
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Gürsakal N, Batmaz B,
Aktuna G (2020). Drawing transmission graphs
for COVID-19 in the perspective of network
science. Epidemiology and Infection 148, e269,
1–7. https://doi.org/10.1017/
S0950268820002654

Received: 20 July 2020
Revised: 28 September 2020
Accepted: 28 October 2020

Key words:
COVID-19; network science; reproduction
number; super-spreader; transmission graphs

Author for correspondence:
G. Aktuna, E-mail: draktuna@gmail.com

© The Author(s), 2020. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

Drawing transmission graphs for COVID-19 in
the perspective of network science

N. Gürsakal1, B. Batmaz2 and G. Aktuna3

1Faculty of Economics and Administrative Sciences, Fenerbahçe University, Istanbul, Turkey; 2Open Education
Faculty, Anadolu University, Eskisehir, Turkey and 3Public Health Institute, Hacettepe University, Ankara, Turkey

Abstract

When we consider a probability distribution about how many COVID-19-infected people will
transmit the disease, two points become important. First, there could be super-spreaders in
these distributions/networks and second, the Pareto principle could be valid in these distribu-
tions/networks regarding estimation that 20% of cases were responsible for 80% of local trans-
mission. When we accept that these two points are valid, the distribution of transmission
becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmis-
sion distribution, then we can simulate COVID-19 networks and find super-spreaders using
the centricity measurements in these networks. In this research, in the first we transformed a
transmission distribution of statistics and epidemiology into a transmission network of net-
work science and second we try to determine who the super-spreaders are by using this net-
work and eigenvalue centrality measure. We underline that determination of transmission
probability distribution is a very important point in the analysis of the epidemic and deter-
mining the precautions to be taken.

Introduction

The first half of 2020 passed with the whole world dealing with the COVID-19 outbreak. First,
many countries implemented lockdown, and then reopening came to the agenda. However, at
the time of writing this paper, there was an important increase in the number of infections all
over the world and we would probably spend the second half of the year dealing with the
COVID-19 issue and lockdowns again. The fact that COVID-19 is a relatively new virus
also challenges scientists and scientific analysis have to navigate the uncharted territories [1].

This paper attempts to establish a link between the fields of statistics, network science and
epidemiology using an interdisciplinary approach. From a micro-point of view, this connec-
tion, which was tried to be established, was made by converting transmission distribution
of statistics and epidemiology into a transmission network of network science. From a micro-
point of view, the study also tries to contribute to efforts to stop the epidemic by identifying
who the super-spreaders are, and then by researching and identifying their various
characteristics.

COVID-19-positive people who have strong social connections and do not consider social
distancing are potential super-spreaders. Of course, not everyone included in this definition
will be super-spreaders, and this definition will only include potentially super-spreaders. In
such a case, let us assume that we are at zero point in time, before the pandemic has started.

Such a social network will show us that no one is infected yet, but who is disregarding
social distance, and who has strong social connections, both ignoring social distance. This
type of social network will give us clues about who could be potentially infectious and
who might be super-spreaders. We can call this network the pre-pandemic network, as
well as the ‘pre-analysis network’ at any time in the pandemic. During the pandemic,
we can create a second ‘pandemic network’ later than when we got the pre-analysis net-
work, this time to give us social connections of the infected, the non-infected and the
super-spreaders.

As a result, we will have two networks: the first one is the ‘pre-pandemic’ or ‘pre-analysis’
network and the second one is the ‘pandemic network’. It is possible to think of the first of
these two networks as a funnel. Also, people who are not potentially viewed as super-spreaders
in our first network may become super-spreaders over time. A detailed comparison of these
two networks will teach us a lot. Even if it seems surprising and futuristic at first, this kind
of pro activity can be used to determine which people will be super-spreaders using networks.

In an age when people can’t live without cell phones, forming both of these networks will
not be too difficult for authorities. It is now a known fact that it is not difficult to see who is
close to whom with the signals emitted by mobile phones. Although at first it seems that per-
sonal privacy will prevent the acquisition of such networks, we know that this is not a problem
in some countries such as China.
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‘Mobile location data provides a granular solution for con-
sumer understanding. Combining this understanding with other
datasets are helping to solve business problems and achieve
goals across many different industries’. The sad and tragically
funny thing is that although such data are available for consumer
estimates, they are not used in the case of COVID-19. Also, it is
not easy for ordinary scientists to access such big data, and the
authors of this paper, despite their best efforts, were unable to
access even small data, not big data. Under these circumstances,
they determined the following method and applied this method.
Defining a method, a way of doing something with a definite
plan, we can list our phases as follows:

(1) Determination of an appropriate Pareto distribution that can
explain the transmission with statistical analysis.

(2) Drawing the COVID-19 transmission network using the dis-
tribution obtained in the first stage, generating random
numbers.

(3) Identifying super-spreaders in the transmission network by
network centrality measure.

However, what is ideal for them is to identify and compare the
two networks they call ‘pre-pandemic’ and ‘pandemic’ networks.
If the two aforementioned networks are created and compared,
then the first step of the method used in the paper will be
unnecessary. Obviously, the first stage of the method used in
the paper is just a facility used to overcome the difficulties in find-
ing data.

In analysing COVID-19 outbreak, most of the times, instead of
focusing on a transmission probability distribution; R0 value as an
average or median have been used and super-spreaders are not
taking into account. But the extreme values make a long tail for
this distribution and rare infection events determine the shape
of this distribution.

‘Since the R0 has a key role in measuring the transmission of
diseases and is crucial in preventing epidemics, thus it is import-
ant to know which methods and formulas to apply to estimate R0

and have better performance’ [2]. But we know that different
methods give different results [3] and most of the times in scien-
tific articles which method has been used is not mentioned.
Besides, sometimes R0 value is given as a median; for example,
it is expressed as, ‘We estimated that the median of estimated
R0 is 5.7 (95% CI of 3.8–8.9)’ [4] and this may lead us to some
confusion too.

‘The emerging picture for epidemic spreading in complex net-
works emphasizes the role of topology in epidemic modelling’ [5].
Disease transmission networks have the motifs of transmission
stories. One of the most important ways to avoid contamination
is to have information about how this transmission happens.

The main purpose of this study is to develop a simple method
that will make it easier for us to look at the COVID-19 issue from
the network science window and focusing on the interplay
between network theory, statistics and epidemiology [6]. In this
simple method, first we determine a transmission probability dis-
tribution and second simulating this probability distribution we
can draw a transmission graph and try to understand the process
contamination using this graph.

Super-spreaders

We want to give examples to show how the same virus can have
different results in different environments. In South Korea,

around 40 and Washington State more than 30 people have
been infected and we should also add that there are no big differ-
ences in the dates of the events as seen from footnote [7].

Looking at the outbreaks in history, it can be seen that the phe-
nomenon of super-spreaders is not new. ‘We examine the distri-
bution of fatalities from major pandemics in history (spanning
about 2500 years), and build a statistical picture of their tail prop-
erties. Using tools from Extreme Value Theory (EVT), we show
for that the distribution of the victims of infectious diseases is
extremely fat-tailed’ [8]. Susceptible hosts within a population
had not equal chances of becoming infected. Although ‘it is still
unclear why certain individuals infect disproportionately large
numbers of secondary contacts’ [9]. If we have extreme transmit-
ters, then ‘the practice of relying on an average R0 in dynamic dis-
ease models can obscure considerable individual variation in
infectiousness’ [10].

Heterogeneities in the transmission of infectious agents are
known since the end of 1990s [11]. We can define the phenom-
enon of super-spreaders in the framework of network science as
follows: ‘The super-spreaders are the nodes in a network that
can maximize their impacts on other nodes, as in the case of
information spreading or virus propagation’ [12]. This definition
reminds us the outlier concept of statistics. But super-spreaders
are not outliers that can be discarded from analysis, ‘In this
framework, super-spreading events (SSEs) are not exceptional
events, but important realizations from the right-hand tail of a
distribution’ [13].

One of the most important features of COVID-19 in con-
tamination in society is the Pareto principle created by super-
spreaders. Super-spreaders transmit the disease to a large num-
ber of people in an outlier-like manner, resulting in few people
transmitting the disease to a large number of people, and as a
result we have a transmission distribution as a power-law
distribution.

Since many years there has been a debate that power-law for-
mulations are performed better than others in infectious diseases
[14], researchers are beginning to come to a consensus that cor-
onavirus transmission more or less follows the 80/20 Pareto prin-
ciple [15, 16] and estimated that 20% of cases were responsible for
80% of local transmission [17].

Network science

Network science, initiated by the famous mathematician
Leonhard Euler in 1736, came with the idea that networks were
formed randomly until 2000s. However, in early 2000s, this idea
was overcome and it was determined by Albert Laszlo Barabassi
that the networks developed as scale-free networks and that the
degree distributions of these networks obeyed the power law.
Interestingly, the wealthier in the scale-free networks gets richer
in connectivity, and those on social networks can be thought as
a potential super-spreader if they don’t follow social distancing
in real life.

Methods

In the outbreak, the number of patients’ variable, in other words,
the number of transmissions changes only at the discrete points of
time. This means that the number of transmissions in outbreaks is
discrete variables. The number of COVID-19 patients varies in
many situations; how many new people are infected with the dis-
ease, how many patients have recovered and how many of them
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are likely to be infected or infectious again. If we were able to pre-
dict the transmission processes, there would be a deterministic
approach in creating a transmission network however its
impossibility is clear. Therefore, this is a stochastic process,
as the number of transmission and from whom it is transmitted
cannot be fully estimated or determined. Probability distribu-
tions are used in stochastic simulation models. In the simula-
tion model, the number of transmissions, which is a discrete
event, varies in the number of patients depending on time
(between ‘t’ time point and ‘t + 1’ time point (s ‘t’ and ‘t + 1
may be, 7 days’ or 14 days’ period)) which is a change or
increase is a discrete value and this change or increase is a dis-
crete value. However, since there is no definite vaccination or
herd immunity, person-to-person transmission remains a
dynamic process.

In simulation models, the distribution is determined by col-
lecting information and data about the subject studied. In light
of these data, the model is established by determining the prob-
ability distributions of probabilistic (stochastic) processes. In
this study, as a result of literature search, the principle that
COVID-19 transmission is related to Pareto distribution and
power law has been adopted and we decided the distribution to
be produced in the drawing of the random transmission network,
as the discrete Pareto distribution. By simulating the Pareto distri-
bution, disease transmission data from one patient to others were
randomly derived. The network drawn with the derived data is
created according to the power-law distribution. Power law is
independent of scale. The concept of independence from the
scale indicates that the ratio and probability in small numbers
such as 10 and 40 are equal to the ratio and probability in large
numbers such as 1000 and 40000. In such networks, few nodes
have many connections, and many nodes have few connections
the ‘rich get richer’ rule (preferential attachment), remains valid
in connection [18].

In this study, R open source statistics software, included the
igraph package was used for the simulated data analysis and
with igraph (R package for network analysis and visualisation)
social network analysis is drawn and statistical comparisons
with network metrics are tested. ‘It can handle large graphs
very well and provides functions for generating random and regu-
lar graphs, graph visualization, centrality methods and much
more’ [19].

Simulating discrete Pareto distribution (Zipf distribution)

Zipf, Pareto and power law ‘terms are used to describe phenom-
ena where large events are rare, but small ones quite common. For
example, there are few large earthquakes but many small ones.
There are a few mega-cities, but many small towns. There are
few words, such as “and” and “the” that occur very frequently,
but many which occur rarely’ [20]. Economists know that
Wilfried Fritz Pareto observed that 20% of Italians held 80% of
the country’s wealth in the 19th century. Pareto principle is also
known as the 80/20 rule.

If we give an example of one of the studies on the transmission
distribution as power law, ‘The empirical data are highly consist-
ent with the hypothesis that the number of reported cases are
taken from a truncated power-law distribution of the form P
(n)∼ n−μ, 1⩽ n⩽ nmax’ [16].

Using the degreenet package and code in an R source [21], we
can simulate a discrete Pareto distribution and draw its histogram
as shown in Figure 1.

Drawing COVID-19 transmission graphs

If all the network information is not available, then the solution
for studying with large networks is to sample nodes or connec-
tions. Sampling theory for networks is similar to snowball sam-
pling in which several nodes and their connections are sampled.
In this way, information about hidden or unobservable networks
behind existing nodes and connections in a small number of sam-
ples could be obtained [22]. With the discrete Pareto probability
distribution, which we have theoretically justified in this paper,
nodes and connections produced by simulation. Simulating
nodes and connections with such sampling designs is considered
a practical way of modelling the big picture.

Contact networks and disease transmission networks are dif-
ferent from each other. However, although data on this subject
are obtained through filiation studies or contact trace apps, it is
not easy to convert these data into social network-like networks
due to some uncertainties and bureaucratic problems.

In this case, how to determine a synthetic COVID-19 trans-
mission network question becomes important.

The number of incoming connections in a ‘contact’ network
does not have to be one. For example, in Figure 2, people B
and D were placed closer than 1.5 m from C, but the people
who transmitted disease to C was B, as seen in Figure 2. Briefly,
nodes in contact networks can have multiple incoming and out-
going connections.

Eventually, ‘contact’ networks become ‘contamination’ net-
works. All these graphs come from ‘contact’ networks. The
graph in Figure 2 is a ‘transmission’ graph, and as can be seen,
the number of incoming connections is one for all these five
nodes. In contrast, the number of outgoing connections can be
an integer greater than one. For example, in Figure 3, E is infected
by A and F, G and H are infected by E. Similarly, A is infected by
D, and B and E are infected by A. These can be referred to as
‘transmission’ graphs.

It is also possible to find all the paths from any node to other
nodes using these graphs. For example, according to the line
above, there is a single ABC-shaped path leading to C in
A. Similarly, from A to F can also be reached via the AEF

Fig. 1. Histogram of a simulated discrete Pareto distribution.
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pathway, and the number of jumps in both the ABC pathway and
the AEF pathway is two.

Different personal contact network structures can reduce R,
which represents how many individuals are infected by each car-
rier. ‘By introducing a social network approach, we propose that a
decrease in R can simultaneously be achieved by managing the
network structure of interpersonal contact’ [23]. If we move
from this point, we can think about different network structures
that will reduce infectiousness in epidemics, considering that we
may encounter different outbreaks in the future.

As it can be seen in Figure 4, ‘From a social network perspec-
tive, the shape of the infection curve is closely related to the
concept of network distance (or path lengths), which indicates
the number of network steps needed to connect two nodes’
[23, 24].

In Figure 4, two example networks, a–c, have the same number
of nodes (individuals) and ties (social interactions) but different
structures (shorter path lengths in a and longer path lengths
in c), which imply different infection curves (b and d,

respectively). Bold ties highlight the shortest infection path
from the infection source to the last-infected individual in the
respective networks. Network node colour indicates at which
step a node is infected and maps onto the colours of the histo-
gram bars [23].

In order to obtain such a network, first we need to have a
probability distribution regarding the number of people a person
can infect the disease. When we have such a transmission prob-
ability distribution about the probabilities that a person can trans-
mit the disease to how many people, we can draw a social
network-like COVID-19 transmission graph by generating ran-
dom variables about how many people can transmit the disease
at each stage.

Figures 5 and 6 display a COVID-19 transmission graph using
simulated discrete Pareto distribution values. In Figure 6 we can
see the first and second stages of these graphs. In the third
stage, shape of the graph transforms into that shown in
Figure 5. And we used eigenvalue centrality measure to determine
which nodes are super-spreaders.

We have found that node 3 is a super-spreader, as seen in
Figure 5.

Results

This study, which is conducted within the framework of interdis-
ciplinary approach, focuses mainly on two purposes. In the first of
these purposes transforming a transmission distribution of statis-
tics and epidemiology into a transmission network of network sci-
ence is aimed.

In the second one, we try to determine who the super-
spreaders are by using this network. For this step, we generated
the values obtained by simulating a discrete Pareto distribution
and drew and interpreted the transmission network.

The main finding of our Pareto distribution simulated data
study is the similarities with a study performed using real data
in India (Figs 5 and 6) [25].

Discussion

It is not appropriate to express the transmission distribution of
this disease with an average R0 because this distribution is a
power law descending from left to right. But at the beginning of
the COVID-19 outbreak, this mistake has been made in the ana-
lysis. However, with all the criticisms we have made, we should
also point out that traditional epidemiological techniques have
been used in many countries for a long time and have brought
great benefits

And the second mistake is not to consider the importance of
super-spreaders in this distribution. Looking at the outbreaks in
history, it can be seen that the phenomenon of super-spreaders
is not new and spanning about 2500 years and the distribution
of the victims of infectious diseases is extremely fat-tailed. Most
of the times, the fact that 80% of the infection is carried out by
a 20% group is often not considered and most of the analysis
begin with a R0 reproduction number. In fact, we should add
that there is a connection between these two errors and that
this is a single error.

The super-spreaders are the nodes in a network that can maxi-
mise their impacts on other nodes, in the case of virus transmis-
sion. Although it is still unclear why certain individuals infect
disproportionately large numbers of secondary contacts, the fact
that 80% of the infection is carried out by a 20% group is

Fig. 2. A contact graph.

Fig. 3. A transmission graph.
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important. But maybe it is necessary to add that some research
tells us that 80% of secondary transmissions may have been
caused by a small fraction of infectious individuals (∼10%).

We know that, ‘Typically the network structure is inferred
from indirect, incomplete, and often biased observations.
Specification of an adjacency matrix is even more difficult when
the underlying network is dynamic’ and another centrality meas-
ure named expected force has been offered for additional advan-
tages over existing spreading power and centrality measures [25].

We have to underline that point; determination of transmis-
sion probability distribution is a very important point in the ana-
lysis of the epidemic and determining the precautions to be taken.
We know that in such a case network structure is inferred from
indirect, incomplete, and often biased observations. As the main
difficulty in establishing such a link is the lack of data and infor-
mation due to the very recent COVID-19 that is why required
data are generated by simulation. After transforming a transmis-
sion distribution into a transmission network and having such a
graph, also we may compute many network measures and use
these measures in our decision process.

Disease transmission networks have the motifs of transmission
stories. One of the most important ways to avoid contamination is
to have information about how this transmission happens. From a
social network perspective, the shape of the infection curve is
closely related to the concept of network distance (or path
lengths), which indicates the number of network steps needed
to connect two nodes.

Contact networks and disease transmission networks are dif-
ferent from each other. Incoming and outcoming edges can be
any number in a contact network but in a transmission network
the number of incoming edge always must be one and outcoming
edge can be any number like contact networks.

Fig. 4. Two example networks: (a–c) with the same number of nodes and ties [23].

Fig. 5. COVID-19 transmission graph using simulated discrete Pareto distribution
values.
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In our opinion, the contribution of this paper is to provide an
introduction to how the epidemiological phenomenon of identify-
ing super-spreaders can be viewed from a network window.
Undoubtedly, this paper is only an introduction to solving such
problems, and the success of such an approach largely depends
on the creation of the two networks we have mentioned with
qualified data. And the main limitation of this research is lack
of real data and inability to verify with it.

In addition, among all these super-spreader equations, it is
very important to be evaluated in asymptomatic cases that change
the epidemic process. In a study showing the transmission of
COVID-19, it was shown that more than half of the people
who tested positive were asymptomatic. The study also highlights
that control strategies that focus only on symptomatic cases are
insufficient to prevent contamination and understand transmis-
sion dynamics [26].

In our study, we have used eigenvalue centrality measure to
determine which nodes are super-spreaders. In fact, the issue
does not end at this point and is just beginning, because only if
the biological, social and genetic features of the determined super-
spreaders can be determined, only then can these people be pre-
vented from accelerating the outbreak.
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