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GORENSTEIN RESOLUTIONS OF

3-DIMENSIONAL TERMINAL SINGULARITIES

TAKAYUKI HAYAKAWA

Abstract. Let X be a 3-dimensional terminal singularity of index ≥ 2. We
shall construct projective birational morphisms f : Y → X such that Y has
only Gorenstein terminal singularities and that f factors the minimal resolution
of a general member of |−KX |. We also study prime divisors of f , especially
the discrepancies of these prime divisors.

§1. Introduction

Let X be a germ of a 3-dimensional terminal singularity of index m ≥ 2

at P . In [Hay99] and [Hay00], we obtained a projective birational morphism

π : X̄ → X such that

(i) X̄ has only terminal singularities,

(ii) the exceptional set of π is a prime divisor E, and

(iii) KX̄ = π∗KX + 1
mE.

By repeating such birational morphisms, we also obtained a projective bi-

rational morphism π̃ : X̃ → X such that X̃ has only Gorenstein terminal

singularities.

On the other hand, by [Reid87], a general member DX of |−KX | has

only a rational double point at P . Let DX̄ = π−1
∗ DX be the birational

transform. Then we see that KX̄ + DX̄ = π∗(KX + DX) and that DX̄

is dominated by the minimal resolution of DX . Thus we can expect that

the restriction of π̃ : X̃ → X to the birational transform of DX gives the

minimal resolution of DX , and such kind of morphisms, especially various

properties of exceptional divisors, should be useful in birational geometry

of 3-folds.

The main purpose of this article is to construct a projective birational

morphism f : Y → X such that

(i) Y has only Gorenstein terminal singularities, and
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(ii) KY +DY = f∗(KX +DX) and f|DY
: DY → DX factors the minimal

resolution of DX , where DY = f−1
∗ DX is the birational transform, and

(iii) the number of exceptional prime divisors of f is not greater than

the number of (−2)-curves in the minimal resolution of DX .

We shall construct such f : Y → X explicitly in order to study prime

divisors with small discrepancies over X. Every prime divisors with discrep-

ancy ≤ 1 over P (∈ X) appears as an exceptional divisor of f . Our explicit

construction enables us to determine such prime divisors completely. In

particular, we know that, for each i = 1, . . . ,m− 1, there is a prime divisor

with discrepancy i/m over P (∈ X). Furthermore, there is a prime divisor

with discrepancy 1 over P if and only if X is not a cyclic quotient terminal

singularity. It also follows from (iii) that the difficulty (= the number of

prime divisors with discrepancies < 1 over P ) is bounded from above by

the number of (−2)-curves in the minimal resolution of DX .

The same kind of morphisms was already obtained by [Alex94, 5.2]. He

obtained a birational morphism g : Z → X such that Z has only Gorenstein

terminal singularities and that |−KZ | is g-free. He developed the Minimal

Model Program appropriate for linear systems and obtained g : Z → X as

an application. Roughly speaking a terminalization of KX + |−KX | over

X is g : Z → X. Thus one has to run the Minimal Model Program over X

starting from some good resolution of X in order to get g by his method.

Our method to construct f : Y → X as above is very simple. We shall

obtain f starting from X and make a sequence of weighted blow ups at

points of indecies > 1. By studying this process carefully, we know well

about exceptional divisors of f . Even in the case f induces the minimal

resolution of DX , our morphism f is not necessarily the same as g : Z → X

because of the condition (iii). In order to get g from our f : Y → X, we

have to blow up Y several times.

The contents of this article are as follows. In Section 2, we shall explain

our notation and terminology. These are essentially the same as [Hay99]

and [Hay00]. We shall state our main theorems and their corollaries in Sec-

tion 3. After Section 4, we shall construct birational morphisms f : Y → X

as above by using classification of 3-dimensional terminal singularities. The-

orems in each section give a more detailed information on the exceptional

divisor of the morphism f : Y → X.

The author would like to thank Professor S. Mori for his invaluable

suggestions and encouragement.
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3-DIMENSIONAL TERMINAL SINGULARITIES 65

§2. Notation and preliminaries

Throughout this section, X denotes a germ of a 3-dimensional terminal

singularity at P of index m ≥ 1.

2.1. Let ∆ be a (not necessarily effective) Q-Cartier Q-divisor on
X and let HX be a linear system on X which consists of Q-Cartier Weil
divisors. For a proper birational morphism f : Y → X from a normal
variety Y , we write

KY + f−1
∗ ∆ = f∗(KX + ∆) +

∑

a(E,X,∆)E,

and KY + f−1
∗ HX = f∗(KX + HX) +

∑

a(E,X,HX )E,

where the sum runs over all prime divisors on Y , f−1
∗ ∆ and f−1

∗ HX are
birational transforms and a(E,X,∆), a(E,X,HX ) ∈ Q. We call a(E,X,∆)
(resp. a(E,X,HX )) the discrepancy of E with respect to the pair (X,∆)
(resp. (X,HX)). When ∆ = 0, a(E,X,∆) is denoted by a(E,X). The
morphism f : Y → X is called KX +HX -crepant if a(E,X,HX ) = 0 for all
E ∈ E(f).

For each prime divisor E on Y , f(E) (⊆ X) is called the center of
E on X. We also say that E is a prime divisor over X (or f(E)). The
discrepancy a(E,X,∆) (resp. a(E,X,HX )) depends only on ∆ (resp. HX)
and the discrete valuation on the function field of X determined by E, and
does not depend on the particular choice of f : Y → X. Thus we sometimes
identify prime divisors with the corresponding discrete valuations when we
speak about prime divisors over X.

We denote the set of all exceptional prime divisors of f by E(f), and
we also define E(f,∆, α) = {E ∈ E(f) | a(E,X,∆) = α} for α ∈ Q.

In [Hay99] and [Hay00], we proved the following:

Theorem 2.2. If P ∈ X has index m ≥ 2, then there is a projective

birational morphism π : X̄ → X such that

(i) X̄ has only terminal singularities,

(ii) the exceptional set of π is a prime divisor E, and

(iii) KX̄ = π∗KX + 1
mE.

2.3. A projective birational morphism π : X̄ → X which satisfies the
conditions (i), (ii), (iii) in (2.2) is called a divisorial blow up of X at P with
discrepancy 1/m (or with minimal discrepancy). We obtained such π by
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embedding X into C4/Zm or C5/Zm and making a weighted blow up. We
remark that the exceptional divisor E of π is a divisor over P (∈ X), and
π is isomorphic over X \ {P}. In [Hay99] and [Hay00], we not only proved
the existence of such divisorial blow ups, but also determined all such blow
ups.

By repeating divisorial blow ups with minimal discrepancies, we also

obtained the following ([Hay00]):

Theorem 2.4. If P ∈ X has index m ≥ 2, then there is a sequence of

projective birational morphisms

XN
πN−→ XN−1 −→ · · · −→ X1

π1−→ X0 = X

such that

(i) Xi has only terminal singularities (i = 1, . . . , N), moreover XN has

only Gorenstein terminal singularities, and

(ii) πi is a divisorial blow up at Pi−1 ∈ Xi−1 with discrepancy 1/mi,

where mi ≥ 2 is the index at Pi−1.

2.5. Let Y = XN and let f : Y → X be the composition of π1, . . . , πN

in (2.4). Then f is a projective birational morphism which is isomorphic
over X \ {P} and Y has only Gorenstein terminal singularities. We also
know that f consists of several weighted blow ups, in particular the ex-
ceptional locus of f is a divisor. In this article we want to construct such
f : Y → X explicitly and study exceptional prime divisors of f .

2.6. By [Reid87], a general member DX ∈ |−KX | has a rational dou-
ble point at P , hence there is a linear system HX ⊆ |−KX | such that a
general member DX ∈ HX has a rational double point at P . We shall
consider the pair (X,HX) consisting of a germ of a 3-dimensional termi-
nal singularity X and a linear system HX ⊆ |−KX |. The Minimal Model
Program which is appropriate for such pairs was developed in [Alex94] and
[Cor95]. In particular, the pair (X,HX) is canonical by [Alex94, 1.21] and
we have the following:

Proposition 2.7. Let HX ⊆ |−KX | be as in (2.6) and assume that

P ∈ X has index m ≥ 2. Let π : X̄ → X be a divisorial blow up with

discrepancy 1/m. Then KX̄ + HX̄ = π∗(KX + HX) and HX̄ ⊆ |−KX̄ |,
where HX̄ = π−1

∗ HX . Furthermore, the birational transform DX̄ = π−1
∗ DX

is normal and is dominated by the minimal resolution of DX . In particular,

DX̄ has only rational double points.
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Proof. Let E be the exceptional divisor of π. Then we have KX̄ =
π∗KX + 1

mE. Since P is in the base locus of HX , we have π∗HX = HX̄ +βE
with β ≥ 1/m. By [Alex94, 1.21], we know that KX + HX is canonical,
which implies that β ≤ 1/m. Hence we have β = 1/m, and this shows that
KX̄ + HX̄ = π∗(KX + HX).

Corollary 2.8. Assume that P ∈ X has index m ≥ 2. Let f : Y →
X be a sequence of divisorial blow ups with minimal discrepancies as in

(2.4). Let HX ⊆ |−KX | be a linear system on X such that a general member

DX has only a rational double point at P . Then f is KX +HX-crepant and

the induced morphism f|DY
: DY = f−1

∗ DX → DX is dominated by the

minimal resolution of DX .

2.9. A projective birational morphism f : Y → X is called a KX +
HX -crepant Gorenstein resolution of X if the following conditions are sat-
isfied:

(i) Y has only Gorenstein terminal singularities,
(ii) f is isomorphic over X \ {P},
(iii) the exceptional set of f is a divisor, and
(iv) KY + f−1

∗ HX = f∗(KX + HX), i.e., f is KX + HX -crepant.

The main purpose of this article is to construct a KX + HX -crepant

Gorenstein resolution of X explicitly by using only weighted blow ups, and

study its exceptional prime divisors.

The following lemma will be used to compute the discrepancies of prime

divisors over X:

Lemma 2.10. Let π : X̄ → X be a divisorial blow up with discrepancy

α, E be the exceptional divisor of π, and let ∆ be a Q-Cartier divisor

on X. Then, for every prime divisor F over X̄, we have a(F,X,∆) =
a(F, X̄, π∗∆ − αE).

Proof. Let ψ : Z → X̄ be a projective birational morphism and let
g = π ◦ ψ : Z → X. Since π∗KX = KX̄ − αE, we have g∗(KX + ∆) =
ψ∗(KX̄ + π∗∆ − αE) = KZ −

∑

a(F, X̄, π∗∆ − αE)F .

By a similar method, we can prove the following:

Lemma 2.11. Let g : Z → X be a projective birational morphism such

that Z has only Gorenstein terminal singularities and that the exceptional

set of g is a divisor. Then every prime divisor over P with discrepancies

≤ 1 appears as a g-exceptional divisor on Z.
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Proof. Let F be a prime divisor over P and assume that the center
of F on Z is not a divisor. Let h : W → Z be a projective birational
morphism such that F is a divisor on W . Since h(F ) lies in the exceptional
set of f , and since Z has only Gorenstein terminal singularities, we have
a(F,X) > a(F,Z) ≥ 1.

As we saw in [Hay99] and [Hay00], for the divisorial blow up π : X̄ →

X with discrepancy 1/m, X̄ has cyclic quotient terminal singularities in

many cases. We can resolve these singularities and analyse the exceptional

divisors by using the following ([Reid87, 5.7], see also [Hay99, 5.1]):

Lemma 2.12. Let X = (x, y, z)/Zm(α,−α, 1) be a germ of a 3-dimen-

sional cyclic quotient terminal singularity, where m ≥ 2 and (m,α) = 1.
Let HX ⊆ |−KX | be a linear system such that a general member has only

a rational double point. Then there is a projective birational morphism

f : Y → X which satisfies the following conditions:

(i) Y is non-singular and f is KX + HX -crepant.

(ii) E(f) = {E1, . . . , Em−1} with a(Ei, X) = i/m (i = 1, . . . ,m− 1).

Let ∆j = divX(fj(x, y, z)) be a Q-Cartier divisor, where fj ∈ C{x, y, z} is

a Zm-semi-invariant, and let ∆ =
∑

dj∆j be a Q-Cartier Q-divisor with

dj ∈ Q. Then we have

(iii) a(Ei, X,∆) = i/m−
∑

djσi-wt(fj(x, y, z)), where σi-wt(x, y, z) =
(〈αi/m〉, 〈−αi/m〉, i/m).

Furthermore if a general member DX ∈ HX has only a rational double point

of type Am−1, then

(iv) f induces the minimal resolution f|DY
: DY = f−1

∗ DX → DX of

DX .

2.13. The morphism f : Y → X obtained in (2.12) is called the
economic resolution of X = (x, y, z)/Zm(α,−α, 1). This is also obtained by
a succession of divisorial blow ups with minimal discrepancies.

2.14. In this article we follow the notation of [Hay99] and [Hay00].
We shall use weighted blow ups in order to construct a KX + HX -crepant
Gorenstein resolution of X. The notion of weighted blow ups is given in
[Hay99, 3.2], and we shall recall this briefly here. If X is embedded in
(x, y, z, u)/Zm(α, β, γ, δ), and if σ = 1

m (a, b, c, d) is a weight, then we can
define the σ-blow up πσ : Xσ → X. In this article, this is also called the
blow up with weight (x, y, z, u) = 1

m (a, b, c, d). The variety Xσ is covered
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by four affine open sets, which are called x-chart, y-chart, z-chart and u-
chart. The structure of these affine open sets and the morphism πσ are
described explicitly in [Hay99, 3.2]. We sometimes have to embed X into
(x, y, z, u, t)/Zm(α, β, γ, δ, ε). In this case, we can define the weighted blow
ups by a similar method.

For r ∈ R, we define the round down of r by brc = max{t ∈ Z | t ≤ r}
and the round up of r by dre = −b−rc. We denote the fractional part of r
by 〈r〉 = r − brc.

§3. Main results and their corollaries

In this section, we shall state our main results of this article. Through-

out this section, X denotes a germ of a 3-dimensional terminal singularity

at P (∈ X) and assume that X has index m ≥ 2 at P .

The main results of this article are summarized as follows:

Theorem 3.1. Let HX ⊆ |−KX | be a linear system which contains

a member DX with only a rational double point. Then there is a KX +
HX-crepant Gorenstein resolution f : Y → X such that the number of

exceptional prime divisors of f is not greater than the number of (−2)-
curves in the minimal resolution of DX .

We not only estimate the number of exceptional prime divisors of f ,

but also determine the discrepancies a(E,X) for each E ∈ E(f).

The number of prime divisors with discrepancies ≤ 1 (or < 1) over P

only depends on X. As for these divisors, we obtain the following:

Theorem 3.2. For each i = 1, 2, . . . ,m − 1, there is a prime divisor

Fi over P such that a(Fi, X) = i/m. Furthermore, there is a prime divisor

Fm over P with a(Fm, X) = 1 if and only if X is not a cyclic quotient

terminal singularity.

We remark that the first part of (3.2) is already obtained by [Sho96].

Our proof is different from the one given in [Sho96].

We shall prove (3.1) and (3.2) by using classification of 3-dimensional

terminal singularities and weighted blow ups of these singularities. A more

detailed description of a KX +HX -crepant Gorenstein resolution f : Y → X

and its exceptional prime divisors will be given in theorems in the following

sections. For example, if X is of type (cD/3), then (6.4), (6.6) and (6.9)
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give us an information of the exceptional prime divisors of f . By these

theorems, we know that (3.1) and (3.2) are true if X is of type (cD/3).

As an easy consequence of (2.11) and (3.1), we obtain:

Corollary 3.3. Let HX and DX be as in (3.1). Then the number

of prime divisors over P with discrepancies ≤ 1 is not greater than the

number of (−2)-curves in the minimal resolution of DX . In particular, the

difficulty of X has the same bound from above.

A projective birational morphism f̄ : Ȳ → X is called an economic

resolution of X ([Reid87, 6.5]) if the following conditions are satisfied:

(i) Ȳ has only Gorenstein terminal singularities, and

(ii) the exceptional set of f̄ is a divisor, and E(f̄) is exactly the set of

all prime divisors with discrepancies < 1 over P (∈ X).

In [Reid87, 6.5], it is considered that the economic resolution is a can-

didate of a good partial resolution of X. In fact, if X is cyclic quotient

terminal singularity, then there is an economic resolution f̄ : Ȳ → X and

Ȳ is non-singular (cf. (2.12)). However the existence of prime divisors with

discrepancies 1 over P shows that there are no economic resolutions in the

above sense:

Proposition 3.4. If there is a prime divisor with discrepancy 1 over

P (∈ X), then X has no economic resolutions. In particular, if X is not a

cyclic quotient terminal singularity, then X has no economic resolutions.

Proof. If f̄ : Ȳ → X is a economic resolution of X, then E(f̄) consists
of prime divisors with discrepancies < 1. On the other hand, by (2.11),
prime divisors with discrepancies 1 must be contained in E(f̄). The second
part follows from (3.2).

Thus we have to change conditions on singularities of Ȳ or discrepancies

of elements of E(f̄) to get such partial resolutions of X. These materials

will be treated in [Hay05].

§4. Terminal singularities of type (cA/m)

4.1. Let X be a germ of a 3-dimensional terminal singularity at P .
We assume that X is of type (cA/m) throughout this section. Then there
is an embedding X ↪→ (x, y, z, u)/Zm(α,−α, 1, 0) such that

(4.1.1) X = {xy + f(z, u) = 0}/Zm(α,−α, 1, 0),

https://doi.org/10.1017/S0027763000009120 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009120


3-DIMENSIONAL TERMINAL SINGULARITIES 71

where f(z, u) ∈ (zm, u)C{zm, u} is a Zm-invariant and (α,m) = 1.
For each positive integer i, we denote τi-wt(z) = i/m, τi-wt(u) = 1,

and define wi(X) = τi-wt(f(z, u)). Since f(z, u) is a Zm-invariant and has
no constant terms, we see that wi(X) are all positive integers. We also
define w0(X) = 0.

Since the cyclic group Zm acts freely on {xy + f(z, u) = 0} \ {(0)},
we see that uw ∈ f(z, u) for some positive integer w. The smallest such
integer w is called the axial weight of X and we shall denote it by aw(X)
(cf. [Hay99, 2.6]).

Let HX ⊆ |−KX | be a linear system such that a general member has
only a rational double point at P . It is easy to see that a general member
of |−KX | has a rational double point of type Amaw(X)−1.

Lemma 4.2. (1) For each positive integer i, we have wi(X) ≤ wi+1(X)
and wi+1(X) − wi(X) ≥ wi+2(X) − wi+1(X).

(2) There is a positive integer l = l(X) such that wl−1(X) < wl(X) =
aw(X).

Proof. (1) The proof of the first inequality is obvious. There is a
monomial M = zmpuq ∈ f(z, u) such that wi+1(X) = τi+1-wt(M) = (i +
1)p+q. Then we have wi(X) ≤ τi-wt(M) = ip+q = wi+1(X)−p. Similarly
wi+2(X) ≤ wi+1(X)+p. Hence we obtain the inequality wi+1(X)−wi(X) ≥
wi+2(X) − wi+1(X).

(2) Since uaw(X) ∈ f(z, u), we have wi(X) = aw(X) for all sufficiently
large integer i. Thus the existence of such l = l(X) follows from (1).

4.3. By (4.2), we get a sequence of strictly increasing positive integers

(w1(X), w2(X), . . . , wl(X)),

where wl(X) = aw(X). This is called the weight sequence of X as type
(cA/m). We also call l = l(X) the length of the weight sequence. We
remark that wl(X) = wl+1(X) = · · · = aw(X).

In the following, we shall consider the pair (X,∆X(k)), where X is as
in (4.1.1) and ∆X(k) = − k

m divX(u) with k ∈ Q. This allows us to work
inductively. Though ∆X(k) is not an effective divisor, the discrepancy
a(G,X,∆X (k)) makes sense for each prime divisor G over X.

Proposition 4.4. Let X, wi(X), l(X), ∆X(k), HX be as in (4.1) and

(4.3). Let a, b be positive integers satisfying a+b = w1(X), a ≡ α (mod m).
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Then there is a KX + HX-crepant birational morphism f1 : X1 → X such

that

(i) E(f1) = {E,F1, . . . , Fa−1, F
′
1, . . . , F

′
b−1} with

a(E,X,∆X (k)) = (k + 1)/m,

a(Fi, X,∆X(k)) = (k + dmi/ae)/m, i = 1, . . . , a− 1,

a(F ′
j , X,∆X(k)) = (k + dmj/be)/m, j = 1, . . . , b− 1.

(ii) If l(X) = 1, then X1 has only Gorenstein terminal singularities.

(iii) If l(X) > 1, then X1 is Gorenstein terminal outside one point P1,

and there is an open neighborhood P1 ∈ U ⊆ X1 such that

U ' {xy + f(zu1/m, u)/uw1(X) = 0}/Zm(α,−α, 1, 0).

We have a(G,X,∆X (k)) = a(G,U,∆U (k + 1)) for each prime divisor G
over P1.

Proof. We embed X as in (4.1.1) and construct a blow up g1 : Y1 → X
with weight (x, y, z, u) = 1

m (a, b, 1,m). By [Hay99, 6.4], we see that g1 is
divisorial with discrepancy 1/m and that Y1 is Gorenstein outside the origin
Q1 of the x-chart U1, the origin Q2 of the y-chart U2 and the origin Q4 of
the u-chart U4.

Let ∆Y1
(k) = g−1

1∗ ∆X(k) and let E1 be the exceptional divisor of g1.
Then we have g∗1∆X(k) − 1

mE1 = ∆Y1
(k) − k+1

m E1.

We shall resolve singularities Q1 and Q2 in Y1. We have

U1 = {ȳ + f(x̄1/mz̄, x̄ū)/x̄w1(X) = 0}/Za(m,−b,−1,−m)

' (x̄, z̄, ū)/Za(−m, 1,m),

with ∆Y1
(k)|U1

= − k
m divU1

(ū) and E1|U1
= divU1

(x̄). Similarly we have

U2 ' (ȳ, z̄, ū)/Zb(−m, 1,m) with ∆Y1
(k)|U2

= − k
m divU2

(ū) and E1|U2
=

divU2
(ȳ). Let h1 : X1 → Y1 be the economic resolution of Q1 and Q2 (cf.

(2.12)). Then we have

E(h1) = {F1, . . . , Fa−1, F
′
1, . . . , F

′
b−1},

where Fi (resp. F ′
j) is the prime divisor over Q1 (resp. Q2) with a(Fi, Y1) =

i/a (i = 1, . . . , a − 1) (resp. a(F ′
j , Y1) = j/b (j = 1, . . . , b − 1)). By (2.10)
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and (2.12), we see that

a(Fi, X,∆X (k)) = a(Fi, Y1, g
∗
1∆X(k) − 1

mE1)

= a(Fi, Y1,∆Y1
(k) − k+1

m E1)

= a(Fi, U1,−
k
m divU1

(ū) − k+1
m divU1

(x̄))

=
i

a
+

k

m

〈mi

a

〉

+
k + 1

m

〈

−
mi

a

〉

=
k

m
+

1

m

⌈mi

a

⌉

.

Similarly we have a(F ′
j , X,∆X (k)) = (k + dmj/be)/m. For the birational

transform E = h−1
1∗ E1, we see that a(E,X,∆X (k)) = (k + 1)/m. Thus

f1 = h1 ◦ g1 : X1 → X is a KX + HX -crepant birational morphism which
satisfies the condition (i).

Next we shall study the point Q4. We know that

U4 = {x̄ȳ + f(z̄ū1/m, ū)/ūw1(X) = 0}/Zm(α,−α, 1, 0).

If l(X) = 1, then uw1(X) ∈ f(z, u) and Q4 6∈ U4, hence X1 is Goren-
stein. If l(X) > 1, then Q4 ∈ U4 and we see that (g∗1∆X(k) − 1

mE1)|U4
=

− k+1
m divU4

(ū). Hence, for each prime divisor G over Q4, we have

a(G,X,∆X (k)) = a(G,X1, g
∗
1∆X(k) − 1

mE1)

= a(G,U4,−
k+1
m divU4

(ū)).

We also see that the morphism f1 : X1 → X satisfies the condition (iii)
when l(X) > 1.

Remark 4.5. In (4.4)(iii), we have wi(U) = wi+1(X) − w1(X) for all
positive integers i, and l(U) = l(X) − 1.

Theorem 4.6. Let X, wi(X), l(X), ∆X(k), HX be as in (4.1) and

(4.3). Then there is a KX + HX-crepant Gorenstein resolution f : Y → X

such that E(f) =
⋃m+l(X)−1

i=1 E(f,∆X(k), (k + i)/m) with

#E(f,∆X(k), (k + i)/m)

=

{

wi(X) if i = 1, . . . ,m− 1,

wi(X) − wi−m(X) − 1 if i = m, . . . ,m+ l(X) − 1.
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Proof. We shall prove this by induction on l(X). We take positive
integers a, b such that a+ b = mw1(X), a ≡ α (mod m), and construct a
KX + HX -creapnt birational morphism f1 : X1 → X as in (4.4).

If l(X) = 1, then f1 : X1 → X is a KX + HX -crepant Gorenstein
resolution of X by (4.4)(ii). It follows from (4.4)(i) that a(F,X,∆X(k)) ≥
(k + 1)/m for all F ∈ E(f1) and that

#{F ∈ E(f1) | a(F,X,∆X (k)) ≤ (k + i)/m}

=

{

1 + bai/mc + bbi/mc = iw1(X) if i = 1, 2, . . . ,m− 1,

mw1(X) − 1 if i ≥ m.

Hence we see that #E(f1) = mw1(X) − 1 with

#E(f1,∆X(k), (k + i)/m) =

{

w1(X) if i = 1, . . . ,m− 1,

w1(X) − 1 if i = m.

Since wi(X) = aw(X) for all i ≥ 1, this completes the proof when l(X) = 1.
If l(X) > 1, then we have l(U) = l(X) − 1 by (4.5). Thus we can use

the induction hypothesis to U and get a KX1
+ f−1

1∗ HX -crepant Gorenstein

resolution f2 : Y → X1 such that E(f2) =
⋃m+l(U)

i=2 E(f2,∆U (k + 1), (k +
i)/m) with

#E(f2,∆U (k + 1), (k + i)/m)

=

{

wi−1(U) if i = 2, . . . ,m,

wi−1(U) − wi−1−m(U) − 1 if i = m+ 1, . . . ,m+ l(U).

The composition f = f1 ◦ f2 : Y → X is a KX + HX -crepant Gorenstein
resolution. By using computations for E(f1) and (4.4)(iii), we see that

E(f) =
⋃m+l(X)−1

i=1 E(f,∆X(k), (k + i)/m) with

#E(f,∆X(k), (k + i)/m)

=











































w1(X) if i = 1,

w1(X) + wi−1(U) = wi(X) if i = 2, . . . ,m− 1,

(w1(X) − 1) + wm−1(U) = wm(X) − w0(X) − 1

if i = m,

wi−1(U) −wi−1−m(U) − 1 = wi(X) − wi−m(X) − 1

if i = m+ 1, . . . ,m+ l(X) − 1.
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Corollary 4.7. Let X, wi(X), l(X), HX be as in (4.1) and (4.3).
Then there is a KX + HX-crepant Gorenstein resolution f : Y → X such

that #E(f) = maw(X) − l(X) with

#E(f, k/m) =

{

wi(X) if i = 1, . . . ,m− 1,

wi(X) − wi−m(X) − 1 if i = m, . . . ,m+ l(X) − 1.

Proof. This follows from (4.6) by taking k = 0.

Remark 4.8. If a general member DX of HX has a rational double
point of type Amaw(X)−1 at P , then f in (4.7) induces the minimal resolution
f|DY

: DY = f−1
∗ DX → DX of DX . For E ∈ E(f), E|DY

need not be
irreducible. Our main results (3.1), (3.2) and (3.3) are proved by (4.7)
when X is of type (cA/m).

§5. Terminal singularities of type (cAx/2)

5.1. Let X be a germ of a 3-dimensional terminal singularity of type
(cAx/2). Then there is an embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such
that

(5.1.1) X = {x2 + y2 + f(z, u) = 0}/Z2(0, 1, 1, 1),

where f(z, u) ∈ (z, u)4C{z, u} is a Z2-invariant. We denote τ -wt(z) =
τ -wt(u) = 1/2 and assume that w = τ -wt(f(z, u)). It is easy to see that
2 ≤ w ∈ Z.

Let HX ⊆ |−KX | be a linear system such that a general member has
only a rational double point. We remark that a general member of |−KX |
has a rational double point of type Dw+2.

5.2. Let X, w and HX be as in (5.1).

(A) If (f(z, u))τ -wt=w is not a square, then we embedX as in (5.1.1) and
construct a blow up f1 : X1 → X with weight (x, y, z, u) = 1

2 (w,w+1, 1, 1)
or 1

2 (w + 1, w, 1, 1). By [Hay99, 8.4], f1 is divisorial with discrepancy 1/2
and X1 is Gorenstein outside one point Q. There is an open neighborhood
Q ∈ U ⊆ X1 such that U ' (x, z, u)/Zw+1(−1, 1, 1). For the exceptional
divisor E1 of f1, we see that E1|U = divU (x2 + (f(z, u))τ -wt=w).

(B) If (f(z, u))τ -wt=w is a square, then we can write (f(z, u))τ -wt=w =
−g(z, u)2. In this case, by using [Hay99, 8.6], there is another embedding
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X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such that

(5.2.1) X =























{x2 + y2 + 2g(z, u)x + h(z, u) = 0}/Z2(0, 1, 1, 1)

if w is even,

{x2 + y2 + 2g(z, u)y + h(z, u) = 0}/Z2(0, 1, 1, 1)

if w is odd,

where h(z, u) = (f(z, u))τ -wt≥w+1. By [Hay99, 8.8], the blow up f2 : X2 →
X with weight (x, y, z, u) = 1

2 (w + 2, w + 1, 1, 1) (in the case w is even) or
1
2 (w+1, w+2, 1, 1) (in the case w is odd) is divisorial with discrepancy 1/2
and X2 is Gorenstein outside one point Q′. There is an open neighborhood
Q′ ∈ U ′ ⊆ X2 such that U ′ ' (y, z, u)/Zw+2(−1, 1, 1). Let E2 be the
exceptional divisor of f2, then we see that E2|U ′ = divU ′(y2 + g(z, u) +
(h(z, u))τ -wt=w+1).

Theorem 5.3. Let X, w and HX be as in (5.1). Then there is a

KX + HX-crepant Gorenstein resolution f : Y → X such that,

(1) if (f(z, u))τ -wt=w is not a square, #E(f) = w+1 with #E(f, 1/2) =
1 and #E(f, 1) = w, and

(2) if (f(z, u))τ -wt=w is a square, #E(f) = w + 2 with #E(f, 1/2) = 2
and #E(f, 1) = w.

Proof. (1) In the case (f(z, u))τ -wt=w is not a square, let f1 : X1 → X,
E1 and Q ∈ U ⊆ X1 be as in (5.2)(A), and let g1 : Y → X1 be the economic
resolution of Q. Then E(g1) = {F1, . . . , Fw}, where Fi is the prime divisor
over Q with a(Fi, X1) = i/(w + 1) (i = 1, . . . , w). By (2.10) and (2.12), we
have

a(Fi, X) = a(Fi, X1,−
1
2E1) = a(Fi, U,−

1
2E1|U )

= a
(

Fi, U,−
1
2 divU (x2 + (f(z, u))τ -wt=w)

)

=
i

w + 1
+

1

2
·

2(w + 1 − i)

w + 1
= 1

for all i = 1, . . . , w. Thus f = f1 ◦ g1 : Y → X is a Gorenstein resolution
such that E(f) = {g−1

1∗ E1, F1, . . . , Fw}. Since a(g−1
1∗ E1, X) = 1/2 and since

f is a composition of divisorial blow ups with minimal discrepancies, we see
that f is KX +HX -crepant and we complete the proof when (f(z, u))τ -wt=w

is not a square.
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(2) In the case (f(z, u))τ -wt=w is a square, let f2 : X2 → X, E2 and Q′ ∈
U ′ ⊆ X2 be as in (5.2)(B), and let g2 : Y → X2 be the economic resolution
of Q′. We see that E(g2) = {F1, . . . , Fw+1}, where Fi is the prime divisor
over Q′ with a(Fi, X2) = i/(w+2) (i = 1, . . . , w+1). By (2.10) and (2.12),
we see that a(F1, X) = a(F1, X2,−

1
2E2) = a(F1, U

′,− 1
2E2|U ′) = 1/2 and

a(Fi, X) = 1 for i = 2, . . . , w+1. Thus f = f2 ◦ g2 : Y → X is a KX +HX -
crepant Gorenstein resolution with required properties.

Remark 5.4. If a general member DX of HX has a rational double
point of type Dw+2, then f in (5.3) induces the minimal resolution f|DY

:

DY = f−1
∗ DX → DX of DX . In case (5.3)(1), g−1

1∗ E1 is irreducible but
g−1
1∗ E1|DY

has two irreducible components. Our main results (3.1), (3.2)
and (3.3) is proved when X is of type (cAx/2).

§6. Terminal singularities of type (cD/3)

6.1. Let X be a germ of a 3-dimensional terminal singularity of type
(cD/3). Then there is an embedding X ↪→ (x, y, z, u)/Z3(2, 1, 1, 0) such
that

(6.1.1) X =































{u2 + x3 + yz2 + y2z = 0}/Z3(2, 1, 1, 0),

{u2 + x3 + yz2 + xy4λ(y3) + y6µ(y3) = 0}/Z3(2, 1, 1, 0),

or
{

u2 + x3 + y3 + xyz3α(z3)

+ xz4β(z3) + yz5γ(z3) + z6δ(z3) = 0

}

/

Z3(2, 1, 1, 0),

where λ(t), µ(t), α(t), β(t), γ(t), δ(t) ∈ C{t}.

Let HX ⊆ |−KX | be a linear system such that a general member has
only a rational double point. We remark that a general member of |−KX |
has a rational double point of type E6.

6.2. Let X ↪→ (x, y, z, u)/Z3(2, 1, 1, 0) be as in (6.1.1) and assume
that

the blow up f1 : X1 → X with weight (x, y, z, u) = 1
3 (2, 4, 1, 3)

is divisorial with discrepancy 1/3.
(6.2.1)

Under the assumption (6.2.1), it follows from [Hay99, 9.4] that X1 is Goren-
stein outside one point Q (the origin of the y-chart), which is terminal of
type (cAx/4). Let E be the exceptional divisor of f1. Then, by (2.10),
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for each prime divisor F over Q and Q-Cartier divisor ∆ on X, we have
a(F,X,∆) = a(F,X1, f

∗
1 ∆ − 1

3E).
Thus the study of terminal singularities of type (cD/3) is reduced to

the study of terminal singularities of type (cAx/4). In this section, divisors
∆ is chosen so that it will work well when we study terminal singularities
of type (cE/2) in Section 7.

Lemma 6.3. Let

U = {u2 + x3 + z2 + yz = 0}/Z4(2, 1, 1, 3)

be a germ of a 3-dimensional terminal singularity of type (cAx/4). Let

HU ⊆ |−KU | be a linear system such that a general member has only a

rational double point. For 1 6= α ∈ C and k ∈ Q, let

∆′
α(k) =

{

− k
2 divU

(

y + αz +A′(x, y, z)
)

− k+2
6 divU (y) if α 6= 0, 1,

− 2k+1
3 divU (y) if α = 0,

where A′(x, y, z) ∈ (x, y, z)2C{x, y, z} is a Z4-semi-invariant. Then there

is a KU + HU -crepant Gorenstein resolution g : V → U such that E(g) =
{F1, . . . , F5} with

a(F1, U,∆
′
α(k)) = (k + 2)/6, a(F2, U,∆

′
α(k)) = (k + 2)/6,

a(F3, U,∆
′
α(k)) = (k + 2)/3, a(F4, U,∆

′
α(k)) = (k + 2)/2,

a(F5, U,∆
′
α(k)) = (2k + 4)/3.

Proof. Let g1 : U1 → U be the blow up with weight (x, y, z, u) =
1
4 (2, 1, 5, 3). By [Hay99, 7.9], g1 is divisorial with discrepancy 1/4 and U1 is
Gorenstein outside one point Q′ (which is the origin of the z-chart). There
is an open neighborhood Q′ ∈ W ⊆ U1 such that W ' (x, z, u)/Z5(2, 1, 3).
We also have

(g∗1∆′
α(k) − 1

4 F )|W

=















− k
2 divW ((α − 1)z − u2 − x3 +A′(xz1/2, yz1/4, z5/4)/z1/4)

− k+2
6 divW (z + u2 + x3) − k+2

6 divW (z) if α 6= 0, 1,

− 2k+1
3 divW (z + u2 + x3) − k+2

6 divW (z) if α = 0,

where F is the exceptional divisor of g1. We shall denote the economic
resolution of Q′ by h1 : V → U1. Then we have E(h1) = {G1, . . . , G4},
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where Gi is the prime divisor over Q′ with a(Gi, U1) = i/5 (i = 1, . . . , 4).
By (2.10) and (2.12), we have a(G1, U,∆

′
α(k)) = a(G1, U1, g

∗
1∆

′
α(k)− 1

4 F ) =
a(G1,W, (g

∗
1∆′

α(k) − 1
4 F )|W ) = (k + 2)/6. Similarly a(G2, U,∆

′
α(k)) =

(k + 2)/3, a(G3, U,∆
′
α(k)) = (k + 2)/2 and a(G4, U,∆

′
α(k)) = (2k + 4)/3.

Since a(F1, U,∆
′
α(k)) = (k + 2)/6 for the birational transform F1 = h−1

1∗ F ,
we complete the proof by setting g = g1 ◦ h1 : V → U and Fi+1 = Gi for
i = 1, . . . , 4.

Theorem 6.4. Let

X = {u2 + x3 + yz2 + y2z = 0}/Z3(2, 1, 1, 0)

and let HX be as in (6.1). Let ∆α(k) = − k
2 divX(y + αz + A(x, y, z)),

where A(x, y, z) ∈ (x, y, z)2C{x, y, z} is a Z3-semi-invariant, 1 6= α ∈ C and

k ∈ Q. Then there is a KX +HX-crepant Gorenstein resolution f : Y → X
such that E(f) = {E1, . . . , E6} with

a(E1, X,∆α(k)) =

{

(k + 2)/6 if α 6= 0, 1,

(2k + 1)/3 if α = 0,

a(E2, X,∆α(k)) = (k + 2)/6, a(E3, X,∆α(k)) = (k + 2)/6,

a(E4, X,∆α(k)) = (k + 2)/3, a(E5, X,∆α(k)) = (k + 2)/2,

a(E6, X,∆α(k)) = (2k + 4)/3.

In particular, we have #E(f) = 6 with #E(f, 1/3) = 3, #E(f, 2/3) =
#E(f, 1) = #E(f, 4/3) = 1.

Proof. By [Hay99, 9.4, 9.9], the assumption (6.2.1) is satisfied. Under
the notation in (6.2), there is an open neighborhood Q ∈ U ⊆ X1 such that

U ' {u2 + x3 + z2 + yz = 0}/Z4(2, 1, 1, 3).

Let E be the exceptional divisor of f1. Then we have

(f∗1 ∆α(k) − 1
3E)|U

=

{

− k
2 divU

(

y + αz +A′(x, y, z)
)

− k+2
6 divU (y) if α 6= 0, 1,

− 2k+1
3 divU (y) if α = 0,

where A′(x, y, z) = A(xy2/3, y4/3, y1/3z)/y1/3. We can take a Gorenstein
resolution g1 : Y → X1 with #E(g1) = 5 as in (6.3). For each F ∈ E(g1),
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we have a(F,X,∆α(k)) = a(F,X1, f
∗
1 ∆α(k) − 1

3E) = a(F,U, (f ∗1 ∆α(k) −
1
3E)|U ), and these values are obtained in (6.3). For the birational transform

E1 = g−1
1∗ E, we have

a(E1, X,∆α(k)) =

{

(k + 2)/6 if α 6= 0, 1,

(2k + 1)/3 if α = 0.

Since f1 is a divisorial blow up with minimal discrepancy and since g1

is KX1
+ f−1

1∗ HX -crepant, it follows from (2.8) that the composition f =
f1 ◦ g1 : Y → X is KX + HX -crepant. Therefore f is a KX + HX -crepant
Gorenstein resolution with required properties.

Lemma 6.5. Let

U = {u2 + x3 + z2 + xy4λ(y4) + y6µ(y4) = 0}/Z4(2, 1, 1, 3)

be a germ of a 3-dimensional terminal singularity of type (cAx/4), where

λ(t), µ(t) ∈ C{t}, and let HU ⊆ |−KU | be a linear system such that a gen-

eral member has only a rational double point. Let ∆′
1(k) = − 2k+1

3 divU (y),

∆′
2(k) = − k

2 divU (z+A′(x, y, z))− k+2
6 divU (y), where k ∈ Q, A′(x, y, z) ∈

(x, y, z)2C{x, y, z} is a Z4-semi-invariant. Then there is a KU +HU -crepant

Gorenstein resolution g : V → U such that E(g) = {F1, . . . , F5} with

a(F1, U,∆
′
1(k)) = (k + 2)/6, a(F2, U,∆

′
1(k)) = (k + 2)/3,

a(F3, U,∆
′
1(k)) = (k + 2)/3, a(F4, U,∆

′
1(k)) = (k + 2)/2,

a(F5, U,∆
′
1(k)) = (2k + 4)/3,

and

a(F1, U,∆
′
2(k)) = (2k + 1)/3, a(F2, U,∆

′
2(k)) = (5k + 4)/6,

a(F3, U,∆
′
2(k)) = (k + 2)/3, a(F4, U,∆

′
2(k)) = (k + 2)/2,

a(F5, U,∆
′
2(k)) = (2k + 4)/3.

Proof. Let g1 : U1 → U be the blow up with weight (x, y, z, u) =
1
4 (2, 1, 5, 3). By [Hay99, 7.4], g1 is divisorial with discrepancy 1/4 and U1 is
Gorenstein outside one pointQ′ (which is the origin of the z-chart). There is
an open neighborhoodQ′ ∈W ⊆ U1 such thatW ' (x, z, u)/Z5(2, 1, 3). We
have an economic resolution h1 : V → U1 as in (2.12). Then #E(h1) = 4.
Thus g = g1 ◦h1 : V → U is a KU +HU -crepant Gorenstein resolution with
#E(g) = 5. We can compute the discrepancies of each F ∈ E(g) as in the
proof of (6.3) and obtain the result.
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Theorem 6.6. Let

X = {u2 + x3 + yz2 + xy4λ(y3) + y6µ(y3) = 0}/Z3(2, 1, 1, 0)

and HX be as in (6.1). Let ∆1(k) = − k
2 divX(y +A(x, y, z)) and ∆2(k) =

− k
2 divX(z+B(x, y, z)), where A(x, y, z) and B(x, y, z) ∈ (x, y, z)2C{x, y, z}

are Z3-semi-invariants, and k ∈ Q. Then there is a KX + HX -crepant

Gorenstein resolution f : Y → X such that E(f) = {E1, . . . , E6} with

a(E1, X,∆1(k)) = (2k + 1)/3, a(E2, X,∆1(k)) = (k + 2)/6,

a(E3, X,∆1(k)) = (k + 2)/3, a(E4, X,∆1(k)) = (k + 2)/3,

a(E5, X,∆1(k)) = (k + 2)/2, a(E6, X,∆1(k)) = (2k + 4)/3,

and

a(E1, X,∆2(k)) = (k + 2)/6, a(E2, X,∆2(k)) = (2k + 1)/3,

a(E3, X,∆2(k)) = (5k + 4)/6, a(E4, X,∆2(k)) = (k + 2)/3,

a(E5, X,∆2(k)) = (k + 2)/2, a(E6, X,∆2(k)) = (2k + 4)/3.

In particular, we have #E(f) = 6 with #E(f, 1/3) = #E(f, 2/3) = 2,
#E(f, 1) = #E(f, 4/3) = 1.

Proof. By [Hay99, 9.4, 9.14], the assumption (6.2.1) is satisfied. Under
the notation in (6.2), there is an open neighborhood Q ∈ U ⊆ X1 such that

U ' {u2 + x3 + z2 + xy4λ(y4) + y6µ(y4) = 0}/Z4(2, 1, 1, 3).

Let E be the exceptional divisor of f1. Then we have

(f∗1 ∆j(k) −
1
3E)|U =

{

− 2k+1
3 divU (y) if j = 1,

− k
2 divU (z +A′(x, y, z)) − k+2

6 divU (y) if j = 2,

where A′(x, y, z) = A(xy2/3, y4/3, y1/3z)/y1/3. We can take a Gorenstein
resolution g1 : Y → X1 with #E(g1) = 5 as in (6.5). For each F ∈ E(g1)
and each i = 1, 2, we have a(F,X,∆i(k)) = a(F,X1, f

∗
1 ∆i(k) −

1
3E) =

a(F,U, (f ∗1 ∆i(k) −
1
3E)|U ), and these values are obtained in (6.5). For the

birational transform E1 = g−1
1∗ E, we have a(E1, X,∆1(k)) = (2k+1)/3 and

a(E1, X,∆2(k)) = (k+2)/6. Therefore f = f1 ◦ g1 : Y → X is a KX +HX -
crepant Gorenstein resolution with required properties.
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6.7. Let X be a germ of a 3-dimensional terminal singularity of type
(cD/3), and assume there is an embedding X ↪→ (x, y, z, u)/Z3(2, 1, 1, 0)
such that

(6.7.1) X =

{

u2 + x3 + y3 + xyz3α(z3)
+ xz4β(z3) + yz5γ(z3) + z6δ(z3) = 0

}

/

Z3(2, 1, 1, 0),

where α(t), β(t), γ(t), δ(t) ∈ C{t}. We write α(z3) =
∑∞

i=0 αiz
3i etc. as

power series, and consider the following system of equations in x:

(6.7.2) x3 + β0x+ δ0 = 0, 3x2 + β0 = 0, α0x+ γ0 = 0, β1x+ δ1 = 0.

We shall divide the case into two subcases:

(A) (6.7.2) has no solutions in x. In this case we embed X as in (6.7.1),
then it follows from [Hay99, 9.4, 9.20] that the blow up f1 : X1 → X
with weight (x, y, z, u) = 1

3 (2, 4, 1, 3) is divisorial with discrepancy 1/3,
hence we can use the discussion in (6.2). We also consider the Q-Cartier
divisor ∆(k) = − k

2 divX(y + A(x, y, z)), where k ∈ Q and A(x, y, z) ∈
(x, y, z)2C{x, y, z} is a Z3-semi-invariant.

(B) (6.7.2) has a solution x = ν ∈ C. By [Hay99, 9.23], there is another
embedding X ↪→ (x, y, z, u)/Z3(2, 1, 1, 0) such that

(6.7.3) X =

{

u2 + x3 + 3νx2z2 + y3 + xyz3α′(z3)
+ xz7β′(z3) + yz8γ′(z3) + z12δ′(z3) = 0

}

/

Z3(2, 1, 1, 0),

where α′(t), β′(t), γ′(t), δ′(t) ∈ C{t}. We see from [Hay99, 9.5, 9.25] that
the blow up f2 : X2 → X with weight (x, y, z, u) = 1

3 (5, 4, 1, 6) is divisorial
with discrepancy 1/3 and that X2 is Gorenstein outside two points Q1 and
Q2. One point Q1 (which is the origin of the x-chart) has an open neigh-
borhood U1 ⊆ X2 such that U1 ' (y, z, u)/Z5(4, 1, 1), and the other point
Q2 has an open neighborhood U2 ⊆ X2 such that U2 ' (x, y, z)/Z2(1, 1, 1).

The exceptional divisor E2 of f2 satisfies that E2|U1
= divU1

(χ(y, z, u)),
where χ(y, z, u) = u2 +3νz2 + y3 +α′(0)yz3 +β′(0)z7 + γ′(0)yz8 + δ′(0)z12,
and that E2|U2

= divU2
(y).

We also consider the Q-Cartier divisor ∆′
1(k) = − k

2 divX(y+A′(x, y, z))

and ∆′
2(k) = − k

2 divX(z + B′(x, y, z)), where A′(x, y, z) and B ′(x, y, z) ∈
(x, y, z)2C{x, y, z} are Z3-semi-invariants, and k ∈ Q.

Lemma 6.8. Let

U =

{

u2 + x3 + y2 + xyz3α(yz3)
+ xz4β(yz3) + yz5γ(yz3) + z6δ(yz3) = 0

}

/

Z4(2, 1, 1, 3)
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be a germ of a 3-dimensional terminal singularity of type (cAx/4), where

α(t), β(t), γ(t), δ(t) ∈ C{t}, and let HU ⊆ |−KU | be a linear system

such that a general member has only a rational double point. Let ∆′(k) =
− 2k+1

3 divU (y), where k ∈ Q. Then there is a KU +HU -crepant Gorenstein

resolution g : V → U such that E(g) = {F1, . . . , F5} with

a(F1, U,∆
′(k)) = (5k + 4)/6, a(F2, U,∆

′(k)) = k + 1,

a(F3, U,∆
′(k)) = (k + 2)/3, a(F4, U,∆

′(k)) = (k + 2)/2,

a(F5, U,∆
′(k)) = (2k + 4)/3.

Proof. Let g1 : U1 → U be the blow up with weight (x, y, z, u) =
1
4 (2, 5, 1, 3). By [Hay99, 7.4], g1 is divisorial with discrepancy 1/4 and U1 is
Gorenstein outside one point Q′ (which is the origin of the y-chart). There
is an open neighborhood Q′ ∈ W ⊆ U1 such that W ' (x, z, u)/Z5(2, 1, 3).
We have an economic resolution h1 : V → U1 with #E(h1) = 4. Therefore
g = g1 ◦ h1 : V → U is a KU + HU -crepant Gorenstein resolution with
#E(g) = 5. We can compute the discrepancies of F ∈ E(g) as in the proof
of (6.3) and obtain the result.

Theorem 6.9. Let X, HX , ∆(k), ∆′
1(k), ∆′

2(k) be as in (6.7). Under

the notation and assumptions in (6.7), we have the following :

(1) In case (A), there is a KX + HX-crepant Gorenstein resolution

f : Y → X such that E(f) = {E1, . . . , E6} with

a(E1, X,∆(k)) = (2k + 1)/3, a(E2, X,∆(k)) = (5k + 4)/6,

a(E3, X,∆(k)) = k + 1, a(E4, X,∆(k)) = (k + 2)/3,

a(E5, X,∆(k)) = (k + 2)/2, a(E6, X,∆(k)) = (2k + 4)/3.

In particular, we have #E(f) = 6 with #E(f, 1/3) = 1, #E(f, 2/3) =
#E(f, 1) = 2 and #E(f, 4/3) = 1.

(2) In case (B), there is a KX + HX-crepant Gorenstein resolution

f : Y → X such that E(f) = {E1, . . . , E6} with

a(E1, X,∆
′
1(k)) = (2k + 1)/3, a(E2, X,∆

′
1(k)) = (2k + 1)/3,

a(E3, X,∆
′
1(k)) = (5k + 4)/6, a(E4, X,∆

′
1(k)) = k + 1,

a(E5, X,∆
′
1(k)) = (k + 2)/2, a(E6, X,∆

′
1(k)) = (k + 2)/3
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and

a(E1, X,∆
′
2(k)) = (k + 2)/6, a(E2, X,∆

′
2(k)) = (k + 2)/6,

a(E3, X,∆
′
2(k)) = (k + 2)/3, a(E4, X,∆

′
2(k)) = (k + 2)/2,

a(E5, X,∆
′
2(k)) = (k + 2)/2, a(E6, X,∆

′
2(k)) = (k + 2)/3.

In particular, #E(f) = 6 with #E(f, 1/3) = #E(f, 2/3) = #E(f, 1) = 2.

Proof. (1) By [Hay99, 9.4, 9.20], the assumption (6.2.1) is satisfied.
Under the notation in (6.2), there is an open neighborhood Q ∈ U ⊆ X1

such that

U '

{

u2 + x3 + y2 + xyz3α(yz3)
+ xz4β(yz3) + yz5γ(yz3) + z6δ(yz3) = 0

}

/

Z4(2, 1, 1, 3).

We also see that (f ∗
1 ∆(k)− 1

3E)|U = − 2k+1
3 divU (y), where E is the excep-

tional divisor of f1. By (6.8), there is a Gorenstein resolution g1 : Y →
X1 with #E(g1) = 5. For each F ∈ E(g1), we have a(F,X,∆(k)) =
a(F,X1, f

∗
1 ∆(k) − 1

3E) = a(F,U, (f ∗1 ∆(k) − 1
3E)|U ) by (2.10), and these

values are obtained in (6.8). For the birational transform E1 = g−1
1∗ E, we

have a(E1, X,∆(k)) = (2k + 1)/3. Therefore f = f1 ◦ g1 : Y → X is a
KX + HX -crepant Gorenstein resolution with required properties.

(2) Let f2 : X2 → X, E2, Q1 ∈ U1 ⊆ X2, Q2 ∈ U2 ⊆ X2 be as in
(6.7)(B). We shall denote the economic resolution of Q1 and Q2 by g2 : Y →
X2. Then E(g2) = {F1, . . . , F4, G}, where Fi (resp. G) is the prime divisor
over Q1 (resp. Q2) with a(Fi, X2) = i/5 (i = 1, . . . , 4) (resp. a(G,X2) =
1/2).

We first study a(Fi, X,∆
′
j(k)) (i = 1, . . . , 4, j = 1, 2). We have

(f∗2 ∆′
j(k) −

1
3E2)|U1

=

{

− k
2 divU1

(y +A′
1(y, z, u)) −

2k+1
3 divU1

(χ(y, z, u)) if j = 1,

− k
2 divU1

(z +B′
1(y, z, u)) −

k+2
6 divU1

(χ(y, z, u)) if j = 2,

where A′
1(y, z, u), B

′
1(y, z, u) ∈ (y, z, u)2C{y, z, u} are Z5-semi-invariants.

By (2.10), we see that a(F1, X,∆
′
1(k)) = a(F1, U1, (f

∗
2 ∆′

1(k) −
1
3E2)|U1

) =
(2k + 1)/3. Similarly, we obtain values of a(Fi, X,∆

′
j(k)) for each i =

1, . . . , 4, j = 1, 2. These correspond to a(Ei+1, X,∆
′
j(k)) respectively in

the theorem.
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Next we study a(G,X,∆′
j(k)) for j = 1, 2. We have

(f∗2 ∆′
j(k) −

1
3E2)|U2

=

{

− 2k+1
3 divU2

(y) if j = 1,

− k
2 divU2

(z +B′
2(x, y, z)) −

k+2
6 divU2

(y) if j = 2,

for some Z2-semi-invariant B ′
2(x, y, z) ∈ (x, y, z)2C{z, y, z}. Hence, by

(2.10), we see that a(G,X,∆′
1(k)) = a(G,X,∆′

2(k)) = (k+2)/3. Therefore
we complete the proof by taking f = f2 ◦ g2 : Y → X.

Remark 6.10. Thus (6.4), (6.6) and (6.9) prove our main results (3.1),
(3.2) and (3.3) when X is of type (cD/3). Moreover if DX ∈ HX has only
a rational double point of type E6, then f in (6.4), (6.6) and (6.9) induces
the minimal resolution of DX .

§7. Terminal singularities of type (cE/2)

7.1. Let X be a germ of a 3-dimensional terminal singularity of type
(cE/2). Then there is an embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such
that

(7.1.1) X = {u2 + x3 + g(y, z)x + h(y, z) = 0}/Z2(0, 1, 1, 1),

where g(y, z), h(y, z) ∈ (y, z)4C{y, z} are Z2-invariants and the degree 4
part hdeg 4(y, z) of h(y, z) is non-zero.

We denote by HX a linear system ⊆ |−KX | such that a general member
has only a rational double point, which is of type E7.

7.2. Let X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) be as in (7.1.1) and assume
that z4 6∈ h(y, z) and that

the blow up f1 : X1 → X with weight (x, y, z, u) = 1
2 (2, 3, 1, 3)

is divisorial with discrepancy 1/2.
(7.2.1)

It follows from [Hay99, 10.4] that X1 is Gorenstein outside one point Q
(which is the origin of the y-chart) and that there is an open neighborhood
Q ∈ U ⊆ X1 such that

U ' {u2 + x3 + g(y3/2, y1/2z)/y2 · x+ h(y3/2, y1/2z)/y3 = 0}/Z3(2, 1, 1, 0).

Since hdeg 4(y, z) is non-zero, this is terminal of type (cD/3).
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Let E1 be the exceptional divisor of f1. By (2.10), we see that a(F,X) =
a(F,X1,−

1
2E1) = a(F,U,− 1

2 divU (y)) for each prime divisor F over Q.
Thus the study of terminal singularities of type (cE/2) is reduced to

the study of terminal singularities of type (cD/3), which is already done in
Section 6.

We shall study terminal singularities of type (cE/2) by dividing into

several cases as in [Hay99, §10]. If hdeg 4(y, z) does not have a triple or a

quadruple factor, the assumption (7.2.1) is satisfied by [Hay99, 10.4] and

we can apply the discussion in (7.2).

Theorem 7.3. Let X, HX be as in (7.1) and assume that hdeg 4(y, z)
has four distinct factors. Then there is a KX + HX-crepant Gorenstein

resolution f : Y → X such that #E(f) = 7 with #E(f, 1/2) = 4 and

#E(f, 1) = #E(f, 3/2) = #E(f, 2) = 1.

Proof. By a linear transformation in y and z, we may assume that
hdeg 4(y, z) = yz(y + λ1z)(y + λ2z) for some λ1, λ2 ∈ C with λ1, λ2 6= 0,
λ1 6= λ2. By [Hay99, 10.4, 10.11], the assumption (7.2.1) is satisfied. Under
the notation in (7.2),

U '

{

u2 + x3 + z(y + λ1z)(y + λ2z)
+ (terms of degree ≥ 4) = 0

}

/

Z3(2, 1, 1, 0),

and this is isomorphic to

V = {u2 + x3 + yz2 + y2z = 0}/Z3(2, 1, 1, 0).

Furthermore, we see that (U,− 1
2E1|U ) ' (V,− 1

2 divV (y + αz +A(x, y, z)))
for some α ∈ C with α 6= 0, 1 and some Z3-semi-invariant A(x, y, z) ∈
(x, y, z)2C{x, y, z}. By (6.4), there is a KX1

+ f−1
1∗ HX -crepant Gorenstein

resolution g1 : Y → X1 with #E(g1) = 6. For each F ∈ E(g1), we have
a(F,X) = a(F,X1,−

1
2E1) = a(F, V,− 1

2 divV (y + αz + A(x, y, z))), and
these values are obtained in (6.4). Since a(g−1

1∗ E1, X) = 1/2, we complete
the proof by taking f = f1 ◦ g1 : Y → X.

Theorem 7.4. Let X, HX be as in (7.1) and assume that hdeg 4(y, z)
has one double and two single factors. Then there is a KX + HX-crepant

Gorenstein resolution f : Y → X such that #E(f) = 7 with #E(f, 1/2) = 3,
#E(f, 1) = 2 and #E(f, 3/2) = #E(f, 2) = 1.
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Proof. We may assume that hdeg 4(y, z) = y2z(y+z). By [Hay99, 10.4,
10.17], the assumption (7.2.1) is satisfied. Under the notation in (7.2), U
is isomorphic to

V = {u2 + x3 + yz2 + y2z = 0}/Z3(2, 1, 1, 0).

We also have (U,− 1
2E1|U ) ' (V,− 1

2 divV (y+A(x, y, z))) for some Z3-semi-

invariant A(x, y, z) ∈ (x, y, z)2C{x, y, z}. By (6.4), there is a KX1
+f−1

1∗ HX -
crepant Gorenstein resolution g1 : Y → X1 with #E(g1) = 6. For each
F ∈ E(g1), we have a(F,X) = a(F,X1,−

1
2E1) = a(F, V,− 1

2 divV (y +
A(x, y, z))), and these values are obtained in (6.4) by setting α = 0 and
k = 1. Thus it suffices to take f = f1 ◦ g1 : Y → X.

Theorem 7.5. Let X, HX be as in (7.1) and assume that hdeg 4(y, z)
has two double factors. Then there is a KX + HX-crepant Gorenstein res-

olution f : Y → X such that #E(f) = 7 with #E(f, 1/2) = 2, #E(f, 1) = 3
and #E(f, 3/2) = #E(f, 2) = 1.

Proof. We may assume that hdeg 4(y, z) = y2z2. By [Hay99, 10.4,
10.22], the assumption (7.2.1) is satisfied. Under the notation in (7.2), U
is isomorphic to

V = {u2 + x3 + yz2 + xy4λ(y3) + y6µ(y3) = 0}/Z3(2, 1, 1, 0)

for some λ(t), µ(t) ∈ C{t}, and (U,− 1
2E1|U ) ' (V,− 1

2 divV (y+A(x, y, z)))
for some Z3-semi-invariant A(x, y, z) ∈ (x, y, z)2C{x, y, z}. By using (6.6),
there is a KX1

+ f−1
1∗ HX -crepant Gorenstein resolution g1 : Y → X1 with

#E(g1) = 6. For each F ∈ E(g1), we have a(F,X) = a(F, V,− 1
2 divV (y +

A(x, y, z))), and these values are obtained in (6.6). Therefore f = f1 ◦
g1 : Y → X is a KX + HX -crepant Gorenstein resolution with required
properties.

7.6. Next we shall study the case where hdeg 4(y, z) has a triple factor
and a single factor. We may assume that hdeg 4(y, z) = y3z. We write
g(y, z) =

∑

p,q apqy
pzq, h(y, z) =

∑

p,q bpqy
pzq as power series, and consider

the following system of equations in x:

(7.6.1) x3 + a04x+ b06 = 0, 3x2 + a04 = 0, a13x+ b15 = 0, a06x+ b08 = 0.

We shall divide into two subcases:
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(A) (7.6.1) has no solutions in x. In this case, the assumption (7.2.1) is
satisfied by [Hay99, 10.4, 10.28], hence we can use the discussion in (7.2).

(B) (7.6.1) has a solution x = ν ∈ C. By [Hay99, 10.31], there is
another embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such that

(7.6.2) X = {u2 + x3 + 3νx2z2 + g1(y, z)x+ h1(y, z) = 0}/Z2(0, 1, 1, 1),

where τ -wt(g1(y, z)) ≥ 3, τ -wt(h1(y, z)) ≥ 5 when we set τ -wt(y, z) =
(3/2, 1/2), and y3z ∈ h1(y, z). In this case we shall use the blow up f2 :
X2 → X with weight (x, y, z, u) = 1

2 (2, 1, 3, 3). This is divisorial with
discrepancy 1/2, and in particular this is KX + HX -crepant.

Theorem 7.7. Let X, HX be as in (7.1) and assume that hdeg 4(y, z)
has a triple factor and a single factor. Under the notation and assumptions

in (7.6), there is a KX +HX-crepant Gorenstein resolution f : Y → X such

that #E(f) = 7 with

{

#E(f, 1/2) = #E(f, 1) = #E(f, 3/2) = 2, #E(f, 2) = 1 in case (A),

#E(f, 1/2) = 3, #E(f, 1) = #E(f, 3/2) = 2 in case (B).

Proof. (1) In case (A), we can use the discussion in (7.2) as in (7.6)(A).
Under the notation in (7.2), U is isomorphic to

V = {u2 + x3 + yz2 + xy4λ(y3) + y6µ(y3) = 0}/Z3(2, 1, 1, 0),

for some λ(t), µ(t) ∈ C{t}, and (U,− 1
2E1|U ) ' (V,− 1

2 divV (z+B(x, y, z)))
for some Z3-semi-invariant B(x, y, z) ∈ (x, y, z)2C{x, y, z}. By using (6.6),
there is a KX1

+ f−1
1∗ HX -crepant Gorenstein resolution g1 : Y → X1 with

#E(g1) = 6. For each F ∈ E(g1), we have a(F,X) = a(F, V,− 1
2 divV (z +

B(x, y, z))), and these values are obtained in (6.6). Therefore we complete
the proof by taking f = f1 ◦ g1 : Y → X.

(2) Next we treat case (B). Under the notation in (7.6)(B), we see that
X2 is Gorenstein outside one point Q′ (which is the origin of the z-chart),
and there is an open neighborhood Q′ ∈ U ′ ⊆ X2 such that

U ′ '

{

u2 + x3 + 3νx2z2 + g1(yz
1/2, z3/2)/z2 · x

+ h1(yz
1/2, z3/2)/z3 = 0

}

/

Z3(2, 1, 1, 0),

which is isomorphic to

V ′ =

{

u2 + x3 + 3νx2z2 + y3 + xyz3α′(z3)
+ xz7β′(z3) + yz8γ′(z3) + z12δ′(z3) = 0

}

/

Z3(2, 1, 1, 0)
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for some α′(t), β′(t), γ′(t), δ′(t) ∈ C{t}. Let E2 be the exceptional divisor
of f2. Then (U ′,− 1

2E2|U ′) ' (V ′,− 1
2 divV ′(z + B′(x, y, z))) for some Z3-

semi-invariant B ′(x, y, z) ∈ (x, y, z)2C{x, y, z}. By (6.9), we know that
there is a KX2

+ f−1
2∗ HX -crepant Gorenstein resolution g2 : Y → X2 with

#E(g2) = 6. For each F ∈ E(g2), we have a(F,X) = a(F,X2,−
1
2E2) =

a(F, V ′,− 1
2 divV ′(z + B′(x, y, z))), and these values are obtained in (6.9).

Therefore f = f2 ◦ g2 : Y → X is a KX +HX -crepant Gorenstein resolution
with required properties.

7.8. Lastly we shall study the case where hdeg 4(y, z) has a quadru-
ple factor. We may assume that hdeg 4(y, z) = y4. As in (7.6), we write
g(y, z) =

∑

p,q apqy
pzq, h(y, z) =

∑

p,q bpqy
pzq as power series, and consider

the following two systems of equations in x:

(7.8.1) x3 + a04x+ b06 = 0, 3x2 + a04 = 0, a13x+ b15 = 0,

and

(7.8.2) x3 + a04x+ b06 = 0, 3x2 + a04 = 0, a13x+ b15 = 0, a06x+ b08 = 0.

We shall divide the case into six subcases:

(A) (7.8.1) has no solutions in x. In this case, the assumption (7.2.1) is
satisfied by [Hay99, 10.4, 10.41], hence we can use the discussion in (7.2).

(B) (7.8.1) has a solution but (7.8.2) has no solutions. In this case,
the assumption (7.2.1) is satisfied and we can use the discussion in (7.2).
However the situation is slightly different from case (A).

If (7.8.2) has a solution x = ν ∈ C, then it follows from [Hay99, 10.44]
that there is another embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) such that

(7.8.3) X = {u2 + x3 + 3νx2z2 + g1(y, z)x+ h1(y, z) = 0}/Z2(0, 1, 1, 1),

where τ -wt(g1(y, z)) ≥ 3, τ -wt(h1(y, z)) ≥ 5 when we set τ -wt(y, z) =
(3/2, 1/2), and y4 ∈ h1(y, z). We next consider the following weighted
homogeneous polynomial:

(7.8.4) Φ = u2 + 3νx2z2 + (g1(y, z))τ -wt=3 · x+ (h1(y, z))τ -wt=5.

(C) {Φ = 0} ⊆ P(4, 3, 1, 5) is irreducible and reduced. We embed X as
in (7.8.3) and construct a blow up f2 : X2 → X with weight (x, y, z, u) =
1
2 (4, 3, 1, 5). By [Hay99, 10.5, 10.47], f2 is divisorial with discrepancy 1/2

https://doi.org/10.1017/S0027763000009120 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009120


90 T. HAYAKAWA

and X2 is Gorenstein outside two points Q1 and Q2 (which are the origins
of the x-chart and the y-chart respectively). There is an open neighborhood
Q1 ∈ U1 ⊆ X2 (resp. Q2 ∈ U2 ⊆ X2) such that U1 ' (y, z, u)/Z4(3, 1, 1)
(resp. U2 ' (x, z, u)/Z3(1, 1, 2)). Moreover we have E2|U1

= divU1
(u2 +

3νz2+(g1(y, z))τ -wt=3 ·x+(h1(y, z))τ -wt=5) and E2|U2
= divU2

(u2+3νx2z2+
(g1(1, z))τ -wt=3 ·x+(h1(1, z))τ -wt=5), where E2 is the exceptional divisor of
f2.

If {Φ = 0} ⊆ P(4, 3, 1, 5) is reducible or non-reduced, then we see from
[Hay99, 10.51] that there is an embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1)
such that

(7.8.5) X =

{

u2 + 2(αxz + βyz2 + γz5)u
+ x3 + g2(y, z)x + h2(y, z) = 0

}

/

Z2(0, 1, 1, 1),

where α, β, γ ∈ C and τ -wt(g2(y, z)) ≥ 4, τ -wt(h2(y, z)) ≥ 6 when we set
τ -wt(y, z) = (3/2, 1/2), and y4 ∈ h2(y, z).

(D) (α, β, γ) 6= (0, 0, 0). We embed X as in (7.8.5) and construct a
blow up f3 : X3 → X with weight (x, y, z, u) = 1

2 (4, 3, 1, 7). By [Hay99,
10.6, 10.54], f3 is divisorial with discrepancy 1/2, X3 is Gorenstein outside
one point Q (which is the origin of the u-chart), and there is an open
neighborhood Q ∈ U ⊆ X3 such that U ' (x, y, z)/Z7(4, 3, 1) with E3|U =
divU (2(αxz+βyz2 +γz5)+x3+(g2(y, z))τ -wt=4 ·x+(h2(y, z))τ -wt=6), where
E3 is the exceptional divisor of f3.

(E) (α, β, γ) = (0, 0, 0) and the blow up f3 : X3 → X with weight
(x, y, z, u) = 1

2 (4, 3, 1, 7) is divisorial with discrepancy 1/2. By [Hay99,
10.6, 10.61], the non-Gorenstein point of X3 is unique and it has the same
properties as (D).

(F) (α, β, γ) = (0, 0, 0) and the blow up f3 : X3 → X with weight
(x, y, z, u) = 1

2 (4, 3, 1, 7) is not divisorial with discrepancy 1/2. By [Hay99,
10.65], we can change the embedding X ↪→ (x, y, z, u)/Z2(0, 1, 1, 1) and get

(7.8.6) X = {u2 + x3 + g3(y, z)x+ h3(y, z) = 0}/Z2(0, 1, 1, 1),

where τ ′-wt(g3(y, z)) ≥ 6, τ ′-wt(h3(y, z)) ≥ 9 when we set τ ′-wt(y, z) =
(5/2, 1/2), and y4 ∈ h3(y, z). It follows from [Hay99, 10.7, 10.67] that the
blow up f4 : X4 → X with weight (x, y, z, u) = 1

2 (6, 5, 1, 9) is divisorial
with discrepancy 1/2, X4 is Gorenstein outside two points Q1 and Q2 (Q1

is the origin of the y-chart and Q2 lies on the x-chart and the u-chart), and
there is an open neighborhood Q1 ∈ U1 ⊆ X4 (resp. Q2 ∈ U2 ⊆ X4) such
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that U1 ' (x, z, u)/Z5(1, 1, 4) (resp. U2 ' (x, y, z)/Z3(1, 2, 1)). Moreover
we have E4|U1

= divU1
(u2 + x3 + (g3(1, z))τ ′-wt=6 · x+ (h3(y, z))τ ′-wt=9) and

E4|U2
= divU2

(x) for the exceptional divisor E4 of f4.

Theorem 7.9. Let X, HX be as in (7.1) and assume that hdeg 4(y, z)
has a quadruple factor. Then, under the notation and assumptions in (7.8),
there is a KX + HX-crepant Gorenstein resolution f : Y → X such that

#E(f) = 6 in case (C) and #E(f) = 7 in other cases. More precisely,



















































#E(f, 1/2) = 1, #E(f, 1) = #E(f, 3/2) = #E(f, 2) = 2 in case (A),

#E(f, 1/2) = 1, #E(f, 1) = 3, #E(f, 3/2) = 2, #E(f, 2) = 1

in case (B),

#E(f, 1/2) = 2, #E(f, 1) = 3, #E(f, 3/2) = 1 in case (C),

#E(f, 1/2) = #E(f, 1) = 3, #E(f, 3/2) = 1 in case (D),

#E(f, 1/2) = 2, #E(f, 1) = 4, #E(f, 3/2) = 1 in case (E),

#E(f, 1/2) = 3, #E(f, 1) = 4 in case (F).

Proof. (1) In case (A), we can use the discussion in (7.2). Under the
notation in (7.2), U is isomorphic to

V =

{

u2 + x3 + y3 + xyz3α(z3)
+ xz4β(z3) + yz5γ(z3) + z6δ(z3) = 0

}

/

Z3(2, 1, 1, 0)

for some α(t), β(t), γ(t), δ(t) ∈ C{t}. Since (7.8.1) has no solutions, we are
in the situation of (6.7)(A). We also have (U,− 1

2E1|U ) ' (V,− 1
2 divV (y +

A(x, y, z))) for some Z3-semi-invariant A(x, y, z) ∈ (x, y, z)2C{x, y, z}. By
(6.9), there is a KX1

+ f−1
1∗ HX -crepant Gorenstein resolution g1 : Y → X1

with #E(g1) = 6. For each F ∈ E(g1), we have a(F,X) = a(F,X1,−
1
2E1) =

a(F, V,− 1
2 divV (y + A(x, y, z))), and these values are obtained in (6.9) by

setting k = 1. Since a(g−1
1∗ E1, X) = 1/2, we complete the proof by taking

f = f1 ◦ g1 : Y → X.
(2) In case (B), we again use the discussion in (7.2). Under the notation

in (7.2), U is isomorphic to V as above. Since (7.8.1) has a solution, we are
in the situation (6.7)(B). Thus U is isomorphic to

V ′ =

{

u2 + x3 + 3νx2z2 + y3 + xyz3α′(z3)
+ xz7β′(z3) + yz8γ′(z3) + z12δ′(z3) = 0

}

/

Z3(2, 1, 1, 0)

for some ν ∈ C and α′(t), β′(t), γ′(t), δ′(t) ∈ C{t}. We have (U,− 1
2E|U ) '

(V ′,− 1
2 divV ′(y + A′(x, y, z))), where A′(x, y, z) ∈ (x, y, z)2C{x, y, z} is a
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Z3-semi-invariant. By (2.12), there is a KX1
+ f−1

1∗ HX -crepant Gorenstein
resolution g1 : Y → X1 with #E(g1) = 6. Using (6.9), we know the value
a(F,X) for each F ∈ E(g1). Thus f = f1 ◦ g1 : Y → X is a required
KX + HX -crepant Gorenstein resolution.

(3) In case (C), let f2 : X2 → X, E2, Q1 ∈ U1 ⊆ X2, Q2 ∈ U2 ⊆ X2,
Q3 ∈ U3 ⊆ X2 be as in (7.8)(C), and let g2 : Y → X2 be the economic
resolution of Q1 and Q2. Then E(g2) = {F1, F2, F3, G1, G2}, where Fi (resp.
Gj) is the prime divisor over Q1 (resp. Q2) with a(Fi, X2) = i/4 (i = 1, 2,
3) (resp. a(Gj , X2) = j/3 (j = 1, 2)). By using (2.10) and (2.12), we see
that a(F1, X) = a(F1, X2,−

1
2E2) = a(F1, U1,−

1
2E2|U1

) = 1/2. Similarly
we have a(F2, X) = 1, a(F3, X) = 3/2 and a(G1, X) = a(G2, X) = 1. The
birational transform E = g−1

2∗ E2 satisfies a(E,X) = 1/2.

(4) In case (D), let f3 : X3 → X, E3, Q ∈ U ⊆ X3 be as in (7.8)(D), and
let g3 : Y → X3 be the economic resolution ofQ. Then g3 is aKX3

+f−1
3∗ HX -

crepant Gorenstein resolution and we have E(g3) = {F1, . . . , F6}, where Fi is
the prime divisor over Q with a(Fi, X3) = i/7 (i = 1, . . . , 6). By (2.10) and
(2.12), we have a(F1, X) = a(F1, X3,−

1
2E3) = a(F1, U,−

1
2E3|U ) = 1/2.

Similarly, we have a(F2, X) = 1/2, a(F3, X) = a(F4, X) = a(F5, X) = 1
and a(F6, X) = 3/2. Since Y has only Gorenstein terminal singularities and
since a(E,X) = 1/2 for E = g−1

3∗ E3, the composition f = f3 ◦ g3 : Y → X
is a KX + HX -crepant Gorenstein resolution with required properties.

(5) In case (E), we construct birational morphisms f3 : X3 → X and
g3 : Y → X3 as in (4). Then the composition f = f3 ◦ g3 : Y → X is a
KX +HX -crepant Gorenstein resolution. Computations of discrepancies of
each F ∈ E(f) is the same as in (4) except for a(F1, X). In this case, we
have a(F1, X) = 1.

(6) Lastly we shall study case (F). Let f4 : X4 → X, E4, Q1 ∈ U1 ⊆
X4, Q2 ∈ U2 ⊆ X4 be as in (7.8)(F), and let g4 : Y → X4 be the
economic resolution of Q1 and Q2. Then g4 is a KX4

+ f−1
4∗ HX -crepant

Gorenstein resolution and we have E(g4) = {F1, . . . , F4, G1, G2}, where Fi

(resp. Gj) is the prime divisor over Q1 (resp. Q2) with a(Fi, X4) = i/5
(i = 1, . . . , 4) (resp. a(Gj , X4) = j/3 (j = 1, 2)). By (2.10) and (2.12),
we have a(F1, X) = a(F1, X4,−

1
2E4) = a(F1, U1,−

1
2E4|U1

) = 1/2. Simi-
larly, we have a(F2, X) = a(F3, X) = a(F4, X) = 1, a(G1, X) = 1/2 and
a(G2, X) = 1. Since Y has only Gorenstein terminal singularities and since
a(E,X) = 1/2 for E = g−1

4∗ E4, the composition f = f4 ◦ g4 : Y → X satis-
fies our requirement.

Remark 7.10. By (7.3), (7.4), (7.5), (7.7) and (7.9), our main results
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(3.1), (3.2) and (3.3) are proved in the case X is of type (cE/2). Moreover,
if DX ∈ HX has only rational double point of type E7, then our Goren-
stein resolution f : Y → X induces the minimal resolution f|DY

: DY =
f−1
∗ DX → DX of DX except for (7.9)(C). In this exceptional case, DY has

one rational double point of type A1 and Y has an isolated cDV point there.

§8. Terminal singularities of type (cD/2)

In this section, we shall study a part of 3-dimensional terminal singu-

larities of type (cD/2). The rest of this type will be treated in Section 9

together with type (cAx/4).

8.1. Let X be a germ of a 3-dimensional terminal singularity of type
(cD/2) and assume that there is an embeddingX ↪→ (x, y, z, u)/Z2(1, 1, 0, 1)
such that

(8.1.1) X = {u2 + xyz + x2a + y2b + zc = 0}/Z2(1, 1, 0, 1),

where a, b ≥ 2 and c ≥ 3. Let HX ⊆ |−KX | be a linear system such that
a general member has only a rational double point. We remark that the
general member of |−KX | has a rational double point of type D2c.

We first treat the case a = b = 2, and next treat the case a ≥ 3 or
b ≥ 3.

The following lemma is a special case of (4.6) and will be used in the

proof of (8.3).

Lemma 8.2. Let U = {xy + zu2 + zc−2 = 0}/Z2(1, 1, 0, 1) (c ≥ 3),
HU ⊆ |−KU | be a linear system such that a general member has only a

rational double point and let ∆ = − 1
2 divU (z). Then there is a KU + HU -

crepant Gorenstein resolution g : V → U which satisfies the following :

(1) If c = 3, then #E(g) = 1 with #E(g,∆, 1) = 1.

(2) If c = 4, then #E(g) = 3 with #E(g,∆, 1) = 2, #E(g,∆, 3/2) = 1.

(3) If c ≥ 5, then #E(g) = c− 1 with #E(g,∆, 1) = #E(g,∆, 3/2) = 2
and #E(g,∆, i/2) = 1 for each i = 4, 5, . . . , c− 2.

Proof. Since the weight sequence of U as type (cA/2) (cf. (4.3)) is (1)
if c = 3, and (2, 3, . . . , c− 2) if c ≥ 4, this lemma follows from (4.6).
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Theorem 8.3. Let X, HX be as in (8.1) and assume that a = b = 2.
Then there is a KX + HX-crepant Gorenstein resolution f : Y → X which

satisfies the following :
(1) If c = 3, then we have #E(f) = 4 with #E(f, 1/2) = 1, #E(f, 1) = 2

and #E(f, 3/2) = 1.
(2) If c = 4, then we have #E(f) = 6 with #E(f, 1/2) = 1, #E(f, 1) = 3

and #E(f, 3/2) = 2.

(3) If c ≥ 5, then we have #E(f) = c + 2 with #E(f, 1/2) = 1,
#E(f, 1) = #E(f, 3/2) = 3 and #E(f, i/2) = 1 for each i = 4, 5, . . . , c− 2.

Proof. By using [Hay00, 4.4], the blow up f1 : X1 → X with weight
(x, y, z, u) = 1

2 (1, 1, 2, 3) is divisorial with discrepancy 1/2, andX1 is Goren-
stein outside two points Q1 and Q2. One point Q1 has an open neigh-
borhood U1 ⊆ X1 such that U1 ' {xy + zu2 + zc−2 = 0}/Z2(1, 1, 0, 1),
and the other point Q2 has an open neighborhood U2 ⊆ X1 such that
U2 ' (x, y, z)/Z3(1, 1, 2). We also see that E1|U1

= divU1
(z) and E1|U2

=
divU2

(xyz + x4 + y4) for the exceptional divisor E1 of f1.
By using (8.2) for Q1 and the economic resolution of Q2, we get a

KX1
+f−1

1∗ HX -crepant Gorenstein resolution g1 : Y → X1 such that E(g1) =
{prime divisors over Q1}∪{G1, G2}, where Gj is the prime divisor over Q2

with a(Gj , X1) = j/3 (j = 1, 2). By (2.10) and (2.12), we have a(G1, X) =
a(G1, X1,−

1
2E1) = a(G1, U2,−

1
2E1|U2

) = 1, and similarly a(G2, X) = 3/2.

We know that a(F,X) = a(F,X1,−
1
2E1) = a(F,U1,−

1
2 divU1

(z)) for a
prime divisor F over Q1 by (2.10), and these values are obtained in (8.2).
Since a(E,X) = 1/2 for the birational transform E = g−1

1∗ E1, we complete
the proof.

Next we shall treat the case a ≥ 3 or b ≥ 3. By changing x and y if

necessary, we shall assume that a ≥ 3. The following lemmas will be used

in the proof of (8.6) and (8.7).

Lemma 8.4. Let U = {xz + u2 + y3b−3 = 0}/Z3(1, 1, 2, 0) (b ≥ 2),
HU ⊆ |−KU | be a linear system such that a general member has only a

rational double point and let ∆ = − 1
2 divU (y). Then there is a KU + HU -

crepant Gorenstein resolution g : V → U which satisfies the following :
(1) If b = 2, then #E(g) = 4 with #E(g,∆, 1/2) = 1, #E(g,∆, 1) = 2

and #E(g,∆, 3/2) = 1.
(2) If b ≥ 3, then #E(g) = 5 with #E(g,∆, 1/2) = #E(g,∆, 1) = 2 and

#E(g,∆, 3/2) = 1.
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Proof. (1) By [Hay99, 6.4], the blow up g1 : U1 → U with weight
(x, y, z, u) = 1

3 (1, 1, 2, 3) is divisorial with discrepancy 1/3, and U1 is Goren-
stein outside two points Q1 and Q2. One point Q1 has an open neighbor-
hood W1 ⊆ U1 such that W1 ' (y, z, u)/Z2(1, 1, 1), and the other point Q2

has an open neighborhoodW2 ⊆ U1 such thatW2 ' (x, y, z)/Z3(1, 1, 2). For
the exceptional divisor E1 of g1, we have (g∗1∆− 1

3E1)|W1
= − 1

2 divW1
(y)−

1
2 divW1

(z) and (g∗1∆ − 1
3E1)|W2

= − 1
2 divW2

(y) − 1
2 divW2

(xz + y3).

Let h1 : V → U1 be the economic resolution of Q1 and Q2. Then V has
only Gorenstein terminal singularities and E(h1) = {F,G1, G2}, where F
(resp. Gj) is the prime divisor over Q1 (resp. Q2) with a(F,U1) = 1/2 (resp.
a(Gi, U1) = j/3 (j = 1, 2)). By (2.10) and (2.12), we have a(F,U,∆) =
a(F,U1, g

∗
1∆ − 1

3E1) = 1 and similarly a(G1, U,∆) = 1, a(G2, U,∆) = 3/2.
Hence the composition g = g1 ◦ h1 : V → U satisfies our requirement.

(2) In this case, we start with the blow up g2 : U2 → U with weight
(x, y, z, u) = 1

3 (1, 1, 5, 3), which is divisorial with discrepancy 1/3. We
see that U2 has a unique non-Gorenstein point, which is a cyclic quotient
terminal singularity of index 5. Thus we can argue as in (1) and get the
results. We shall omit the details.

Lemma 8.5. Let U = {xy + u2 + zc−3 = 0}/Z2(1, 1, 0, 1) (c ≥ 4),
HU ⊆ |−KU | be a linear system such that a general member has only a

rational double point and let ∆ = − 1
2 divU (z). Then there is a KU + HU -

crepant Gorenstein resolution g : V → U such that #E(g) = c − 3 with

#E(g,∆, i/2) = 1 for each i = 2, 3, . . . , c− 2.

Proof. Since the weight sequence of U as type (cA/2) (cf. (4.3)) is
(1, 2, . . . , c− 3), this lemma follows from (4.6).

Theorem 8.6. Let X, HX be as in (8.1) and assume that a ≥ 3 and

b = 2. Then there is a KX +HX-crepant Gorenstein resolution f : Y → X
which satisfies the following :

(1) If c = 3, then we have #E(f) = 5 with #E(f, 1/2) = #E(f, 1) = 2
and #E(f, 3/2) = 1.

(2) If c = 4, then we have #E(f) = 6 with #E(f, 1/2) = 2, #E(f, 1) = 3
and #E(f, 3/2) = 1.

(3) If c ≥ 5, then we have #E(f) = c + 2 with #E(f, 1/2) = 2,
#E(f, 1) = 3 and #E(f, 3/2) = 2 and #E(f, i/2) = 1 for each i = 4,
5, . . . , c− 2.
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Theorem 8.7. Let X, HX be as in (8.1) and assume that a, b ≥ 3.
Then there is a KX + HX-crepant Gorenstein resolution f : Y → X which

satisfies the following :

(1) If c = 3, then we have #E(f) = 6 with #E(f, 1/2) = 3, #E(f, 1) = 2
and #E(f, 3/2) = 1.

(2) If c = 4, then we have #E(f) = 7 with #E(f, 1/2) = #E(f, 1) = 3
and #E(f, 3/2) = 1.

(3) If c ≥ 5, then we have #E(f) = c+3 with #E(f, 1/2) = #E(f, 1) =
3, #E(f, 3/2) = 2 and #E(f, i/2) = 1 for each i = 4, 5, . . . , c− 2.

We shall prove these two theorems at the same time.

Proof. We first assume that c ≥ 4. By [Hay00, 4.7, 4.12], the blow
up f1 : X1 → X with weight (x, y, z, u) = 1

2 (1, 3, 2, 3) is divisorial with
discrepancy 1/2, and X1 is Gorenstein outside two points Q1 and Q2. One
point Q1 has an open neighborhood U1 ⊆ X1 such that U1 ' {xz + u2 +
y3b−3 = 0}/Z3(1, 1, 2, 0), and the other point Q2 has an open neighborhood
U2 ⊆ X1 such that U2 ' {xy + u2 + zc−3 = 0}/Z2(1, 1, 0, 1). For the
exceptional divisor E1 of f1, we have E1|U1

= divU1
(y) andE1|U2

= divU2
(z).

By taking the KX1
+ f−1

1∗ HX -crepant Gorenstein resolutions of Q1

and Q2 as in (8.4) and (8.5), we get a projective birational morphism
g1 : Y → X1 such that Y has only Gorenstein terminal singularities. If
F1 is a prime divisor over Q1, we have a(F1, X) = a(F1, X1,−

1
2E1) =

a(F1, U1,−
1
2 divU1

(y)). We also see that if F2 is a prime divisor over Q2,
then a(F2, X) = a(F2, U2,−

1
2 divU2

(z)). Thus we know the value a(F,X)
for each F ∈ E(g1) by (8.4) and (8.5). Since the birational transform
E = g−1

1∗ E1 satisfies a(E,X) = 1/2, the composition f = f1 ◦ g1 : Y → X
is a KX + HX -crepant Gorenstein resolution of X and E(f) satisfies the
conditions in (8.6) and (8.7). Thus we proved (8.6) and (8.7) when c ≥ 4.

If c = 3, then the same blow up f1 : X1 → X as above is divisorial with
discrepancy 1/2, and X1 is Gorenstein outside one point Q1 ∈ X1, which
has the same properties as above. Thus we can argue similarly and obtain
(8.6)(1) and (8.7)(1)

Remark 8.8. By (8.3), (8.6) and (8.3), we obtain our main results (3.1),
(3.2) and (3.3) for X as in (8.1), which is a part of type (cD/2). In this
case f|DY

: DY = f−1
∗ DX → DX is not necessarily the minimal resolution

for DX ∈ HX .
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§9. Terminal singularities of type (cD/2) and (cAx/4)

In this section, we shall study 3-dimensional terminal singularities of

type (cD/2) and (cAx/4) simultaneously. The argument in this section is

similar to the one given in Section 4, but rather complicated. The results

in this section and Section 8 treat all 3-dimensional terminal singularities

of type (cD/2). All type (cAx/4) singularities are treated in this section.

9.1. Let X be a germ of a 3-dimensional terminal singularity at P .
We assume that there is an embedding X ↪→ (x, y, z, u)/Z2(1, 1, 1, 0) such
that

X = {x2 + y2u+ h(z)y + g(z, u) = 0}/Z2(1, 1, 1, 0),

where h(z) =
∑

r≥0 brz
2r+1 ∈ C{z} and g(z, u) =

∑

p+q≥1 apqz
2puq ∈

C{z2, u}.
For each positive integer i, we denote τi-wt(z, u) = (i/2, 2), and define

wi(X) = τi-wt
(

− 1
4 h(z)

2 + g(z, u)u
)

− 2

= min{2τi-wt(h(z)) − 2, τi-wt(g(z, u))}

= min({(2r + 1)i− 2 | br 6= 0} ∪ {ip+ 2q | apq 6= 0}).

Since the cyclic group Z2 acts freely on {x2 + y2u + h(z)y + g(z, u) =
0} \ {(0)}, we see that uw ∈ g(z, u) for some positive integer w. The
smallest such integer w is called the axial weight of X and we shall denote
it by aw(X) (cf. [Hay99, 2.6]).

Let HX ⊆ |−KX | be a linear system such that a general member has
only a rational double point. We remark that X is of type (cD/2) in most
cases, but it may be of type (cAx/2) or (cA/2). If X is of type (cD/2), then
a general member of |−KX | has a rational double point of type D2aw(X).

Lemma 9.2. Under the notation and assumptions in (9.1), we have the

following :
(1) For each positive integer i, we have −1 ≤ wi(X) ∈ Z, wi(X) ≤

wi+1(X) and wi+1(X) −wi(X) ≥ wi+2(X) − wi+1(X).
(2) If i is even, then wi(X) is also even.

(3) For all sufficiently large integer i, we have wi(X) = 2aw(X).
(4) If w1(X) ≤ 2, then τ1-wt(h(z)) ≤ 1 or τ1-wt(g(z, u)) ≤ 2. Further-

more,

τ1-wt(h(z)) ≤ 1 if and only if b0 6= 0 or b1 6= 0,

τ1-wt(g(z, u)) ≤ 2 if and only if a10 6= 0, a20 6= 0 or a01 6= 0.
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Proof. We can prove (1) and (3) similarly as in (4.2), while proofs for
(2) and (4) are obvious.

9.3. By (9.2), we get a sequence of strictly increasing integers

(w1(X), w2(X), . . . , wl(X)),

where wl(X) = 2aw(X). This is called the weight sequence of X as type
(cD/2). We also call l = l(X) the length of the weight sequence of X.

For each positive odd integer i, we define

w̄i(X) =

{

wi(X) if wi(X) is odd,

wi(X) − 1 if wi(X) is even.

In particular, w̄i(X) is always an odd integer. We sometimes denote wi(X)
and w̄i(X) by wi and w̄i respectively if there is no danger of confusion.

For each positive even integer i, we shall denote Gi(z, u) =
(

− 1
4 h(z)

2 +
g(z, u)u

)

τi-wt=wi(X)+2
and set χi(z) = Gi(z, 1). We define the condition (∗i)

as follows:

(∗i) χi(z) =
(
∑

t≥1 αtz
2t−1

)2
for some αt ∈ C.

If i 6∈ 4Z, then the condition (∗i) is equivalent to

(∗i′)

{

wi(X) 6∈ 4Z, (g(z, u))τi-wt=wi(X) is a square, or

wi(X) ∈ 4Z,
(

− 1
4 h(z)

2 + g(z, u)u
)

τi-wt=wi(X)+2
is a square.

It is easy to see that the condition (∗i) does not hold for all i ≥ l(X).
In the following, we shall consider the pair (X,∆X(k)), where X is as

in (9.1) and ∆X(k) = − k
4 divX(u) with k ∈ Q. This allows us to work

inductively.

9.4. Let X̂ be a germ of a 3-dimensional terminal singularity at P̂ ∈
X̂. We assume that there is an embedding X̂ ↪→ (x, y, z, u)/Z4(1, 3, 1, 2)
such that

X̂ = {x2 + y2 + f(z, u) = 0}/Z4(1, 3, 1, 2),

where f(z, u) =
∑

p+q≥1,odd cpqz
2puq ∈ C{z2, u}.

For each positive integer i, we denote ρi-wt(z, u) = (i/2, 1), and define

ŵi(X̂) = ρi-wt(f(z, u)) = min{ip+ q | cpq 6= 0}.
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Since the cyclic group Z4 acts freely on {x2 + y2 + f(z, u) = 0} \ {(0)}, we
see that uw ∈ f(z, u) for some positive odd integer w. Let w be the smallest
such integer, then we have aw(X̂) = (w + 1)/2 (cf. [Hay99, 2.6]).

Let HX̂ ⊆ |−KX̂ | be a linear system such that a general member has

only a rational double point. We remark that X̂ is of type (cAx/4) if
c01 6= 0. If this is so, then a general member of |−KX̂ | has a rational double
point of type D2aw(X̂)+1

Lemma 9.5. Under the notation and assumptions in (9.4), we have the

following :

(1) For each positive integer i, we have 1 ≤ ŵi(X̂) ∈ Z, ŵi(X̂) ≤
ŵi+1(X̂) and ŵi+1(X̂) − ŵi(X̂) ≥ ŵi+2(X̂) − ŵi+1(X̂).

(2) If i is odd, then ŵi(X̂) is also odd.

(3) For all sufficiently large integer i, we have ŵi(X̂) = 2aw(X̂) − 1.

Proof. This lemma is proved similarly as in (4.2) or (9.2).

9.6. By (9.5), we get a sequence of strictly increasing positive integers

(ŵ1(X̂), ŵ2(X̂), . . . , ŵl(X̂)),

where ŵl(X̂) = 2aw(X̂)−1. This is called the weight sequence of X̂ as type
(cAx/4). We also call l = l̂(X̂) the length of the weight sequence of X̂ . We
sometimes denote ŵi(X̂) by ŵi if there is no danger of confusion.

For each positive odd integer i, we define the condition (†i) as follows:

(†i) (f(z, u))ρi-wt=ŵi(X̂) =
∑

ip+q=ŵi(X̂) cpqz
2puq is a square.

If we set Fi(z, u) = (f(z, u))ρi-wt=ŵi(X̂) and χ̂i(z) = Fi(z, 1), then the con-

dition (†i) is equivalent to

(†i′) χ̂i(z) =
(
∑

t≥1 βtz
2t−1

)2
for some βt ∈ C

since ŵi(X̂) is odd. It is easy to see that the condition (†i) does not hold
for all i ≥ l̂(X̂)

We shall consider the pair (X̂, ∆̂X̂(k)), where X̂ is as in (9.4) and

∆̂X̂(k) = − k
2 divX̂(u) with k ∈ Q. This again allows us to work inductively

together with (X,∆X(k)) in (9.3).
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From now on, we shall study Gorenstein resolutions of X in (9.1) and

X̂ in (9.4) by dividing into several cases. The results in this section will

be given in (9.19) and (9.20) after we prepare several inductive steps in

(9.7)–(9.18).

The first two lemmas (9.7) and (9.8) deals with X as in (9.1) such that

X is not of type (cD/2). We need these lemmas because of the inductive

argument in (9.19) and (9.20).

Lemma 9.7. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3), and

assume that w̄1(X) = −1. Then w2(X) = 0, the condition (∗2) holds, and

there is a KX + HX-crepant Gorenstein resolution f : Y → X such that

#E(f) = aw(X) with

#E(f,∆X(k), (k + 2i)/4) = 1 for i = 1, 2, . . . , aw(X).

Proof. Since z ∈ h(z), we see that w2(X) = 0, the condition (∗2) holds
and that

(X,∆X (k)) '
(

{x2 + yz + uaw(X) = 0}/Z2(1, 1, 1, 0),−
k
4 div(u)

)

.

Thus we immediately see that the weight sequence of X as type (cA/2)
(cf. (4.3)) is (1, 2, . . . , aw(X)). Therefore the remaining part of this lemma
follows from (4.6).

Lemma 9.8. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3), and

assume that w̄1(X) = 1 and w2(X) = 2. Then the condition (∗2) holds if

and only if aw(X) ≥ 2, and one of the following holds:
(1) If the condition (∗2) holds, then there is a KX +HX-crepant Goren-

stein resolution f : Y → X such that #E(f) = aw(X) + 1. Moreover, if

aw(X) = 2, then

#E(f,∆X(k), (k + 2i)/4) =

{

2 if i = 1,

1 if i = 2,

and if aw(X) ≥ 3, then

#E(f,∆X(k), (k + 2i)/4) =

{

2 if i = 1, 2,

1 if i = 3, . . . , aw(X) − 1.

(2) If the condition (∗2) does not hold, then there is a KX +HX-crepant

Gorenstein resolution f : Y → X such that #E(f) = 1 with

#E(f,∆X(k), (k + 2)/4) = 1.
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Proof. Since a10 6= 0 or a01 6= 0, the condition (∗2) holds if and only if
a01 = 0, which is equivalent to saying that aw(X) ≥ 2.

If the condition (∗2) holds, then we have

(X,∆X(k)) '
(

{x2 + z2 + y2u+ uaw(X) = 0}/Z2(1, 1, 1, 0),−
k
4 div(u)

)

.

Thus the weight sequence ofX as type (cA/2) (cf. (4.3)) is (2, 3, . . . , aw(X)).
Hence this lemma follows from (4.6).

If the condition (∗2) does not hold, then X ' (x, y, z)/Z2(1, 1, 1). Let
f : Y → X be the economic resolution, then the exceptional divisor E of f
satisfies a(E,X,∆X (k)) = (k + 2)/4.

Lemma 9.9. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3), and

assume that w̄1(X) = 1, w2(X) = 4 and that the condition (∗2) does not

hold. Then one of the following holds:

(1) If aw(X) = 2, then there is a KX +HX-crepant Gorenstein resolu-

tion f1 : X1 → X such that #E(f1) = 3 with

#E(f1,∆X(k), (k + 2)/4) = 1, #E(f1,∆X(k), (k + 4)/4) = 1,

#E(f1,∆X(k), (k + 2)/2) = 1.

(2) If aw(X) ≥ 3, then there is a KX +HX-crepant birational morphism

f1 : X1 → X such that #E(f1) = 3 with

#E(f1,∆X(k), (k + 2)/4) = 1, #E(f1,∆X(k), (k + 2)/2) = 1,

#E(f1,∆X(k), (k + 3)/2) = 1,

and that X1 is Gorenstein terminal outside one point P1. There is an open

neighborhood P1 ∈ U ⊆ X1 such that

U ' {x2 + y2u− 1
4 h(zu

1/2)2/u3 + g(zu1/2, u)/u2 = 0}/Z2(1, 1, 1, 0).

Furthermore, we have a(G,X,∆X (k)) = a(G,U,− k+2
4 divU (u)) for each

prime divisor G over P1.

Proof. Let g1 : Y1 → X be the blow up with weight (x, y, z, u) =
1
2 (3, 1, 1, 2). By [Hay00, 5.22, 5.32], g1 is divisorial with discrepancy 1/2
and Y1 is Gorenstein outside the origin Q1 of the x-chart and the origin Q4

of the u-chart. Let E be the exceptional divisor of g1.
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We shall study these non-Gorenstein points individually. There is an
open neighborhood Q1 ∈ U1 ⊆ Y1 such that U1 ' (y, z, u)/Z3(1, 1, 2). We
see that a(E,X,∆X (k)) = (k + 2)/4 and that

(g∗1∆X(k) − 1
2E)|U1

= − k
4 divU1

(u) − k+2
4 divU1

(y2u+ b1z
3y + a20z

4 + a11z
2u+ a02u

2).

We take the economic resolution h1 : X1 → Y1 of Q1, then E(h1) = {F1, F2},
where Fj is the prime divisor over Q1 with a(Fj , Y1) = j/3 (j = 1, 2). We
see that

a(F1, X,∆X(k)) = (k + 2)/2

and a(F2, X,∆X(k)) =

{

(k + 3)/2 if a02 = 0,

(k + 4)/4 if a02 6= 0

by using (2.10) and (2.12). We can write the u-chart U4 as follows:

U4 = {x2u+ y2 + h(zu1/2)/u3/2 · y + g(zu1/2, u)/u2 = 0}/Z2(1, 1, 1, 0),

which is isomorphic to the given form of U . The composition f1 = g1 ◦
h1 : X1 → X is a projective birational morphism such that E(f1) =
{h−1

1∗ E,F1, F2}. If aw(X) = 2, then a02 6= 0 and Q4 6∈ U4, hence X1 is
Gorenstein. Otherwise f1 satisfies the condition in (2) since (g∗1∆X(k) −
1
2E)|U4

= − k+2
4 divU4

(u).

Remark 9.10. In (9.9), aw(X) = 2 if and only if l(X) ≤ 2. If aw(X) =
2, then the condition (∗4) does not hold.

The pair (U,− k+2
4 divU (u)) in (9.9)(2) is of the form in (9.1) and (9.3).

It is easy to see that wi(U) = wi+2(X) − w2(X) for all positive integers i
and l(U) = l(X)− 2. We also see that the condition (∗i) holds for U if and
only if the condition (∗i+ 2) holds for X.

Lemma 9.11. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3), and

assume that w̄1(X) = 1, w2(X) = 4 and that the condition (∗2) holds. Then

aw(X) ≥ 3 and one of the following holds:
(1) If aw(X) = 3, then there is a KX +HX-crepant Gorenstein resolu-

tion f1 : X1 → X such that #E(f1) = 5 with

#E(f1,∆X(k), (k + 2)/4) = 2, #E(f1,∆X(k), (k + 4)/4) = 1,

#E(f1,∆X(k), (k + 2)/2) = 1, #E(f1,∆X(k), (k + 3)/2) = 1.
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(2) If aw(X) ≥ 4, then there is a KX +HX-crepant birational morphism

f1 : X1 → X such that #E(f1) = 5 with

#E(f1,∆X(k), (k + 2)/4) = 2,

#E(f1,∆X(k), (k + 4)/4) =

{

1 if a11 6= 0,

0 if a11 = 0,

#E(f1,∆X(k), (k + 2)/2) = 1,

#E(f1,∆X(k), (k + 3)/2) =

{

1 if a11 6= 0,

2 if a11 = 0,

and that X1 is Gorenstein terminal outside one point P1. There is an open

neighborhood P1 ∈ U ⊆ X1 such that

U '

{

x2 + y2u+ (2αz + b1z
3)y − 1

4 h1(zu
1/2)2/u4

− 1
2 b1z

3h1(zu
1/2)/u5/2 + g1(zu

1/2, u)/u3 = 0

}

/

Z2(1, 1, 1, 0),

where α2 = −a11, g1(z, u) = (g(z, u))τ2-wt≥6 and h1(z) = (h(z))τ2-wt≥8. We

also have a(G,X,∆X (k)) = a(G,U,− k+2
4 divU (u)) for each prime divisor

G over P1.

Proof. Since the condition (∗2) holds, we see that a02 = 0, hence
aw(X) ≥ 3. We can write

(

− 1
4 h(z)

2 + g(z, u)u
)

τ2-wt=6
= −( 1

2 b1z
3 −αzu)2,

where α2 = −a11. With this notation, we see that there is an embedding
X ↪→ (x, y, z, u, t)/Z2(1, 1, 1, 0, 1) such that

X =

{

x2 + (y − αz)t+ h1(z)y + g1(z, u) = 0
t = (y + αz)u+ b1z

3

}

/

Z2(1, 1, 1, 0, 1),

where h1(z) = (h(z))τ2-wt≥8 and g1(z, u) = (g(z, u))τ2-wt≥6. Let g1 : Y1 → X
be the blow up with weight (x, y, z, u, t) = 1

2 (3, 1, 1, 2, 5). By [Hay00, 5.9,
5.36], g1 is divisorial with discrepancy 1/2 and Y1 is Gorenstein outside the
origin Q5 of the t-chart and the origin Q4 of the u-chart. Let E be the
exceptional divisor of g1.

We know that Q5 has an open neighborhood U5 ' (x, z, u)/Z5(3, 1, 2),
a(E,X,∆X (k)) = (k + 2)/4 and that

(g∗1∆X(k) − 1
2E)|U5

= − k
4 divU5

(u) − k+2
4 divU5

(

x2u− 2αzu − b1z
3

+
∑

p+q=3 apqz
2puq+1 − αb2z

6u− b1b2z
8

)

.
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Let h1 : X1 → Y1 be the economic resolution of Q5. Then we have E(h1) =
{F1, . . . , F4} with a(Fi, Y1) = i/5 (i = 1, . . . , 4). Thus, by (2.10) and (2.12),
we have

a(Fi, X,∆X (k)) =























(k + 2)/4 if i = 1,

(k + 2)/2 if i = 2,

(k + 4)/4 if i = 3 and “a11 6= 0 or a03 6= 0”,

(k + 3)/2 if “i = 3 and a11 = a03 = 0” or i = 4.

On the other hand, the u-chart U4 has an expression:

U4 =

{x2 + (y − αz)t+ h1(zu
1/2)/u5/2 · y

+ g1(zu
1/2, u)/u3 = 0

tu = y + αz + b1z
3

}

/

Z2(1, 1, 1, 0, 1).

Let f1 = g1 ◦ h1 : X1 → X be the composition. If aw(X) = 3, then a03 6= 0
and Q4 6∈ U4, therefore f1 is a Gorenstein resolution. Otherwise, X1 is
Gorenstein terminal outside Q4 and U4 is isomorphic to the given form of U .
Since (g∗1∆X(k) − 1

2E)|U4
= − k+2

4 divU4
(u), we see that a(G,X,∆X (k)) =

a(G,U4,∆U4
(k + 2)) for each prime divisor G over Q4

Remark 9.12. In (9.11), aw(X) = 3 if and only if l(X) ≤ 4. If aw(X) =
3, then the condition (∗4) does not hold.

The pair (U,− k+2
4 divU (u)) in (9.11)(2) is of the form in (9.1) and (9.3).

Since

− 1
4 (2αz + b1z

3)2 +
(

− 1
4 h1(zu

1/2)2/u4 − 1
2 b1z

3h1(zu
1/2)/u5/2

+ g1(zu
1/2, u)/u3

)

u

= − 1
4 h(zu

1/2)2/u3 + g(zu1/2, u)/u2,

we see that wi(U) = wi+2(X) − w2(X) − 2 for all positive integers i and
l(U) = l(X)−2. We also see that the condition (∗i) holds for U if and only
if the condition (∗i+ 2) holds for X. If a11 6= 0, then w1(U) = −1 and the
condition (∗4) holds for X.

Lemma 9.13. Let X̂, ŵi(X̂), ∆̂X̂(k), HX̂ be as in (9.4) and (9.6), and

assume that the condition (†1) does not hold. Then one of the following

holds:
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(1) If aw(X̂) = (ŵ1(X̂)+1)/2, then there is a KX̂ +HX̂-crepant Goren-

stein resolution f1 : X1 → X̂ such that #E(f1) = ŵ1(X̂) + 2 with

#E(f1, ∆̂X̂(k), (k + 1)/4) = 1, #E(f1, ∆̂X̂(k), (k + 3)/4) = 1,

#E(f1, ∆̂X̂(k), (k + 1)/2) = (ŵ1(X̂) + 1)/2,

#E(f1, ∆̂X̂(k), (k + 2)/2) = (ŵ1(X̂) − 1)/2.

(2) If aw(X̂) ≥ (ŵ1(X̂) + 3)/2, then there is a KX̂ + HX̂-crepant bira-

tional morphism f1 : X1 → X̂ such that #E(f1) = ŵ1(X̂) + 2 with

#E(f1, ∆̂X̂(k), (k + 1)/4) = 1,

#E(f1, ∆̂X̂(k), (k + 1)/2) = (ŵ1(X̂) + 1)/2,

#E(f1, ∆̂X̂(k), (k + 2)/2) = (ŵ1(X̂) + 1)/2,

and that X1 is Gorenstein terminal outside one point P1. There is an open

neighborhood P1 ∈ U ⊆ X1 such that

U ' {x2 + y2u+ f(zu1/4, u1/2)/uŵ1(X̂)/2 = 0}/Z2(1, 1, 1, 0).

Furthermore, we have a(G, X̂, ∆̂X̂(k)) = a(G,U,− k+1
4 divU (u)) for each

prime divisor G over P1.

Proof. As we can treat the case ŵ1 ≡ 3 (mod 4) similarly, we shall
assume that ŵ1 ≡ 1 (mod 4) in the following. Let g1 : Y1 → X̂ be the
blow up with weight (x, y, z, u) = 1

4 (ŵ1, ŵ1 + 2, 1, 2). By [Hay99, 7.4], g1 is
divisorial with discrepancy 1/4 and Y1 is Gorenstein outside the origin Q2

of the y-chart and the origin Q4 of the u-chart. Let E be the exceptional
divisor of g1.

The point Q2 has an open neighborhood U2 ' (x, z, u)/Zŵ1+2(−2, 1, 2),
a(E, X̂, ∆̂X̂(k)) = (k + 1)/4 and that

(g∗1∆̂X̂(k) − 1
4E)|U2

= − k
2 divU2

(u) − k+1
4 divU2

(x2 + (f(z, u))ρ-wt=ŵ1
).

Let h1 : X1 → Y1 be the economic resolution of Q1. Then we have E(h1) =
{F1, . . . , Fŵ1+1} with a(Fi, Y1) = i/(ŵ1 + 2) (i = 1, . . . , ŵ1 + 1). Thus, by
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(2.10) and (2.12), we have

a(Fi, X̂, ∆̂X̂(k))

= a(Fi, Y1, g
∗
1∆̂X̂(k) − 1

4E)

= a
(

Fi, U1,−
k
2 divU1

(u) − k+1
4 divU1

(y2 + (f(z, u))ρ-wt=ŵ1
)
)

=











(k + 1)/2 if i = 1, . . . , (ŵ1 + 1)/2,

(k + 3)/4 if i = (ŵ1 + 3)/2 and c0,ŵ1
6= 0

(k + 2)/2 “i = (ŵ1 + 3)/2 and c0,ŵ1
= 0” or i ≥ (ŵ1 + 5)/2.

On the other hand, we can write the u-chart U4 as follows:

U4 = {x2 + y2u+ f(zu1/4, u1/2)/uŵ1/2 = 0}/Z2(1, 1, 1, 0).

Let f1 = g1 ◦h1 : X1 → X̂ be the composition. If aw(X̂) = (ŵ1 +1)/2, then
Q4 6∈ U4 and f1 is a Gorenstein resolution. Otherwise, X1 is Gorenstein
terminal outside Q4. Since (g∗1∆̂X̂(k) − 1

4E)|U4
= − k+1

4 divU4
(u), we have

a(G, X̂, ∆̂X̂(k)) = a(G,U4,−
k+1
4 divU4

(u)) for each prime divisor G over
Q4.

Remark 9.14. In (9.13), aw(X̂) = (ŵ1(X̂) + 1)/2 if and only if l̂(X̂) =
1. If aw(X̂) = (ŵ1(X̂) + 1)/2, then the condition (†3) does not hold.

The pair (U,− k+1
4 divU (u)) in (9.13)(2) is of the form in (9.1) and (9.3).

It is easy to see that wi(U) = ŵi+1(X̂) − ŵ1(X̂) for all positive integers i
and l(U) = l̂(X̂)− 1. We also see that the condition (∗i) holds for U if and
only if the condition (†i+ 1) holds for X̂ .

Lemma 9.15. Let X̂, ŵi(X̂), ∆̂X̂(k), HX̂ be as in (9.4) and (9.6), and

assume that the condition (†1) hold. Then aw(X̂) ≥ (ŵ1(X̂)+3)/2 and one

of the following holds:

(1) If aw(X̂) = (ŵ1(X̂)+3)/2, then there is a KX̂ +HX̂-crepant Goren-

stein resolution f1 : X1 → X̂ such that #E(f1) = ŵ1(X̂) + 4 with

#E(f1, ∆̂X̂(k), (k + 1)/4) = 2, #E(f1, ∆̂X̂(k), (k + 3)/4) = 1,

#E(f1, ∆̂X̂(k), (k + 1)/2) = (ŵ1(X̂) + 1)/2,

#E(f1, ∆̂X̂(k), (k + 2)/2) = (ŵ1(X̂) + 1)/2.
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(2) If aw(X̂) ≥ (ŵ1(X̂) + 5)/2, then there is a KX̂ + HX̂-crepant bira-

tional morphism f1 : X1 → X̂ such that #E(f1) = ŵ1(X̂) + 4 with

#E(f1, ∆̂X̂(k), (k + 1)/4) = 2,

#E(f1, ∆̂X̂(k), (k + 3)/4) =

{

1 if c1,ŵ1−1 6= 0,

0 if c1,ŵ1−1 = 0,

#E(f1, ∆̂X̂(k), (k + 1)/2) = (ŵ1(X̂) + 1)/2,

#E(f1, ∆̂X̂(k), (k + 2)/2) =

{

(ŵ1(X̂) + 1)/2 if c1,ŵ1−1 6= 0,

(ŵ1(X̂) + 3)/2 if c1,ŵ1−1 = 0.

Moreover X1 is Gorenstein terminal outside one point P1, and there is an

open neighborhood P1 ∈ U ⊆ X1 such that

U ' {x2 + y2u+ 2g(z, 1)y + h(zu1/4, u1/2)/u(ŵ1(X̂)+2)/2 = 0}/Z2(1, 1, 1, 0),

where g(z, u)2 = −(f(z, u))ρ1-wt=ŵ1(X), h(z, u) = (f(z, u))ρ1-wt≥ŵ1(X)+2.

We have a(G, X̂, ∆̂X̂(k)) = a(G,U,− k+1
4 divU (u)) for each prime divisor

G over P1.

Proof. Since the condition (†1) holds, we see that c0,ŵ1
= 0, hence

aw(X̂) ≥ (ŵ1 + 3)/2. We also see that there is an embedding X ↪→
(x, y, z, u)/Z4(1, 3, 1, 2) such that

X =























{x2 + y2 + 2g(z, u)x + h(z, u) = 0}/Z4(1, 3, 1, 2)

if ŵ1 ≡ 1 (mod 4),

{x2 + y2 + 2g(z, u)y + h(z, u) = 0}/Z4(1, 3, 1, 2)

if ŵ1 ≡ 3 (mod 4),

where g(z, u)2 = −(f(z, u))ρ1-wt=ŵ1
, h(z, u) = (f(z, u))ρ1-wt≥ŵ1+2. Since we

can treat the case ŵ1 ≡ 3 (mod 4) similarly, we shall assume that ŵ1 ≡ 1
(mod 4) in the following. Let g1 : Y1 → X̂ be the blow up with weight
(x, y, z, u) = 1

4 (ŵ1 + 4, ŵ1 + 2, 1, 2). By [Hay99, 7.9], g1 is divisorial with
discrepancy 1/4 and Y1 is Gorenstein outside the origin Q1 of the x-chart
and the origin Q4 of the u-chart. Let E be the exceptional divisor of g1.

The point Q1 has an open neighborhood U1 ' (y, z, u)/Zŵ1+4(−2, 1, 2),
a(E, X̂, ∆̂X̂(k)) = (k + 1)/4 and that

(g∗1∆̂X̂(k) − 1
4E)|U1

= − k
2 divU1

(u) − k+1
4 divU1

(y2 + 2g(z, u) + (f(z, u))ρ-wt=ŵ1+2).
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Let h1 : X1 → Y1 be the economic resolution of Q1. Then we have E(h1) =
{F1, . . . , Fŵ1+3} with a(Fi, Y1) = i/(ŵ1 + 4) (i = 1, . . . , ŵ1 + 3). Thus, by
(2.10) and (2.12), we have

a(Fi, X̂, ∆̂X̂(k))

= a(Fi, Y1, g
∗
1∆̂X̂(k) − 1

4E)

= a(Fi, U1,−
k
2 divU1

(u) − k+1
4 divU1

(y2 + 2g(z, u) + (f(z, u))ρ-wt=ŵ1+2))

=























(k + 1)/4 if i = 1,

(k + 1)/2 if i = 2, . . . , (ŵ1 + 3)/2,

(k + 3)/4 if i = (ŵ1 + 5)/2 and “c1,ŵ1−1 6= 0 or c0,ŵ1+2 6= 0”,

(k + 2)/2 otherwise.

On the other hand, the u-chart U4 has an expression:

U4 = {x2 + y2u+ 2g(z, 1)y + h(zu1/4, u1/2)/u(ŵ1+2)/2 = 0}/Z2(1, 1, 1, 0).

Let f1 = g1 ◦h1 : X1 → X̂ be the composition. If aw(X̂) = (ŵ1 +3)/2, then
Q4 6∈ U4 and f1 is a Gorenstein resolution. Otherwise, X1 is Gorenstein
terminal outside Q4. Since (g∗1∆̂X̂(k) − 1

4E)|U4
= − k+1

4 divU4
(u), we have

a(G, X̂, ∆̂X̂(k)) = a(G,U4,−
k+1
4 divU4

(u)) for each prime divisor G over
Q4.

Remark 9.16. In (9.15), aw(X̂) = (ŵ1(X̂) + 3)/2 if and only if l̂(X̂) ≤
3. If aw(X̂) = (ŵ1(X̂) + 3)/2, then the condition (†3) does not hold.

The pair (U,− k+1
4 divU (u)) in (9.15)(2) is of the form in (9.1) and (9.3).

Since

− 1
4 (2g(z, 1))2 +

(

h(zu1/4, u1/2)/u(ŵ1+2)/2
)

u = f(zu1/4, u1/2)/uŵ1/2,

we have wi(U) = ŵi+1(X̂)− ŵ1(X̂)−2 for all positive integers i and l(U) =
l̂(X̂) − 1. We also see that the condition (∗i) holds for U if and only if the
condition (†i + 1) holds for X̂. If c1,ŵ1−1 6= 0, then w1(U) = −1 and the

condition (†3) holds for X̂ .

Lemma 9.17. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3),
and assume that w1(X) ≥ 3. Then there is a KX + HX-crepant birational

morphism f1 : X1 → X such that #E(f1) = w̄1(X) − 2 with

#E(f1,∆X(k), (k + 1)/2) = (w̄1(X) − 1)/2,

#E(f1,∆X(k), (k + 2)/2) = (w̄1(X) − 3)/2,
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and that X1 is Gorenstein terminal outside one point P1. There is an open

neighborhood P1 ∈ Û ⊆ X1 such that

Û '

{

x2 + y2 − 1
4 h(zu

1/2)2/uw̄1(X)+2

+ g(zu1/2, u2)/uw̄1(X) = 0

}

/

Z4(1, 3, 1, 2).

Furthermore, we have a(G,X,∆X (k)) = a(G, Û ,− k+1
2 divÛ (u)) for each

prime divisor G over P1.

Proof. Let g1 : Y1 → X be the blow up with weight (x, y, z, u) =
1
2 (w̄1, w̄1 − 2, 1, 4). By [Hay00, 5.4], g1 is divisorial with discrepancy 1/2
and Y1 is Gorenstein outside the origin Q2 of the y-chart and the origin Q4

of the u-chart. Let E be the exceptional divisor of g1.

The point Q2 has an open neighborhood U2 ' (x, y, z)/Zw̄1−2(2,−2, 1),
a(E,X,∆X (k)) = (k + 1)/2 and that

(g∗1∆X(k) − 1
2E)|U2

= − k
4 divU2

(x2 + h(zy1/2)/y(w̄1+2)/2 + g(zy1/2, 0)/yw̄1) − k+1
2 divU2

(y).

Let h1 : X1 → Y1 be the economic resolution of Q2 and let E(h1) =
{F1, . . . , Fw̄1−3} with a(Fi, Y1) = i/(w̄1 − 2) (i = 1, . . . , w̄1 − 3). Then
we have

a(Fi, X,∆X(k))

= a(Fi, Y1, g
∗
1∆X(k) − 1

2E)

= a
(

Fi, U2,−
k
4 divU2

(x2 + h(zy1/2)/y(w̄1+2)/2 + g(zy1/2, 0)/yw̄1)

− k+1
2 divU2

(y)
)

=

{

(k + 1)/2 if i = 1, . . . , (w̄1 − 3)/2,

(k + 2)/2 if i = (w̄1 − 1)/2, . . . , w̄1 − 3.

On the other hand, the u-chart U4 has an expression:

U4 = {x2 +y2 +h(zu1/2)/u(w̄1+2)/2 ·y+g(zu1/2, u2)/uw̄1 = 0}/Z4(1, 3, 1, 2),

which is isomorphic to the given form of U . We also know that (g∗1∆X(k)−
1
2E)|U4

= − k+1
2 divU4

(u). Hence a(G,X,∆X (k)) = a(G,U4,−
k+1
2 divU4

(u))
for each prime divisor G over Q4.
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Remark 9.18. The pair (Û ,− k+1
2 divÛ (u)) in (9.17) is of the form in

(9.4) and (9.6). We see that ŵi(Û) = wi+1(X) − w̄1(X) for all positive
integers i and l̂(Û) = l(X) − 1. We also see that the condition (†i) holds
for Û if and only if the condition (∗i+ 1) holds for X.

Now we state our main results in this section. The following theorem

(9.19) (resp. (9.20)) relates the number of exceptional prime divisors of

a Gorenstein resolution with the data wi(X) and conditions (∗i) (resp.

ŵi(X̂) and conditions (†i)). Though it should be possible to write down all

informations on exceptional prime divisors obtained from (9.7)–(9.18), our

results are restricted to divisors with discrepancies ≤ 1 over X and X̂. This

is because we have to divide into many cases. Proofs of (9.19) and (9.20)

will be given at the same time.

Theorem 9.19. Let X, wi(X), ∆X(k), HX be as in (9.1) and (9.3),
and assume that X is of type (cD/2). Then there is a KX + HX-crepant

Gorenstein resolution f : Y → X such that #E(f) ≤ 2aw(X) with

#E(f,∆X(k), (k + 2)/4) =

{

1 if (∗2) does not hold,

2 if (∗2) holds,

#E(f,∆X(k), (k + 4)/4) =

{

1 if (∗4) does not hold,

2 if (∗4) holds,

#E(f,∆X(k), (k + 1)/2) = (w̄1(X) − 1)/2,

#E(f,∆X(k), (k + 2)/2) = w2(X)/2 − 1,

and other E ∈ E(f) satisfies a(E,X,∆X (k)) ≥ (k + 6)/4 or ≥ (k + 3)/2.

Theorem 9.20. Let X̂, ŵi(X̂), ∆̂X̂(k), HX̂ be as in (9.4) and (9.6).

Then there is a KX̂ + HX̂-crepant Gorenstein resolution f : Ŷ → X̂ such

that #E(f) ≤ 2aw(X̂) + 1 with

#E(f, ∆̂X̂(k), (k + 1)/4) =

{

1 if (†1) does not hold,

2 if (†1) holds,

#E(f, ∆̂X̂(k), (k + 3)/4) =

{

1 if (†3) does not hold,

2 if (†3) holds,

#E(f, ∆̂X̂(k), (k + 1)/2) = (ŵ1(X̂) + 1)/2,

#E(f, ∆̂X̂(k), (k + 2)/2) = bŵ2(X̂)/2c,
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and other E ∈ E(f) satisfies a(E, X̂, ∆̂X̂(k)) ≥ (k + 3)/2 or ≥ (k + 5)/4.

Proof of (9.19) and (9.20). (A) If w2(X) ≤ 2, then it follows from (9.7)
and (9.8) that there is a Gorenstein resolution f : Y → X such that
#E(f) ≤ 2aw(X). This statement is not a part of (9.19) since X is not of
type (cD/2), but we need this in the following.

(B) We shall prove (9.20) when the condition (†1) does not hold and
l̂(X̂) ≤ 1, or the condition (†1) holds and l̂(X̂) ≤ 3.

In the first case, we have aw(X̂) = (ŵ1(X̂)+1)/2 by (9.14), hence there
is a KX̂ + HX̂ -crepant Gorenstein resolution f1 : X1 → X̂ as in (9.13)(1).

Since #E(f1) = ŵ1(X̂) + 2 = 2aw(X̂) + 1, bŵ2(X̂)/2c = (ŵ1(X̂) − 1)/2
and since the condition (†3) does not hold, this f1 satisfies the conditions
in (9.20).

In the second case, we can take a KX̂ + HX̂ -crepant Gorenstein reso-

lution f1 : X1 → X̂ as in (9.15)(1). Then we again see that f1 satisfies the
conditions in (9.20) by a similar argument as above.

(C) We shall prove (9.19) when the condition (∗2) does not hold and
l(X) ≤ 2. Since X is of type (cD/2), we have either w̄1(X) = 1 and
w2(X) = 4, or w̄1(X) ≥ 3.

If w̄1(X) = 1 and w2(X) = 4, then there is a KX +HX-crepant Goren-
stein resolution f1 : X1 → X as in (9.9)(1). Since #E(f1) = 3 ≤ 4 =
2aw(X), (w1(X) − 1)/2 = 0 and since w2(X)/2 − 1 = 1, we see that f1

satisfies the conditions in (9.19).

If w̄1(X) ≥ 3, then we first take f1 : X1 → X as in (9.17). Since Û in
(9.17) satisfies l̂(Û) ≤ 1, there is a KX1

+HX1
-crepant Gorenstein resolution

g1 : Y → X1 as in (9.20) by using the results in (B). Let f = f1◦g1 : Y → X
be the composition. This is a KX +HX -crepant Gorenstein resolution. We
see that #E(f) = #E(f1)+#E(g1) ≤ (w̄1(X)−2)+(2aw(Û )+1) = 2aw(X).
By (9.17) and (9.18), we also see that

#E(f,∆X(k), (k + 2)/4) = #E(g1,∆Û (k), (k + 1)/4) = 1,

#E(f,∆X(k), (k + 4)/4) = #E(g1,∆Û (k), (k + 3)/4) = 1,

#E(f,∆X(k), (k + 1)/2) = (w̄1(X) − 1)/2,

#E(f,∆X(k), (k + 2)/2) = #E(f1,∆X(k), (k + 2)/2)

+ #E(g1,∆Û (k), (k + 1)/2)

= (w̄1(X) − 3)/2 + (w2(X) − w̄1(X) + 1)/2

= w2(X)/2 − 1,
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and other E ∈ E(f) satisfies a(E,X,∆X (k)) ≥ (k + 6)/4 or ≥ (k + 3)/2.
Since the condition (∗4) does not hold in this case, f : Y → X satisfies the
condition in (9.19).

(D) By a similar way, we can prove (9.19) when the condition (∗2) holds
and l(X) ≤ 4.

Let l be a positive integer, and assume that (9.20) holds for all X̂ with
l̂(X̂) ≤ l − 1 and (9.19) holds for all X with l(X) ≤ l − 1.

(E) We shall prove (9.19) for X with l(X) = l. We first assume that the
condition (∗2) does not hold for X. By the result in (C), we may assume
that l = l(X) ≥ 3.

If w̄1(X) = 1 and w2(X) = 4, then we first take f1 : X1 → X as in
(9.9)(2). Since U in (9.9)(2) satisfies w̄1(U) = 1, w2(U) ≤ 4 and l(U) = l−2,
there is a KX1

+ HX1
-crepant Gorenstein resolution g1 : Y → X1 as in

(9.19) of (9.8). Let f = f1 ◦ g1 : Y → X be the composition. We see that
#E(f) = #E(f1) + #E(g1) ≤ 3 + 2aw(U) = 3 + (2aw(X) − 4) ≤ 2aw(X).
We also see that

#E(f,∆X(k), (k + 2)/4) = #E(f1,∆X(k), (k + 2)/4) = 1,

#E(f,∆X(k), (k + 4)/4) = #E(g1,∆U (k), (k + 2)/4)

=

{

1 if (∗4) does not hold,

2 if (∗4) holds,

#E(f,∆X(k), (k + 1)/2) = #E(f1,∆X(k), (k + 1)/2) = 0,

#E(f,∆X(k), (k + 2)/2) = #E(f1,∆X(k), (k + 2)/2) = 1,

and other E ∈ E(f) satisfies a(E,X,∆X (k)) ≥ (k + 6)/4 or ≥ (k + 3)/2.
Hence f : Y → X satisfies the conditions in (9.19).

If w̄1(X) ≥ 3, then as in the proof of (C), we first take f1 : X1 → X
as in (9.17) and a Gorenstein resolution g1 : Y → X1 as in (9.20) which is
obtained by induction hypothesis. Then the composition f = f1 ◦ g1 : Y →
X is a KX + HX -crepant Gorenstein resolution with required properties.

If the condition (∗2) holds, then we can prove (9.19) similarly by using
induction and (9.7).

(F) Finally we shall prove (9.20) for X with l̂(X̂) = l.

We first assume that the condition (†1) does not hold. In this case we
may assume that l̂(X̂) ≥ 2 by (B). Then we can take f1 : X1 → X̂ as in
(9.13)(2). Since U in (9.13)(2) satisfies l(U) = l− 1, there is a KX1

+HX1
-

crepant Gorenstein resolution g1 : Ŷ → X1 as in (9.19) or (9.8). Let
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f : Ŷ → X̂ be the composition. We see that #E(f) = #E(f1) + #E(g1) ≤
(ŵ1(X̂) + 2) + 2aw(U) = 2aw(X̂) + 1. We also see that

#E(f, ∆̂X̂(k), (k + 1)/4) = #E(f1, ∆̂X̂(k), (k + 1)/4) = 1,

#E(f,∆X(k), (k + 3)/4) = #E(g1,∆U (k), (k + 2)/4)

=

{

1 if (†3) does not hold,

2 if (†3) holds,

#E(f, ∆̂X̂(k), (k + 1)/2) = #E(f1, ∆̂X̂(k), (k + 1)/2)

= (ŵ1(X̂) + 1)/2,

#E(f, ∆̂X̂(k), (k + 2)/2) = #E(f1, ∆̂X̂(k), (k + 2)/2)

+ #E(g1,∆U (k), (k + 1)/2)

= (ŵ1(X̂) + 1)/2 + (w̄1(U) − 1)/2

= bŵ2(X̂)/2c,

and other E ∈ E(f) satisfies a(E,X,∆X (k)) ≥ (k + 5)/4 or ≥ (k + 3)/2.
Hence f : Y → X satisfies the conditions in (9.20).

We can prove similarly in the case where the condition (†1) holds.

Corollary 9.21. Let X, wi(X), HX be as in (9.1) and (9.3). Then

there is a KX + HX-crepant Gorenstein resolution f : Y → X such that

#E(f) ≤ 2aw(X) with

#E(f, 1/2) =

{

(w̄1(X) + 1)/2 if (∗2) does not hold,

(w̄2(X) + 3)/2 if (∗2) holds,

#E(f, 1) =

{

w2(X)/2 if (∗4) does not hold,

w2(X)/2 + 1 if (∗4) holds,

and other E ∈ E(f) satisfies a(E,X) > 1.

Proof. This comes from (9.19) by setting k = 0 ifX satisfies w3(X) ≥ 3
or w̄1(X) = 1, w2(X) ≥ 4. Otherwise we can apply (9.7) or (9.8) to obtain
this result.

Corollary 9.22. Let X̂, ŵi(X̂), HX̂ be as in (9.4) and (9.6). Then

there is a KX̂ + HX̂-crepant Gorenstein resolution f : Ŷ → X̂ such that
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#E(f) ≤ 2aw(X̂) + 1 with

#E(f, 1/4) =

{

1 if (†1) does not hold,

2 if (†1) holds,

#E(f, 3/4) =

{

1 if (†3) does not hold,

2 if (†3) holds,

#E(f, 1/2) = (ŵ1(X̂) + 1)/2, #E(f, 1) = bŵ2(X̂)/2c,

and other E ∈ E(f) satisfies a(E, X̂) > 1.

Proof. This follows from (9.20) by setting k = 0.

Remark 9.23. (9.21) and (9.22) prove our main results (3.1), (3.2) and
(3.3) forX as in (9.1) and X̂ as in (9.4). In this case f|DY

: DY = f−1
∗ DX →

DX need not be the minimal resolution of DX even if DX ∈ HX has only a
rational double point. We also see that exceptional prime divisors may not
be irreducible when it is restricted to DY .
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