 € A,)]" for all ordinal numbers o and all natural
numbers n, where I(S) is the ideal generated by the subset S of R.

Proof. L(; ),=L,=I({x;:0 € A;}). Suppose that L, =I({x;:0 € Ag}) for all
ordinal numbers 0 <a. Suppose also that L,,,=[I({x;:6 € 4,}))]"=[L,,]". Then
by Lemma 5, L;,)(n+1)=[L2,)" P =[I({x5:0 € 4,})]"*. Hence by induction on n,
Li;pn=[I({x;:6 € 4,)]" for all natural numbers n. Hence L,, +1=L(,.a)w=n"€N
Lipn=Nney [({x5:0 € AN"=I({x;:0 € A,,,). By transfinite induction on «,
L 1=1({x;:6 € 4,}) for all ordinal numbers «.

Hence R’s lower central series does not end until after R, » and therefore
Re## Ry

ExXAMPLE 3. Let S be the ring generated by the set {x;:0 € G} with the defining
relations (1) and (2) given above for the ring R, and (3) let R, be the &-th term in
R’s lower central series, let n be a natural number and let 6, € 4,,~4,,,, foralli
in [1, n] where &, >« ** S, If x5 %5, .. .. X5, € Rgand if x4 x4, . . ... Xy =
where ¢, € A4g~A4;, then the relation x;..... Xop=Xg +vrn- Xsp_yXpye v v v
Xgs_1(Xysan¥Xyrant1FXyrani2Xyrants) holds where é,=y+n, and y=0 or y € 4,, the
set of limit ordinals.

It is easy to see that elements in the ring R of the form:

(7SN Xsp_1Xgy+ oo Xpg_y * XyranXysant1)
lie in Ry, in R’s lower central series. Hence if S has the lower central series
§> 82> 8, then R,=S, if «<&. However S;,,=3S; due to the additive
relations in S defined by the relations of type (3). Hence the ring S has type (0, ).
The next example shows that there are commutative rings of type (#, n—1) for
every natural number 7.

ExXAMPLE 4. Let R(k) be the commutative ring generated by the set {y,:n € N,
the set of natural numbers} with the relations:

My =o.

(2) y1y, = y: for all natural numbers .

3
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Q) ifm>n, ..., m,theny, y,,..... Vo =
()’nl)’n, """ ynk_l y4nky4nk+1 +yn1yn2 """" ynk_]_ : y4nk+2 . y4nk+3)'
Due to relations of type (3), R(k)*=R(k)**1. However y,ys - - - " Vis1 & Rk

and hence R(k)’s lower central series has exactly k—1 steps. Let R(k) have the
upper central series 0 = J; < -+ - < J,=J,,,. This series ends at J, since

yied,yitedy. .. €T

The next theorem shows that R(k)’s upper central series cannot have length
greater than k since its lower central series has length k—1. It follows that R(k)
has type (k, k—1).

THEOREM 3. There are no commutative rings of type (m, n) where n is a natural
number and m is any ordinal number >n+1.

Proof. Let R be a commutative ring. If R’s lower central series ends after n
steps, then R"t'=R"*2, Let R have the upper central series0 = J; < - -+ < J,=
Jo- fxed, o, thenxR< J, 5, ..., xR™ < J; and xR™2=0. Hence xR"™ =0
which implies x € J,,,;. Hence J,,,=J,,; and R’s upper central series has length
less than n+2.

From the examples and theorems above, the following result can be obtained.

THEOREM 4. The ring types realized by commutative rings are those of the form
(«, B) where f>a—1 if a is a finite ordinal number and where f>w if « is a non-
finite ordinal number.

The next theorem shows that not all ordinal pairs («, f) are the types of some
ring R.

THEOREM 5. There are no rings of type (i, i) where n is a natural number and m
is any ordinal number >2n+2.

Proof. Let R be any ring such that R"+*=R"+2, Note that x €J, iff 37_o R°xR"™*
=0 where R® means that no power of R appears on that side. If x € J,,,5, then
Eiﬁf’ RexR?*"*+3—*=(, But in each case for s=0, 1, ..., 2n+3 either s>n+2 or
2n+3—s>n+2. Hence the equation above may be rewritten > g’ RExR22-5=0
since R"+?=R"*+, From this it follows that x € J,,,, and hence R’s upper central
series has length <2n4-2.

It is still unknown whether there are noncommutative rings of type (m, n) where
n is a natural number and m is an ordinal number >n+1.
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