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Abstract We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–
Wallach representation of GLn(F ), where F is an archimedean local field, that quantifies the extent
to which this representation may be ramified. We also determine a distinguished vector, the newform,
occurring with multiplicity one in this representation, with the complexity of this vector measured in a
natural way by the conductor exponent. Finally, we show that the newform is a test vector for GLn×GLn

and GLn×GLn−1 Rankin–Selberg integrals when the second representation is unramified. This theory
parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined,
this completes a global theory of newforms for automorphic representations of GLn over number fields.
By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector
problem for archimedean Godement–Jacquet zeta integrals.

1. Introduction

Let Mk(q,χ) denote the finite-dimensional vector space of holomorphic modular forms
of weight k, level q and nebentypus χ, where χ is a primitive Dirichlet character of

conductor qχ | q. The classical theory of newforms due to Atkin and Lehner [AL70]

states that for each q′ | q with q′ �= q and q′ ≡ 0 (mod qχ) and for each � | q
q′ , the

function (ι�f)(z) := f(�z) defines an element of Mk(q,χ) whenever f ∈ Mk(q
′,χ). We

call ι�f an oldform. Moreover, the orthogonal complement with respect to the Petersson

inner product of the vector subspace of oldforms has an orthonormal basis consisting of

Research partially supported by the European Research Council grant agreement 670239.

Key words and phrases: Casselman–Wallach representation; Godement–Jacquet zeta integral; Rankin–

Selberg integral; test vector; Whittaker function

2020 Mathematics subject classification: Primary 11F70

Secondary 20G05; 22E45; 22E50

© The Author(s), 2024. Published by Cambridge University Press. This is an Open

Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1474748024000227 Published online by Cambridge University Press

https://orcid.org/0000-0002-3807-8714
https://sites.google.com/view/peterhumphries/
mailto:pclhumphries@gmail.com
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748024000227&domain=pdf
https://doi.org/10.1017/S1474748024000227


2 P. Humphries

newforms, which are eigenfunctions of the n-th Hecke operator not just for each positive
integer n for which (n,q) = 1 but for all n ∈ N.
Casselman [Cas73], building on the seminal work of Jacquet and Langlands [JL70],

gave an adèlic reformulation of the Atkin–Lehner theory of newforms. Because auto-
morphic representations π of GL2(AQ) have a tensor product factorisation in terms of

representations of GL2(R) and GL2(Qp) for each prime p, this reformulation is purely

local and is in terms of distinguished vectors in certain classes of representations of

GL2(Qp) determined in terms of congruence subgroups. Such a theory of newforms has
been extended to the setting of generic irreducible admissible smooth representations of

GLn(F ), where F is a nonarchimedean local field [JP-SS81]. This allows one to generalise

Atkin–Lehner theory to automorphic representations of GLn(AE) for any number field E.
Furthermore, this theory has blossomed to include a well-developed theory of oldforms and

conductor exponents associated to such representations, coupled with the local theory of

test vectors for certain families of GLn×GLm Rankin–Selberg integrals [Jac12, JP-SS81,
Mat13, Ree91].

Although this nonarchimedean aspect of the adèlic theory of newforms has been well

understood since the seminal work of Jacquet, Piatetski-Shapiro and Shalika [JP-SS81],

there has been little development – indeed, little even in the way of a conjectural
formulation – of the corresponding archimedean theory beyond the case n = 2. For

n = 2, the archimedean aspect of the adèlic theory of newforms, due to Popa [Pop08],

concerns distinguished vectors in certain classes of representations of GL2(R) and GL2(C)
determined in terms of the restrictions to the maximal compact subgroups O(2) and U(2).

In the classical language of holomorphic modular forms and Maaß forms on the upper

half-plane, this translates to prescribed automorphic forms determined in terms of Maaß
raising and lowering operators, which raise and lower the weight of the automorphic form.

In this article, we put the archimedean setting on an equal footing with the nonar-

chimedean setting by developing such a theory for GLn(R) and GLn(C). We summarise

our main results concerning generic irreducible Casselman–Wallach representations π of
GLn as follows; precise statements are given in more detail in Section 4.

• Among the Kn-types τ of π whose restriction to Kn−1 contains the trivial
representation, there exists a unique Kn-type τ◦ of lowest Howe degree, which
occurs with multiplicity one in π; moreover, the subspace of Kn−1-invariant τ◦-
isotypic vectors in π is one-dimensional (Theorem 4.7). We call the distinguished
nonzero vector lying in this subspace, unique up to scalar multiplication, the
newform of π, and we define the conductor exponent c(π) of π to be the Howe
degree of τ◦ (Definition 4.8).

• For each nonnegative integer m ≥ c(π), the dimension of the subspace of Kn−1-
invariant vectors in π that are τ -isotypic for some Kn-type τ of Howe degree m is
given explicitly as a certain binomial coefficient (Theorem 4.12). We call vectors
of this form oldforms.

• The epsilon factor ε(s,π,ψ) of π is equal to i−c(π) (Theorem 4.14); additionally,
the conductor exponent c(π) of π is additive with respect to isobaric sums of
representations (Theorem 4.15) and is inductive (Theorem 4.16).
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Archimedean newform theory for GLn 3

• When viewed in the Whittaker model and appropriately normalised, the newform
is a test vector for the GLn×GLn−1 (Theorem 4.17) and GLn×GLn (Theorem
4.18) Rankin–Selberg integrals whenever the second representation is spherical.

• The newform is a test vector for the Godement–Jacquet zeta integral
(Theorem 4.23).

As we explain in Sections 3 and 4, each of these results parallels an analogous result in

the nonarchimedean setting.

Some aspects of this archimedean theory have long been expected. In particular, there

has been a flurry of work in recent years studying the problem of finding test vectors
for local GLn×GLm Rankin–Selberg integrals involving ramified representations over

archimedean fields; see, for example, [HIM12, HIM16, HIM22, IM22, Miy18, Pop08]. With

the exception of [Pop08], previous work has invariably involved choosing test vectors that
are associated in some way to the minimal K -type (in the sense of Vogan [Vog81]),

whereas we propose a theory of newforms without such a direct relation to minimal

K -types. Apart from the recent work [IM22], these results have also been confined to low
rank – namely, n≤ 3 and m≤ 2.

A key part of this archimedean theory is the introduction of a new invariant,

a nonnegative integer that we call the conductor exponent, associated to a generic

irreducible Casselman–Wallach representation of GLn(F ) that in a certain sense quantifies
the extent of ramification of such a representation. Somewhat surprisingly, there seems to

have been no previous considerations in the literature of such a theory of the conductor

exponent, despite that it has many properties that mirror those of the nonarchimedean
conductor exponent introduced by Jacquet, Piatetski-Shapiro and Shalika [JP-SS81].

The structure of this article is the following. Section 2 contains a brief review of the

theory of induced representations of Whittaker and Langlands types, GLn×GLm Rankin–
Selberg integrals, Godement–Jacquet zeta integrals and L-functions and epsilon factors.

We survey the nonarchimedean theory of newforms, oldforms, conductor exponents

and test vectors for Rankin–Selberg integrals and Godement–Jacquet zeta integrals in

Section 3. This serves to motivate the results stated in Section 4, where we present an
analogous theory in the archimedean setting; these results are all essentially new, although

several of the results for n= 2 are implicit in the work of Popa [Pop08]. We discuss this

theory further in Section 5. The remaining sections are devoted to the proofs of the
theorems stated in Section 4.

2. Preliminaries

2.1. Groups and Haar measures

2.1.1. Local fields and absolute values. Let F be a local field, and denote by | · |F
the absolute value on F : for nonarchimedean F with ring of integers O, maximal ideal
p and uniformiser 	, so that 	O = p and O/p ∼= Fq for some finite field of order q, this

absolute value is normalised such that |	|F = q−1, whereas for archimedean F, this is

normalised such that
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|x|F =

{
max{x,−x} if F = R,

xx if F = C.

When the local field is clear from context, we write | · | in place of | · |F . We also let

‖ · ‖ := | · |1/2C denote the standard modulus on C.

2.1.2. Haar measures on F and F×. We let dx denote the Haar measure on F
normalised such that it is self-dual with respect to a fixed nontrivial additive character

ψ=ψF of F. For F =R, we choose ψ(x) := exp(2πix), so that dx is the Lebesgue measure;

for F = C, we choose ψ(x) := exp(2πi(x+x)), so that dx is twice the Lebesgue measure;
finally, we choose ψ to be unramified when F is nonarchimedean, in which case dx gives

O volume 1. The multiplicative Haar measure d×x for F× is defined to be ζF (1)|x|−1 dx,

where

ζF (s) :=

⎧⎪⎨⎪⎩
π− s

2Γ
(
s
2

)
if F = R,

2(2π)−sΓ(s) if F = C,
1

1−q−s if F is nonarchimedean.

2.1.3. Subgroups of GLn(F ) and the Iwasawa decomposition. For each r -tuple
of positive integers (n1, . . . ,nr) ∈Nr for which n1+ · · ·+nr = n, let P(F ) = P(n1,...,nr)(F )

denote the associated standard upper parabolic subgroup of GLn(F ) containing the

standard Borel subgroup of upper triangular matrices. This has the Levi decomposition

P(F ) = NP(F )MP(F ), where the block-diagonal Levi subgroup MP(F ) is isomorphic to
GLn1

(F )×·· ·×GLnr
(F ), while the unipotent radical NP(F ) of P(F ) consists of upper

triangular matrices with block-diagonal entries (1n1
, . . . ,1nr

); here we have written 1n
to denote the n× n identity matrix. When P(F ) is the standard Borel (and minimal
parabolic) subgroup P(1,...,1)(F ), we write NP(F ) =: Nn(F ) ∼= Fn(n−1)/2, the subgroup

of unipotent upper triangular matrices, and MP(F ) =: An(F ) ∼= (F×)n, the subgroup of

diagonal matrices.
The maximal compact subgroup Kn of GLn(F ), unique up to conjugacy, is

Kn =

⎧⎪⎨⎪⎩
O(n) if F = R,

U(n) if F = C,

GLn(O) if F is nonarchimedean.

When the context is clear, we writeK in place ofKn. Given a standard parabolic subgroup
P(F ), we have the Iwasawa decomposition GLn(F ) = P(F )Kn =NP(F )MP(F )Kn. Note

that the Iwasawa decomposition is not unique since MP(F ) intersects Kn nontrivially.

2.1.4. Haar measures on GLn(F ) and its subgroups. We normalise the Haar

measure dg on GLn(F )	 g via the Iwasawa decomposition g= uak for the standard Borel
subgroup, so that dg= δ−1

n (a)dud×adk. Here, du=
∏n−1

j=1

∏n
�=j+1 duj,� for u∈Nn(F ) with

upper triangular entries uj,� ∈ F , d×a =
∏n

j=1 d
×aj for a ∈ An(F ) with diagonal entries

aj ∈ F×, δn(a) =
∏n

j=1 |aj |n−2j+1 denotes the modulus character of the Borel subgroup,
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and dk is the Haar measure on the compact group Kn 	 k normalised to give Kn volume
1 (so that when F = R and n = 1, in which case K1 = O(1) = {±1} ∼= Z/2Z, this is just

half the counting measure).

More generally, given a standard parabolic subgroup P(F ) = NP(F )MP(F ) of GLn(F ),
the Haar measure dg on GLn(F ) 	 g is given by dg = δ−1

P (m)dud×mdk with respect to

the Iwasawa decomposition g = umk, where for m= blockdiag(m1, . . . ,mr), the modulus

character is

δP(m) =
r∏

j=1

|detmj |n−2(n1+···+nj−1)−nj

and d×m=
∏r

j=1 dmj with dmj the Haar measure on GLnj
(F ) 	mj normalised via the

Iwasawa decomposition for the standard Borel subgroup of GLnj
(F ).

2.2. Representations

2.2.1. Isobaric sums. Given representations (π1,Vπ1
), . . . ,(πr,Vπr

) of GLn1
(F ), . . . ,

GLnr
(F ), where F is a local field and n1 + · · ·+ nr = n, we form the representation

π1 � · · ·�πr of MP(F ), where � denotes the outer tensor product and MP(F ) denotes

the block-diagonal Levi subgroup of the standard (upper) parabolic subgroup P(F ) =
P(n1,...,nr)(F ) of GLn(F ). We then extend this representation trivially to a representation

of P(F ). By normalised parabolic induction, we obtain an induced representation (π,Vπ)

of GLn(F ),

π := Ind
GLn(F )
P(F )

r

�
j=1

πj,

where Vπ denotes the space of smooth functions f : GLn(F )→ Vπ1
⊗·· ·⊗Vπr

that satisfy

f(umg) = δ
1/2
P (m)π1(m1)⊗·· ·⊗πr(mr) ·f(g),

for any u ∈NP(F ), m= blockdiag(m1, . . . ,mr) ∈MP(F ), and g ∈GLn(F ), and the action

of π on Vπ is by right translation – namely, (π(h) ·f)(g) := f(gh). We call π the isobaric

sum of π1, . . . ,πr, which we denote by

π =
r

�
j=1

πj .

2.2.2. Induced representations of Whittaker and Langlands types. A repre-

sentation π of GLn(F ) is said to be an induced representation of Whittaker type if it is

the isobaric sum of π1, . . . ,πr and each πj is irreducible and essentially square-integrable.
Such a representation is admissible and smooth; moreover, if F is archimedean, then it is

a Fréchet representation of moderate growth and of finite length. The contragredient of

an induced representation of Whittaker type π= π1� · · ·�πr is π̃ = π̃1� · · ·� π̃r, which is
again an induced representation of Whittaker type. If each πj is additionally of the form

σj⊗|det| tj , where σj is irreducible, unitary and square-integrable, and �(t1)≥ ·· · ≥�(tr),
then π is said to be an induced representation of Langlands type.
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6 P. Humphries

2.2.3. Whittaker models. A Whittaker functional Λ : Vπ → C of an admissible
smooth representation (π,Vπ) of GLn(F ) is a continuous linear functional that satisfies

Λ(π(u) ·v) = ψn(u)Λ(v)

for all v ∈ Vπ and u ∈Nn(F ); here,

ψn(u) := ψ

⎛⎝n−1∑
j=1

uj,j+1

⎞⎠ .

If π is additionally irreducible, then the space of Whittaker functionals of π is at most
one-dimensional. If this space is indeed one-dimensional, so that there exists a unique

such functional up to scalar multiplication, then π is said to be generic. Every induced

representation of Langlands type (π,Vπ) admits a nontrivial Whittaker functional Λ;

moreover, π is isomorphic to its unique Whittaker model W(π,ψ), which is the image
of Vπ under the map v 
→ Λ(π(·) · v), so that W(π,ψ) consists of Whittaker functions on

GLn(F ) of the form W (g) := Λ(π(g) ·v). An induced representation of Whittaker type π

also has a one-dimensional space of Whittaker functionals, but the map v 
→ Λ(π(·) · v)
need not be injective, so that the Whittaker model may only be a model of a quotient of π.

2.2.4. Irreducible representations. For nonarchimedean F, every irreducible

admissible smooth representation π of GLn(F ) is isomorphic to the unique irreducible
quotient of some induced representation of Langlands type. If π is also generic, then it

is isomorphic to some (necessarily irreducible) induced representation of Langlands type

[CS98].

For archimedean F, we recall that a Casselman–Wallach representation of GLn(F ) is an
admissible smooth Fréchet representation of moderate growth and of finite length [Wal92;

BK14]; in particular, induced representations of Whittaker type are Casselman–Wallach

representations. Every irreducible Casselman–Wallach representation π of GLn(F ) is
isomorphic to the unique irreducible quotient of some induced representation of Langlands

type. Again, if π is additionally generic, then it is isomorphic to some (necessarily

irreducible) induced representation of Langlands type.

2.2.5. Spherical Representations. An induced representation of Whittaker type
π is said to be spherical if it has a K -fixed vector. Such a spherical representation π

must then be a principal series representation of the form | · |t1 � · · ·� | · |tn ; furthermore,

the subspace of K -fixed vectors must be one-dimensional. This K -fixed vector, which
is unique up to scalar multiplication, is called the spherical vector of π. For a spherical

representation of Langlands type π, the spherical Whittaker functionW ◦ in the Whittaker

model W(π,ψ) is given by the Jacquet integral

W ◦(g) :=

∫
Nn(F )

f◦(wnug)ψn(u)du,

where wn := antidiag(1, . . . ,1) is the long Weyl element and f◦ is the canonically

normalised spherical vector in the induced model: the unique smooth function
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f◦ : GLn(F )→ C satisfying

f◦(1n) =
n−1∏
j=1

n∏
�=j+1

ζF (1+ tj − t�), f◦(uag) = f◦(g)δ1/2n (a)

n∏
j=1

|aj |tj , f◦(gk) = f◦(g)

for all u ∈ Nn(F ), a = diag(a1, . . . ,an) ∈ An(F ), g ∈ GLn(F ), and k ∈ K. The Jacquet
integral of f◦ converges absolutely when �(t1)> · · ·>�(tn) and extends holomorphically

to all of Cn 	 (t1, . . . ,tn) (cf. Section 9.1). For nonarchimedean F, the normalisation of

W ◦ is such that W ◦(1n) = 1.

2.3. Integral representations of L-functions

2.3.1. Rankin–Selberg integrals. We recall the definition of Rankin–Selberg inte-

grals over a local field F ; see [Cog04] for further details. Given induced representations of
Whittaker type π of GLn(F ) and π′ of GLm(F ) with m≤ n, we take Whittaker functions

W ∈W(π,ψ) and W ′ ∈W
(
π′,ψ

)
and form the local GLn×GLm Rankin–Selberg integral

defined by

Ψ(s,W,W ′) :=

∫
Nm(F )\GLm(F )

W

(
g 0
0 1n−m

)
W ′(g) |detg|s−n−m

2 dg for m< n, (2.1)

Ψ(s,W,W ′,Φ) :=

∫
Nn(F )\GLn(F )

W (g)W ′(g)Φ(eng) |detg|s dg for m= n, (2.2)

where Φ ∈ S (Mat1×n(F )) is a Schwartz–Bruhat function and en := (0, . . . ,0,1) ∈
Mat1×n(F ) = Fn. These integrals converge absolutely for �(s) sufficiently large and

extend meromorphically to the entire complex plane via the local functional equation.

2.3.2. Godement–Jacquet zeta integrals. Following [GJ72; Jac79], we define

Godement–Jacquet zeta integrals over a local field F. Given an induced representation
of Whittaker type (π,Vπ) of GLn(F ), we take v1 ∈ Vπ, ṽ2 ∈ Vπ̃, with associated matrix

coefficient β(g) := 〈π(g) ·v1,ṽ2〉 of π, and form the local Godement–Jacquet zeta integral

defined by

Z(s,β,Φ) :=

∫
GLn(F )

β(g)Φ(g) |detg|s+n−1
2 dg, (2.3)

where Φ ∈ S (Matn×n(F )) is a Schwartz–Bruhat function. This integral converges

absolutely for �(s) sufficiently large and extends meromorphically to the entire complex

plane via the local functional equation.

2.4. L-functions and epsilon factors

2.4.1. Rankin–Selberg L-functions and standard L-functions. For nonar-
chimedean F, the Rankin–Selberg L-function L(s,π × π′) is the generator of the

C[qs,q−s]-fractional ideal of C(q−s) generated by the family of Rankin–Selberg integrals

Ψ(s,W,W ′) (or Ψ(s,W,W ′,Φ) if m = n) with W ∈ W(π,ψ) and W ′ ∈ W
(
π′,ψ

)
(and

https://doi.org/10.1017/S1474748024000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000227


8 P. Humphries

Φ ∈S (Mat1×n(F )) if m= n) with L(s,π×π′) normalised to be of the form P (q−s)−1 for

some P (q−s) ∈C[q−s] whose constant term is 1. For archimedean F, the Rankin–Selberg
L-function L(s,π×π′) is defined via the local Langlands correspondence as explicated in

[Kna94].

Similarly, for nonarchimedean F, the standard L-function L(s,π) is the generator of

the C[qs,q−s]-fractional ideal of C(q−s) generated by the family of Godement–Jacquet
zeta integrals Z(s,β,Φ) with v1 ∈ Vπ, ṽ2 ∈ Vπ̃, and Φ ∈ S (Matn×n(F )), with L(s,π)

normalised to be of the form P (q−s)−1 for some P (q−s) ∈ C[q−s] whose constant term

is 1. For archimedean F, the standard L-function L(s,π) is defined via the local Langlands
correspondence as explicated in [Kna94].

In both settings, upon decomposing π and π′ as isobaric sums

π =

r

�
j=1

πj, π′ =
r′

�
j′=1

π′
j′, (2.4)

we have the identities

L(s,π) =

r∏
j=1

L(s,πj), L(s,π×π′) =
r∏

j=1

r′∏
j′=1

L(s,πj ×π′
j′). (2.5)

Moreover, Rankin–Selberg L-functions involving twists by a character are related to
standard L-functions via the identity

L(s,π×| · |t) = L(s+ t,π). (2.6)

2.4.2. L-functions for representations of GLn(C). Essentially square-integrable

representations of GLn(C) exist only for n=1, in which case the representation must be a

character of the form π(z) = χκ(z)|z|tC for some κ ∈ Z and t ∈C, where z ∈GL1(C) =C×

and χ is the canonical character

χ(z) := eiarg(z) =
z

|z|1/2C

.

The L-function of π is

L(s,π) = ζC

(
s+ t+

‖κ‖
2

)
, (2.7)

where

ζC(s) := 2(2π)−sΓ(s) =

∫
C×

|x|sC exp(−2πxx) d×x. (2.8)

This integral representation of ζC(s) converges absolutely for �(s) > 0 and extends
meromorphically to the entire complex plane with poles at nonpositive integers. The

contragredient of π is π̃ = χ−κ| · |−t
C , so that

L(s,π̃) = ζC

(
s− t+

‖κ‖
2

)
. (2.9)

https://doi.org/10.1017/S1474748024000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000227


Archimedean newform theory for GLn 9

2.4.3. L-functions for representations of GLn(R). Essentially square-integrable

representations of GLn(R) exist only for n ∈ {1,2}. An essentially square-integrable

representation of GL1(R) must be a character of the form π(x) = χκ(x)|x|tR for some
κ ∈ {0,1} and t ∈ C, where x ∈GL1(R) = R× and χ is the canonical character

χ(x) := sgn(x) =
x

|x|R
.

The L-function of π is

L(s,π) = ζR(s+ t+κ), (2.10)

where

ζR(s) := π− s
2Γ

(s
2

)
=

∫
R×

|x|sR exp
(
−πx2

)
d×x. (2.11)

This integral representation of ζR(s) converges absolutely for �(s) > 0 and extends

meromorphically to the entire complex plane with poles at nonpositive even integers.

The contragredient is π̃ = χκ| · |−t
R , so that

L(s,π̃) = ζR(s− t+κ). (2.12)

For n= 2, we note that

| · |tR �χ| · |tR ∼= Ind
GL2(R)
GL1(C)

| · |tC,

where GL1(C) is viewed as a subgroup of GL2(R) via the identification a+ ib 
→
(

a b
−b a

)
.

For κ �= 0, the essentially discrete series representation of weight ‖κ‖+1,

D‖κ‖+1⊗|det| tR := Ind
GL2(R)
GL1(C)

χκ| · |tC ∼= Ind
GL2(R)
GL1(C)

χ−κ| · |tC,

is essentially square-integrable, and every essentially square-integrable representation of

GL2(R) is of the form π =Dκ⊗|det| tR for some integer κ≥ 2 and t ∈ C. The L-function
of π is

L(s,π) = ζC

(
s+ t+

κ−1

2

)
= ζR

(
s+ t+

κ−1

2

)
ζR

(
s+ t+

κ+1

2

)
. (2.13)

The contragredient of π is π̃ =Dκ⊗|det|−t
R , so that

L(s,π̃) = ζC

(
s− t+

κ−1

2

)
= ζR

(
s− t+

κ−1

2

)
ζR

(
s− t+

κ+1

2

)
. (2.14)

2.4.4. Epsilon factors. To any induced representations of Whittaker type π of

GLn(F ) and π′ of GLm(F ) and any nontrivial additive character ψ of F, one can associate

the epsilon factor ε(s,π,ψ) of π, ε(s,π′,ψ) of π′, and ε(s,π×π′,ψ) of π×π′, which arise via
the local functional equations for the Godement–Jacquet zeta integral and GLn×GLm

Rankin–Selberg integral, respectively. In particular, the local functional equation for the

Godement–Jacquet zeta integral is

Z(1−s,β̃,Φ̂)

L(1−s,π̃)
= ε(s,π,ψ)

Z(s,β,Φ)

L(s,π)
, (2.15)
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where β̃(g) := β
(
tg−1

)
with tg denoting the transpose of g, while the Fourier transform

Φ̂ is

Φ̂(y) :=

∫
Matn×n(F )

Φ(x)ψ(Tr(x ty))dx.

Note that this normalisation of the Fourier transform differs from that in [GJ72] and that
the epsilon factor is dependent on this normalisation. For the local functional equation

for the GLn×GLm Rankin–Selberg integral, see, for example, [Jac09, Theorem 2.1].

Upon decomposing π and π′ as isobaric sums as in (2.4), we have the identities

ε(s,π,ψ) =

r∏
j=1

ε(s,πj,ψ), ε(s,π×π′,ψ) =
r∏

j=1

r′∏
j′=1

ε(s,πj ×π′
j′,ψ) (2.16)

by [JP-SS83, Theorem (3.1), Proposition (8.4), Proposition (9.4)] for nonarchimedean F
and via the local Langlands correspondence for archimedean F. When π′ is the trivial

representation of GL1(F ), we have the equality ε(s,π,ψ) = ε(s,π× π′,ψ) between the

epsilon factor of π defined via the Godement–Jacquet zeta integral and the epsilon factor
of π×π′ defined via the GLn×GL1 Rankin–Selberg integral.

For nonarchimedean F, the epsilon factors ε(s,π,ψ) and ε(s,π × π′,ψ) are units in

C[qs,q−s] of the form

ε(s,π,ψ) = ε

(
1

2
,π,ψ

)
q−c(π)(s− 1

2 ), ε(s,π×π′,ψ) = ε

(
1

2
,π×π′,ψ

)
q−c(π×π′)(s− 1

2 )

(2.17)

for some nonnegative integers c(π) and c(π×π′).
For archimedean F, we have that

ε(s,π,ψ) =

⎧⎪⎨⎪⎩
i−κ if F = R and π = χκ| · |tR for κ ∈ {0,1},
i−κ if F = R and π =Dκ⊗|det| tR for κ≥ 2,

i−‖κ‖ if F = C and π = χκ| · |tC for κ ∈ Z,

(2.18)

which, via (2.15), may be used to determine ε(s,π,ψ) and ε(s,π×π′,ψ) for any induced

representations of Whittaker type π and π′, not just for essentially square-integrable
representations.

3. Nonarchimedean Newform Theory

We now detail the theory of the conductor exponent, newforms and oldforms associated to
generic irreducible admissible smooth representations of GLn(F ) with F nonarchimedean

(or more generally associated to induced representations of Whittaker or Langlands type;

cf. Section 2.2.4), as well as the relation between newforms and test vectors for GLn×GLm

Rankin–Selberg integrals and test vectors for Godement–Jacquet zeta integrals. The

results herein are for the most part well known; we recall them as motivation for Section 4,

in which we discuss analogous yet new results for archimedean F.
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3.1. The conductor exponent, the newform, and the newform K -type

Let F be a nonarchimedean local field, and let K = GLn(O) be the maximal compact

subgroup of GLn(F ), unique up to conjugation. For a nonnegative integer m, we define

the following finite index subgroup of K :

K1 (p
m) := {k ∈K : kn,1, . . . ,kn,n−1,kn,n−1 ∈ pm} .

(This is not to be confused with K1 := GL1(O) =O×, the maximal compact subgroup of

GL1(F ) = F×.) Given an induced representation of Langlands type (π,Vπ) of GLn(F ),

we define the vector subspace V
K1(p

m)
π of Vπ consisting of K1(p

m)-fixed vectors:

V K1(p
m)

π := {v ∈ Vπ : π(k) ·v = v for all k ∈K1 (p
m)} .

The following theorem is due to Casselman [Cas73, Theorem 1] for n= 2 and Jacquet,

Piatetski-Shapiro and Shalika for arbitrary n (though cf. Remark 3.15).

Theorem 3.1 (Jacquet–Piatetski-Shapiro–Shalika [JP-SS81, Théorème (5)]). Let (π,Vπ)

be an induced representation of Langlands type of GLn(F ). There exists a minimal

nonnegative integer m for which V
K1(p

m)
π is nontrivial. For this minimal value of m,

V
K1(p

m)
π is one-dimensional.

Definition 3.2. We define the conductor exponent of π to be this minimal nonnegative

integer m and denote it by c(π); we then call the ideal pc(π) the conductor of π. The

newform of π is defined to be the nonzero vector v◦ ∈ V
K1(p

c(π))
π , unique up to scalar

multiplication.

The uniqueness of the newform may be thought of as being a multiplicity-one theorem

for newforms. The reason for naming this distinguished vector a newform is due to

its relation to the classical theory of modular forms: as shown by Casselman [Cas73,

Section 3], an automorphic form on GL2(AQ) whose associated Whittaker function is a
pure tensor composed of newforms in the Whittaker model is the adèlic lift of a classical

newform in the sense of Atkin and Lehner [AL70].

Remark 3.3. There is no consensus on the name of this distinguished vector: Casselman
[Cas73] leaves it unnamed; Jacquet, Piatetski-Shapiro and Shalika [JP-SS81] name it the

essential vector, whereas Reeder [Ree91] calls it the new vector; and Schmidt [Sch02],

regarding π as being the local component of an automorphic representation, refers to it
as the local newform. When viewed in the Whittaker model, this vector is referred to by

Popa [Pop08] as the Whittaker newform, whereas Matringe [Mat13] calls it the essential

Whittaker function. Similarly, some authors instead call c(π) the conductor of π, whereas
others yet refer to qc(π) as the conductor of π. Perhaps a more apt name for qc(π) is the

absolute conductor of π, being the absolute norm of the ideal pc(π).

Remark 3.4. Under the local Langlands correspondence, which gives a bijection between
irreducible admissible smooth representations π of GLn(F ) and n-dimensional Frobenius

semisimple Weil–Deligne representations ρ of F, the conductor exponent c(π) is equal to

the Artin exponent a(ρ).
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If c(π) = 0, so that K1(p
c(π)) =K, then π must be a spherical representation, and we

say that π is unramified. If c(π) > 0, then π is said to be ramified. In this sense, the

conductor exponent is a measure of the extent of ramification of π: it quantifies how

ramified π may be.

Since π is admissible, HomK(τ,π|K) is finite-dimensional for each irreducible smooth
representation τ of K. We say that such a representation τ is a K-type of π if HomK(τ,π|K)

is nontrivial, and we call dimHomK(τ,π|K) the multiplicity of τ in π. The complexity of

an irreducible smooth representation τ of K can be measured by its level m, which is the
least nonnegative integer m for which τ factors through the finite group GLn(O/pm). In

[Hum22], the author proved the existence of a distinguished K -type of π that occurs with

multiplicity one and is closely associated to the newform and the conductor exponent.

Theorem 3.5 [Hum22, Theorem 4.11]. Let (π,Vπ) be an induced representation of

Langlands type of GLn(F ). Among the K-types of π whose restriction to

Kn−1,1 :=

{(
a b

0 1

)
∈Kn : a ∈Kn−1, b ∈Mat(n−1)×1(O)

}
contains the trivial representation, there exists a unique K-type τ◦ of minimal level.
Furthermore, τ◦ occurs with multiplicity one in π, the level of τ◦ is equal to the conductor

exponent c(π), and the subspace of Vπ of τ◦-isotypic Kn−1,1-invariant vectors is equal to

the one-dimensional subspace V
K1(p

c(π))
π spanned by the newform v◦.

Definition 3.6. We call the distinguished K -type τ◦ the newform K-type.

3.2. Oldforms

Although Jacquet, Piatetski-Shapiro and Shalika merely show that V
K1(p

c(π))
π is one-

dimensional, one can also calculate the dimension of V
K1(p

m)
π for all m≥ c(π) in terms of

a binomial coefficient; for n= 2, this is due to Casselman [Cas73, Corollary to the Proof],

while Reeder has proven this result for arbitrary n.

Theorem 3.7 (Reeder [Ree91, Theorem 1]). Let (π,Vπ) be an induced representation of

Langlands type of GLn(F ) with n≥ 2. We have that

dimV K1(p
m)

π =

{(
m−c(π)+n−1

n−1

)
if m≥ c(π),

0 otherwise.

Casselman and Reeder also give a basis for each of these spaces in terms of the action

of certain Hecke operators on the newform. For m> c(π), we call V
K1(p

m)
π the space of

oldforms of exponent m. Once again, the reason for naming these distinguished vectors
oldforms is due to their relation to the classical theory of modular forms: an automorphic

form on GL2(AQ) whose associated Whittaker function is a pure tensor composed of

Whittaker newforms at all but finitely many places and of Whittaker oldforms at the
remaining places corresponds to an oldform in the sense of Atkin and Lehner [AL70].

In [Hum22], the author showed that spaces of oldforms can be described in terms of

distinguished K -types.
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Theorem 3.8 [Hum22, Theorem 4.11]. Let (π,Vπ) be an induced representation of

Langlands type of GLn(F ). For each m ≥ c(π), there exists a unique K-type τm of π

of level m whose restriction to Kn−1,1 contains the trivial representation. Furthermore,
this K-type occurs with multiplicity(

m− c(π)+n−2

n−2

)
,

and the direct sum indexed by nonnegative integers � ∈ {c(π), . . . ,m} of the subspaces of

Vπ of τ�-isotypic Kn−1,1-invariant vectors is equal to V
K1(p

m)
π , the space of oldforms of

exponent m.

3.3. Additivity and inductivity of the conductor exponent

Associated to any induced representation of Langlands type π of GLn(F ) is an integer
c(π) defined via the epsilon factor as in (2.17).

Theorem 3.9 (Jacquet–Piateski-Shapiro–Shalika [JP-SS83, Section 5]). Let π be an

induced representation of Langlands type of GLn(F ). The integer c(π) appearing in the

epsilon factor ε(s,π,ψ) as in (2.17) is equal to the conductor exponent of π.

From the multiplicativity of epsilon factors (2.16), we have the following.

Theorem 3.10 (Jacquet–Piateski-Shapiro–Shalika [JP-SS83, Theorem (3.1)]). For an

induced representation of Langlands type π = π1 � · · ·�πr of GLn(F ), we have that

c(π) =

r∑
j=1

c(πj).

Thus, the conductor exponent c(π) is additive with respect to isobaric sums; equiva-

lently, the conductor pc(π) is multiplicative.

Remark 3.11. In the classical setting of automorphic forms on the upper half-plane,

Theorem 3.10 manifests itself via the conductor of an Eisenstein newform: an Eisenstein
newform, in the sense of [You19], is associated to a pair of primitive Dirichlet characters,

and the conductor of such a newform is the product of the conductors of the two Dirichlet

characters.

Finally, the epsilon factor is inductive in degree zero: if π and π′ are induced

representations of Langlands type of GLn(E), where E is a finite cyclic extension of

F of degree m ≥ 2, and AIE/Fπ and AIE/Fπ
′ denote the induced representations of

Langlands type of GLmn(F ) obtained by induction [HH95], then

ε
(
s,AIE/Fπ,ψ

)
ε
(
s,AIE/Fπ′,ψ

) =
ε
(
s,π,ψ ◦TrE/F

)
ε
(
s,π′,ψ ◦TrE/F

) .
Taking π′ to be the isobaric sum of n copies of the trivial representation, we deduce the

following.
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Theorem 3.12. For an induced representation of Langlands type π of GLn(E), where E

is a finite cyclic extension of F of degree m≥ 2, we have that

c
(
AIE/Fπ

)
= fE/F c(π)+dE/Fn,

where fE/F denotes the residual degree of E/F and dE/F denotes the valuation of the
discriminant of E/F .

Remark 3.13. This result also has a classical manifestation. Let ψ be a Hecke

Größencharakter of a quadratic extension E of Q with conductor q⊂OE . By automorphic

induction, one can associate to ψ a classical newform fψ :H→C of conductor N(q)DE/Q,
where N(q) :=#OE/q is the absolute norm of the integral ideal q andDE/Q is the absolute

discriminant of E/Q.

3.4. Test vectors for Rankin–Selberg integrals

Next, we discuss the relation between newforms and test vectors for Rankin–Selberg

integrals. We first recall the test vector problem for GLn×GLm Rankin–Selberg integrals.

Test Vector Problem. Given induced representations of Langlands type π of GLn(F )
and π′ of GLm(F ) with n ≥ m, determine the existence of right Kn- and Km-finite

Whittaker functions W ∈W(π,ψ) and W ′ ∈W(π′,ψ), and additionally, a right Kn-finite

Schwartz–Bruhat function Φ ∈ S (Mat1×n(F )) = S (Fn) should m be equal to n, such
that

L(s,π×π′) =

{
Ψ(s,W,W ′) if m< n,

Ψ(s,W,W ′,Φ) if m= n.

In full generality, this problem remains unresolved. For m = n− 1, π′ a spherical rep-
resentation of Langlands type, and W ′ =W ′◦ ∈W(π′,ψ) the spherical vector normalised

as in Section 2.2.5, this has been solved by Jacquet, Piatetski-Shapiro and Shalika.

Theorem 3.14 (Jacquet–Piatetski-Shapiro–Shalika [JP-SS81, Théorème (4)], Jacquet

[Jac12], Matringe [Mat13, Corollary 3.3]). For n≥ 2, let π be an induced representation
of Langlands type of GLn(F ). There exists a Whittaker function W ∈W(π,ψ) such that for

any spherical representation of Langlands type π′ of GLn−1(F ) with spherical Whittaker

function W ′◦ ∈W(π′,ψ),

Ψ(s,W,W ′◦) = L(s,π×π′)

for �(s) sufficiently large.

Moreover, there exists a unique such function W ◦ ∈W(π,ψ) that additionally satisfies

W ◦
(
g

(
k 0
0 1

))
=W ◦(g)

for all k ∈ Kn−1. Up to multiplication by a scalar, this function is the newform

v◦ ∈ V
K1(p

c(π))
π viewed in the Whittaker model.
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That is, W ◦ ∈ W(π,ψ) is a right Kn−1-invariant test vector for the GLn×GLn−1

Rankin–Selberg integral for all spherical representations π′ of GLn−1(F ). We call W ◦

the Whittaker newform of π.

Remark 3.15. The proof of [JP-SS81, Théorème (4)] is in fact incomplete, as was

observed by Matringe; correct proofs have subsequently independently been given by

Jacquet [Jac12, Theorem 1] and Matringe [Mat13, Corollary 3.3].

Remark 3.16. The normalisation of the Whittaker newform is such that W ◦(1n) = 1.

The Whittaker newform is a test vector for more than just the GLn×GLn−1 Rankin–
Selberg integral for all spherical representations π′ of GLn−1(F ).

Theorem 3.17 (Kim [Kim10, Theorem 2.2.1], Matringe [Mat13, Corollary 3.3]). Let π be

an induced representation of Langlands type of GLn(F ) with n≥ 2. For m ∈ {1, . . . ,n−2}
and for every spherical representation of Langlands type π′ of GLm(F ) with spherical
Whittaker function W ′◦ ∈W(π′,ψ), the Whittaker newform W ◦ ∈W(π,ψ) of π satisfies

Ψ(s,W ◦,W ′◦) = L(s,π×π′)

for �(s) sufficiently large.

Miyauchi also gave a proof when m = 1 [Miy14, Theorem 5.1] by a different method

that generalises easily to prove the result for m ∈ {2, . . . ,n−1}.
A similar theory also holds for the case m= n.

Theorem 3.18 (Kim [Kim10, Theorem 2.1.1]). Let π be an induced representation of

Langlands type of GLn(F ). Then for every spherical representation of Langlands type
π′ of GLn(F ) with spherical Whittaker function W ′◦ ∈W(π′,ψ), the Whittaker newform

W ◦ ∈W(π,ψ) of π satisfies

Ψ(s,W ◦,W ′◦,Φ◦) = L(s,π×π′)

for �(s) sufficiently large, where Φ◦ ∈ S (Mat1×n(F )) is given by

Φ◦(x1, . . . ,xn) :=

{
ω−1

π (xn)

vol(K0(pc(π)))
if x1, . . . ,xn−1 ∈ pc(π) and xn ∈ O×,

0 otherwise,

if c(π)> 0, where ωπ denotes the central character of π and

K0 (p
m) := {k ∈K : kn,1, . . . ,kn,n−1 ∈ pm},

while for c(π) = 0,

Φ◦(x1, . . . ,xn) :=

{
1 if x1, . . . ,xn ∈ O,

0 otherwise.

Again, this can also be proven via the method of Miyauchi [Miy14].

Remark 3.19. Little is known about test vectors for Rankin–Selberg integrals when

π′ is ramified. Kim [Kim10, Proposition 2.2.2] has shown that Whittaker newforms are
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not test vectors when π′ is ramified: if π′ is a ramified representation of GLm(F ) with

m<n and W ◦,W ′◦ are newforms of π and π′, respectively, then Ψ(s,W ◦,W ′◦) = 0 for all

s∈C. For n=m= 2, Kim has determined test vectors for certain pairs of representations
π,π′ [Kim10]. Recently, Kurinczuk and Matringe have explicitly determined test vectors

for n =m arbitrary π supercuspidal, and π′ = π̃⊗χ for some unramified character χ of

F× [KM19]. Booker, Krishnamurthy and Lee have resolved a weakened version of the
test vector problem in [BKL20] when m < n: they construct vectors W ∈ W(π,ψ) and

W ′ ∈W(π′,ψ) for which Ψ(s,W,W ′) is a multiple of L(s,π×π′) by a nonzero polynomial

in q−s; an analogous result when m= n is due to Jo [Jo23, Theorem 1.1]. Finally, Jacquet,
Piatetski-Shapiro and Shalika have shown that for each pair of representations π,π′ of
GLn(F ),GLm(F ) with n >m, there exist finite collections {Wj} ⊂W(π,ψ) and {W ′

j} ⊂
W(π′,ψ) of right Kn- and Km-finite Whittaker functions for which

∑
jΨ(s,Wj,W

′
j) =

L(s,π×π′) [JP-SS83, Theorem (2.7)]; a similar result (additionally involving Schwartz–

Bruhat functions {Φj} ⊂ S (Mat1×n(F ))) also holds for m= n.

3.5. Test Vectors for Godement–Jacquet Zeta Integrals

Finally, we mention the relation between newforms and test vectors for Godement–
Jacquet zeta integrals. The test vector problem for the Godement–Jacquet zeta integral

is the following.

Test Vector Problem. Given an induced representation of Langlands type (π,Vπ) of
GLn(F ), determine the existence of K -finite vectors v1 ∈ Vπ, ṽ2 ∈ Vπ̃, and a bi-K -finite

Schwartz–Bruhat function Φ ∈ S (Matn×n(F )) such that

Z(s,β,Φ) = L(s,π).

This has been solved for spherical representations by Godement and Jacquet and for

nonspherical representations by the author.

Theorem 3.20 (Godement–Jacquet [GJ72, Lemma 6.10], Humphries [Hum21, Theorem

1.2]). Let (π,Vπ) be an induced representation of Langlands type of GLn(F ). Let β(g)
denote the matrix coefficient 〈π(g) ·v◦,ṽ◦〉, where v◦ ∈ Vπ denotes the newform and ṽ◦ ∈ Vπ̃

is the corresponding newform normalised such that β(1n) = 1. Then

Z(s,β,Φ) = L(s,π)

for �(s) sufficiently large, where Φ ∈ S (Matn×n(F )) is given by

Φ(x) :=

{
ω−1

π (xn,n)

vol(K0(pc(π)))
if x ∈Matn×n(O) with xn,1, . . . ,xn,n−1 ∈ pc(π) and xn,n ∈ O×,

0 otherwise

if c(π)> 0, while for c(π) = 0,

Φ(x) :=

{
1 if x ∈Matn×n(O),

0 otherwise.
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4. Archimedean Newform Theory

4.1. Analogues of nonarchimedean results

For an induced representation of Whittaker type (π,Vπ) of GLn(F ) with F archimedean,
it is not so clear what the definition of the conductor exponent and the newform of π

ought to be. When F is nonarchimedean, the conductor exponent may be defined either

as the least nonnegative integer m for which V
K1(p

m)
π is nonempty or as the exponent

appearing in the epsilon factor ε(s,π,ψ). Neither of these properties, however, can be

easily imported to the archimedean setting. Indeed, there is no obvious analogue of the

congruence subgroup K1(p
m) (though cf. [JN19]), while the epsilon factor ε(s,π,ψ) is an

integral power of i for all s ∈ C; this integer is therefore only determined modulo 4, and

so cannot be directly used to define the conductor exponent.

Our starting observation that leads us to define the conductor exponent and newform

in the archimedean setting is that the key property shared by the newform defined in
terms of the congruence subgroup K1(p

c(π)) in Theorem 3.1 and the Whittaker newform

defined in terms of a test vector for the GLn×GLn−1 Rankin–Selberg integral in Theorem

3.14 is its invariance under the action of the subgroup Kn−1 	 k′ embedded in GLn(F )
via the map k′ 
→

(
k′ 0
0 1

)
. Moreover, Theorem 3.1 essentially states that the newform

is the ‘simplest’ such vector for which this is so, in the sense that V
K1(p

m)
π is trivial

for m< c(π). The following lemma exemplifies the necessity of Kn−1-invariance for the

Whittaker newform.

Lemma 4.1. Let (π,Vπ) be an induced representation of Langlands type of GLn(F ) with
n ≥ 2, and let W ∈ W(π,ψ) be a right Kn-finite Whittaker function, so that the action

of π
(
k′ 0
0 1

)
on W for k′ ∈Kn−1 generates a finite-dimensional representation τ ′ of Kn−1.

If HomKn−1
(1,τ ′) is trivial, then the GLn×GLn−1 Rankin–Selberg integral Ψ(s,W,W ′◦)

is identically equal to zero for every spherical representation of Langlands type π′ of

GLn−1(F ) with spherical Whittaker function W ′◦ ∈W(π′,ψ).

Proof. We may write W (g) =Λ(π(g) ·v) for some v ∈ Vπ. Via the Iwasawa decomposition
with respect to the standard Borel subgroup and the fact that W ′◦ is the spherical

Whittaker function, the Rankin–Selberg integral Ψ(s,W,W ′◦), defined in (2.1), is equal to∫
An−1(F )

W ′◦(a′) |deta′|s− 1
2 δ−1

n−1(a
′)Λ

(
π

(
a′ 0

0 1

)
·
∫
Kn−1

π

(
k′ 0

0 1

)
·vdk′

)
d×a′,

and the integral over Kn−1 vanishes whenever HomKn−1
(1,τ ′) is trivial.

This leads us to search for vectors v ∈Vπ that are invariant under the action ofKn−1 and

to define the newform of π to be the ‘simplest’ such vector. A natural way to interpret
‘simplest’ is to search for vectors in K -types of π that are ‘small’ in a sense that we

make precise. Once we have located the newform of π, we show that, when viewed in

the Whittaker model, it is a Whittaker newform in the sense of Theorem 3.14. In this
way, we work in the reverse direction of the nonarchimedean setting, where Jacquet,

Piatetski-Shapiro and Shalika [JP-SS81] first prove Theorem 3.14 and then use this to

deduce Theorem 3.1.
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4.2. K -Types

The representation π being admissible means that HomK (τ,π|K) is finite-dimensional for

any τ in K̂, the set of equivalence classes of irreducible representations of K. We call τ

a K -type of π should the vector space HomK (τ,π|K) be nontrivial. To each τ ∈ K̂, one
can associate a nonnegative integer degτ called the Howe degree of τ [How89]; this is the

archimedean analogue of the level of an irreducible smooth representation of GLn(O). In

order to define this, we first recall the theory of highest weights for the two groups U(n)
and O(n), then explain how the Howe degree of an irreducible representation is defined

in terms of the highest weight.

4.2.1. Highest weight theory for U(n). The equivalence classes of finite-
dimensional irreducible representations of the unitary group

U(n) :=
{
k ∈Matn×n(C) : k

t
k = 1n

}
are parametrised by the set of highest weights, which we may identify with n-tuples of

integers that are nonincreasing:

Λn := {μ= (μ1, . . . ,μn) ∈ Zn : μ1 ≥ ·· · ≥ μn} .

We denote by τμ an irreducible representation of U(n) with highest weight μ ∈ Λn. The
Howe degree of τμ is given by

degτμ =

n∑
j=1

‖μj‖. (4.2)

Remark 4.3. There is another natural invariant that one associates to an irreducible
representation τμ – namely, its Vogan norm ‖τμ‖V [Vog81], which is

‖τμ‖2V =

n∑
j=1

(μj +n+1−2j)
2
.

4.2.2. Highest weight theory for O(n). The equivalence classes of finite-

dimensional irreducible representations τμ of the orthogonal group

O(n) :=
{
k ∈Matn×n(R) : k

tk = 1n
}

are parametrised by an n-tuple of integers μ, which we again call highest weights (though

unlike U(n), the compact Lie group O(n) is not connected). These highest weights μ are

precisely those for which the highest weight vector of the irreducible representation of
U(n) with highest weight μ generates τμ when restricted to O(n), and are of the form

μ= (μ1, . . . ,μm, η, . . . ,η︸ ︷︷ ︸
n−2m times

, 0, . . . ,0︸ ︷︷ ︸
m times

) ∈ Nn
0 ,

where m ∈ {0, . . . ,�n
2 �}, μ1 ≥ ·· · ≥ μm ≥ 1, η ∈ {0,1} and N0 := N∪{0}. We again let Λn

denote the set of highest weights; note, in particular, that Λ1 = {0,1}. We denote by τμ an
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irreducible representation of O(n) with highest weight μ ∈ Λn. The Howe degree of τμ is

degτμ =

n∑
j=1

μj . (4.4)

Remark 4.5. The Vogan norm ‖τμ‖V of τμ is

‖τμ‖2V =

m∑
j=1

(μj +n−2j)
2
+

�n
2 �∑

j=m+1

(n−2j)2.

4.3. The conductor exponent, the newform, and the newform K -type

Let (π,Vπ) be an induced representation of Whittaker type of GLn(F ). We define the

projection map ΠKn−1 : Vπ → Vπ given by

ΠKn−1(v) :=

∫
Kn−1

π

(
k′ 0
0 1

)
·vdk′,

whose image is the subspace of Kn−1-invariant vectors; for the sake of consistency and

completeness, we define ΠK0 to be the identity when n= 1. We also define the projection
map

Πτ (v) :=

∫
Kn

ξτ (k)π(k) ·vdk

for each irreducible representation τ ∈ K̂n, where

ξτ (k) := (dimτ)Trτ(k−1)

is the elementary idempotent associated to τ . The image of Vπ under Πτ is the τ -isotypic
subspace V τ

π of Vπ, which is finite-dimensional since π is admissible and is trivial unless

τ is a K -type of π. The composition of these two projections is the projection(
Πτ,Kn−1

)
(v) :=

(
ΠKn−1 ◦Πτ

)
(v) =

(
Πτ ◦ΠKn−1

)
(v) =

∫
Kn

ξτ,Kn−1(k)π(k) ·vdk

onto the subspace of Kn−1-invariant τ -isotypic vectors

V τ,Kn−1
π :=

(
Πτ,Kn−1

)
(Vπ) =

{
v ∈ V τ

π : π

(
k′ 0

0 1

)
·v = v for all k′ ∈Kn−1

}
.

Here,

ξτ,Kn−1(k) :=

∫
Kn−1

ξτ
((

k′ 0

0 1

)
k

)
dk′ =

∫
Kn−1

ξτ
(
k

(
k′ 0

0 1

))
dk′. (4.6)

Note that ξτ,Kn−1 is identically equal to zero if and only if HomKn−1
(1,τ |Kn−1

) is trivial.
Finally, for any nonnegative integer m, we set

Vπ(m)Kn−1 :=
⊕
τ∈K̂n

degτ=m

V τ,Kn−1
π ,
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the subspace of Kn−1-invariant vectors that are τ -isotypic for some τ ∈ K̂n of degree m.

We prove the following.

Theorem 4.7 (Cf. Theorems 3.1 and 3.5). Let (π,Vπ) be an induced representation

of Whittaker type of GLn(F ). There exists a minimal nonnegative integer m for which
Vπ(m)Kn−1 is nontrivial. For this minimal value of m, Vπ(m)Kn−1 is one-dimensional.

That is, we show that among the K -types τ ∈ K̂n of π for which V
τ,Kn−1
π is nontrivial,

there exists a unique such K -type τ◦ minimising degτ ; moreover, V
τ◦,Kn−1
π is one-

dimensional.

Definition 4.8 (Cf. Definitions 3.2 and 3.6). We call degτ◦ the conductor exponent of

π and denote it by c(π), and the nonzero vector v◦ ∈ Vπ(c(π))
Kn−1 = V

τ◦,Kn−1
π , unique

up to scalar multiplication, is called the newform of π. The K -type τ◦ containing the
newform is called the newform K -type of π.

Analogously to the nonarchimedean theory of the conductor exponent, we regard c(π)
as quantifying the extent to which π is ramified; once again, the conductor exponent c(π)

is zero if and only if π is unramified, so that π is a spherical representation. Moreover, the

fact that v◦ is unique up to scalar multiplication may be thought of as a multiplicity-one

theorem for newforms.

Remark 4.9. In general, the newform K -type τ◦ is not equal to the minimal K -type

(in the sense of Vogan [Vog81]) of π, and degτ◦ is not equal to the Vogan norm of the
minimal K -type. However, we shall see that the Howe degree of the minimal K -type is

equal to degτ◦ = c(π). This gives another way to define the conductor exponent, albeit

with the downside that the connection between the minimal K -type and the newform is
unclear.

Remark 4.10. The conductor exponent and newform K -type of an induced represen-
tation of Whittaker type π = π1 � · · ·� πr remain unchanged when π is replaced by

πσ(1) � · · ·�πσ(r) for any permutation σ ∈ Sr.

4.4. Oldforms

We also define oldforms in the archimedean setting.

Definition 4.11. The space of oldforms of exponent m> c(π) is Vπ(m)Kn−1 .

Theorem 4.12 (Cf. Theorems 3.7 and 3.8). Let (π,Vπ) be an induced representation of

Whittaker type of GLn(F ) with n≥ 2. We have that

dimVπ(m)Kn−1 =

{(m−c(π)
2 +n−2
n−2

)
if m≥ c(π) and m≡ c(π) (mod 2),

0 otherwise.

More precisely, we prove that when m ≥ c(π) with m ≡ c(π) (mod 2), either

HomKn
(τ,π|Kn

) or HomKn−1
(1,τ |Kn−1

) is trivial for all but one K -type τ with degτ =m,
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and for this particular K -type,

dimHomKn
(τ,π|Kn

) =

(m−c(π)
2 +n−2

n−2

)
,

dimHomKn−1

(
1,τ |Kn−1

)
= 1.

The fact that Vπ(m)Kn−1 is trivial when m≡ c(π)+1 (mod 2) follows more generally from

a result of Fan [Fan18] – namely, that for τ ∈ K̂n, V
τ
π is trivial whenever degτ ≡ c(π)+1

(mod 2).

We may think of
⊕m

j=0Vπ(j)
Kn−1 as being the archimedean analogue of V

K1(p
m)

π . This

space has dimension
(�m−c(π)

2 �+n−1
n−1

)
if m≥ c(π) and dimension zero otherwise. This aligns

closely with the dimension of V
K1(p

m)
π as in Theorem 3.7 – namely,

(
m−c(π)+n−1

n−1

)
if

m≥ c(π) and zero otherwise.

Remark 4.13. For nonarchimedean F, Reeder [Ree91] explicitly describes the space of

oldforms as the image of the space of newforms under the action of certain elements of

the Hecke algebra. It would be of interest to generalise this to the archimedean setting.

In particular, when viewed in the Whittaker model, it would be of interest to describe
oldforms in terms of the action of certain differential operators on the newform. For

GL2(R), these are simply the Maaß raising and lowering operators, while the theory for

GL3(R) is explored in [BM19].

4.5. Additivity and inductivity of the conductor exponent

Associated to any induced representation of Whittaker type π of GLn(F ) is the epsilon
factor ε(s,π,ψ); with ψ chosen as in Section 2.1.2, the epsilon factor is an integral power

of i via (2.16) and (2.18). This integer is only determined modulo 4, in contrast to the

nonarchimedean setting. In this regard, the following theorem is not so instructive as
Theorem 3.9.

Theorem 4.14 (Cf. Theorem 3.9). Let π be an induced representation of Whittaker

type of GLn(F ). The epsilon factor ε(s,π,ψ) is equal to i−c(π), where c(π) denotes the

conductor exponent of π.

Upon decomposing π as the isobaric sums π = π1 � · · ·�πr, we have the identity

i−c(π) = ε(s,π,ψ) =

r∏
j=1

ε(s,πj,ψ) = i−c(π1)−···−c(πr)

via (2.18). This is only enough to conclude that c(π) is congruent to c(π1)+ · · ·+ c(πr)

modulo 4, rather than an equality of conductor exponents. Nonetheless, we still prove by

different means that the conductor exponent is additive with respect to isobaric sums.
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Theorem 4.15 (Cf. Theorem 3.10). For an induced representation of Whittaker type

π = π1 � · · ·�πr of GLn(F ), we have that

c(π) =
r∑

j=1

c(πj).

The epsilon factor is again inductive in degree zero, so that if π and π′ are induced

representations of Whittaker type of GLn(C) and AIC/Rπ and AIC/Rπ
′ denote the

induced representation of Whittaker type of GL2n(R) obtained by induction [Hen10],
then

ε
(
s,AIC/Rπ,ψ

)
ε
(
s,AIC/Rπ′,ψ

) =
ε
(
s,π,ψ ◦TrC/R

)
ε
(
s,π′,ψ ◦TrC/R

) .
Taking π′ to be the isobaric sum of n copies of the trivial representation, we find that

c
(
AIC/Rπ

)
≡ c(π)+n (mod 4).

We prove by different means that this congruence can be replaced by an equality.

Theorem 4.16 (Cf. Theorem 3.12). For an induced representation of Whittaker type π

of GLn(C), we have that

c
(
AIC/Rπ

)
= c(π)+n.

4.6. Test vectors for Rankin–Selberg integrals

One can once again ask about the existence of test vectors for GLn×GLm Rankin–Selberg

integrals. This is known for spherical representations π and π′ with m ∈ {n− 1,n}, due
to Stade [Sta01, Theorem 3.4], [Sta02, Theorem 1.1] (see also [GLO08, Lemma 4.2] and

[IsSt13, Theorem 3.1]), while recent work of Ishii and Miyazaki deals with the case of pairs

of principal series representations of certain specific forms [IM22, Theorem 2.5]. We prove
the existence of a test vector for nonspherical representations π of GLn(F ) provided that

π′ is a spherical representation of Langlands type of GLn−1(F ) and W ′ =W ′◦ ∈W
(
π′,ψ

)
is the spherical vector normalised as in Section 2.2.5.

Theorem 4.17 (Cf. Theorem 3.14). Let π be an induced representation of Langlands

type of GLn(F ) with n≥ 2. There exists a Whittaker function W ∈W(π,ψ) such that for
any spherical representation of Langlands type π′ of GLn−1(F ) with spherical Whittaker

function W ′◦ ∈W(π′,ψ),

Ψ(s,W,W ′◦) = L(s,π×π′)

for �(s) sufficiently large.

Moreover, there exists a unique such function W ◦ ∈W(π,ψ) that additionally satisfies

W ◦
(
g

(
k 0
0 1

))
=W ◦(g)

for all k ∈ Kn−1. Up to multiplication by a scalar, this function is the newform

v◦ ∈ Vπ(c(π))
Kn−1 viewed in the Whittaker model.
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We again callW ◦ the Whittaker newform. The normalisation of the Whittaker newform
is specified in Definition 9.2.

Stade [Sta02, Theorem 1.1] has shown that for all spherical representations π,π′ of

GLn(R),

Ψ(s,W ◦,W ′◦,Φ◦) = L(s,π×π′),

where Φ◦ ∈ S (Mat1×n(R)) is given by Φ◦(x) := exp(−πx tx); see also [GLO08, Lemma
4.1] and [IsSt13, Theorem 3.1]. We extend this to nonspherical representations π.

Theorem 4.18 (Cf. Theorem 3.18). Let π be an induced representation of Langlands

type of GLn(F ). For every spherical representation of Langlands type π′ of GLn(F ) with
spherical Whittaker function W ′◦ ∈W(π′,ψ), the Whittaker newform W ◦ ∈W(π,ψ) of π

satisfies

Ψ(s,W ◦,W ′◦,Φ◦) = L(s,π×π′)

for �(s) sufficiently large, where Φ◦ ∈ S (Mat1×n(F )) is given by

(dimτ◦)P ◦(x)exp
(
−dFπx

tx
)
, dF := [F : R] =

{
1 if F = R,

2 if F = C,
(4.19)

with P ◦ a homogeneous harmonic polynomial that depends only on the newform K-type

τ◦ of π.

We discuss this distinguished polynomial P ◦ in further detail in Section 7; it is the
unique homogeneous harmonic polynomial that is right Kn−1-invariant and satisfies

P ◦(en) = 1 in the vector space of such polynomials that forms a model of τ◦.
In the nonarchimedean setting, it is not only the case that the GLn×GLn−1 Rankin–

Selberg integral Ψ(s,W ◦,W ′◦) is equal to L(s,π× π′) for all spherical representations

π′ of GLn−1(F ), but also for all spherical representations π′ of GLm(F ) and all m ∈
{1, . . . ,n−1}; see Theorem 3.17. In the archimedean setting, however, it is widely believed
(see, for example, [Bum89, Section 2.6]) that Ψ(s,W,W ′) is never equal to L(s,π×π′)
when π′ is an induced representation of Whittaker type of GLm(F ) with m∈ {1, . . . ,n−2}
and the Whittaker functionsW ∈W(π,ψ) andW ′ ∈W(π′,ψ) are rightKn- andKm-finite,

respectively.
Notably, Ishii and Stade [IsSt13, Theorem 3.2], furthering the work of Hoffstein and

Murty [HM89], have shown that for all spherical representations π of GLn(R) and π′ of
GLn−2(R),

Ψ(s,W ◦,W ′◦) = L(s,π×π′)
1

2πi

∫ σ+i∞

σ−i∞

L(w,π̃)

2L(s+w,π′)
dw (4.20)

for some sufficiently large σ. Though we do not include a proof, our methods may also be

used to show the identity (4.20) when π is a ramified induced representation of Langlands

type and W ◦ is the Whittaker newform.
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Remark 4.21. Just as in the nonarchimedean setting, little is known about test vectors
for archimedean Rankin–Selberg integrals when π′ is ramified. The nonarchimedean

method of Kim [Kim10, Proposition 2.2.2] remains valid in the archimedean setting

in showing that Whittaker newforms are not test vectors when π′ is ramified: if π′

is a ramified representation of GLm(F ) with m < n and W ◦,W ′◦ are newforms of π

and π′, respectively, then Ψ(s,W ◦,W ′◦) = 0 for all s ∈ C. The test vector problem has

been resolved for m = n = 2 by Miyazaki [Miy18, Theorem 6.1] and Hirano, Ishii and

Miyazaki [HIM22, Appendix A] and for m = 2 and n = 3 by Hirano, Ishii and Miyazaki
[HIM16, HIM22]. Ishii and Miyazaki have also resolved this problem for n arbitrary and

m∈{n,n−1} when both π and π′ are principal series representations [IM22, Theorems 2.5

and 2.9]. Akin to the nonarchimedean work of Jo [Jo23], the author and Jo have resolved a
weakened version of the test vector problem in [HJ24] when m= n, where it is shown that

there exists an explicit right Kn-finite Schwartz–Bruhat function Φ ∈ S (Mat1×n(F )) for

which Ψ(s,W ◦,W ′◦,Φ) is a multiple of L(s,π×π′) by a nonzero polynomial in s.

4.7. Test vectors for Godement–Jacquet zeta integrals

Test vectors for archimedean Godement–Jacquet zeta integrals are known to exist; see

[Lin18] for F = R and [Ish19] for the case F = C. We give a new resolution of the test
vector problem via newforms.

Remark 4.22. We were unable to verify certain aspects of [Lin18]; cf. [Hum21,

Footnote †].

Theorem 4.23 (Cf. Theorem 3.20). Let (π,Vπ) be an induced representation of Whittaker

type of GLn(F ). Let β(g) denote the matrix coefficient 〈π(g) ·v◦,ṽ◦〉, where v◦ ∈Vπ denotes
the newform and ṽ◦ ∈ Vπ̃ is the corresponding newform normalised such that β(1n) = 1.

Then

Z(s,β,Φ) = L(s,π)

for �(s) sufficiently large, where Φ ∈ S (Matn×n(F )) is given by

(dimτ◦)P ◦(enx)exp
(
−dFπTr

(
x tx

))
, (4.24)

with P ◦ a homogeneous harmonic polynomial that depends only on the newform K-type

τ◦ of π.

The homogeneous harmonic polynomial P ◦ appearing in Theorem 4.23 is the same as

that appearing in Theorem 4.18.

5. Further Discussion

5.1. Previous results

Previous cases of test vectors for GLn×GLn and GLn×GLn−1 Rankin–Selberg integrals
over archimedean fields with n arbitrary were only known when either both represen-

tations are unramified – see [Sta01, Theorem 3.4], [GLO08, Lemma 4.2] and [IsSt13,

Theorem 3.2] — or when both representations are principal series representations of
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certain specific forms, due to recent work of Ishii and Miyazaki [IM22, Theorems 2.5 and

2.9]. Jacquet [Jac09, Theorem 2.7] has shown that for each pair π,π′ of generic irreducible
Casselman–Wallach representations of GLn(F ),GLn−1(F ), there exists a finite collection
{Wj} ⊂W(π,ψ) and {W ′

j} ⊂W(π′,ψ) of right Kn- and Kn−1-finite Whittaker functions

for which
∑

jΨ(s,Wj,W
′
j) = L(s,π×π′); a similar result (additionally involving Schwartz

functions {Φj} ⊂ S (Mat1×n(F ))) also holds for pairs of representations of GLn(F ).
Explicit descriptions of specific Whittaker functions for ramified principal series

representations of GLn(R) are given in [IO14] and of GL3(C) in [HO09], while recursive

formulæ for specific Whittaker functions for principal series representations of GLn(R)
and GLn(C) are given in [IM22]. In all three cases, these are Whittaker functions in the

minimal K -type; as observed in [HIM12, Theorem 6.1], such a Whittaker function W is

generally not a test vector for Rankin–Selberg integrals Ψ(s,W,W ′◦) when W ′◦ is the

spherical vector of a spherical representation.
For n≤ 3 and m≤ 2, the state of affairs of test vectors for GLn×GLm Rankin–Selberg

integrals is in much better shape. In particular, the existence of the Whittaker newform

for GL2(F ) has previously been proven by Popa [Pop08], though in a slightly different
formulation that we now describe.

Let π be a generic irreducible Casselman–Wallach representation of GL2(F ) with central

character ωπ, let T denote the diagonal torus embedded in GL2(F ), and let χT be a

character of T whose restriction to the centre of GL2(F ) is ω−1
π . Given τ ∈ K̂2, we define

Wτ,T to be the subspace of the τ -isotypic subspace Wτ of W(π,ψ) for which π|K2∩T acts

by χ−1
T .

Theorem 5.1 (Popa [Pop08, Proposition 1, Theorem 1]). The space Wτ,T is at most

one-dimensional. Furthermore, if χT (diag(a1,a2)) = |a1|s−1/2|a2|1/2−sω−1
π (a2) and τ = τ◦

is the K-type of lowest degree for which Wτ,T is nontrivial, then there exists W ◦ ∈Wτ◦,T

for which

Ψ(s,W ◦,1) = L(s,π).

While this superficially appears to be different than the definition of the Whittaker

newform, it is readily checked that

Wτ,T =

{
W ∈Wτ :W

(
g

(
k 0

0 1

))
=W (g) for all g ∈GL2(F ) and k ∈K1

}
,

and so the Whittaker function W ◦ is indeed the Whittaker newform and Wτ◦,T is equal

to the space V
K1(c(π))
π = V

τ◦|K1
π when viewed in the Whittaker model.

Jacquet [Jac72, Theorem 17.2] has previously determined, in several cases, explicit
right K2-finite test vectors W ∈ W(π,ψ) and W ′ ∈ W(π′,ψ) and Schwartz functions

Φ ∈ S (Mat1×2(F )) for the GL2×GL2 Rankin–Selberg integral Ψ(s,W,W ′,Φ) when

F = R; moreover, this includes cases involving generic irreducible Casselman–Wallach
representations π,π′ of GL2(F ) for which π′ need not be spherical. Further results along

these lines have been proven by Zhang [Zha01, Proposition 2.5.2] and extended to F =C
by Miyazaki [Miy18, Theorem 6.1]; see also [HIM22, Appendix A].
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For n=3, Hirano, Ishii and Miyazaki [HIM16, HIM22] have given an explicit description

of right K3- and K2-finite Whittaker functions W ∈ W(π,ψ) and W ′ ∈ W(π′,ψ) for

which Ψ(s,W,W ′) = L(s,π×π′), where π and π′ are any generic irreducible Casselman–
Wallach representations of GL3(F ) and GL2(F ), respectively; in particular, π′ need not

be spherical.

5.2. Examples and applications

5.2.1. The conductor exponent for essentially square-integrable representa-
tions. For π = χκ| · |t, where κ ∈ {0,1} for F = R and κ ∈ Z for F = C, the conductor
exponent is c(π) = ‖κ‖. For π = Dκ ⊗ |det| t, where κ ≥ 2, the conductor exponent is

c(π) = κ. Via Theorem 4.15, this allows one to calculate the conductor exponent of any

induced representation of Whittaker type.

5.2.2. GL2 Examples. Let us consider the classical setting of automorphic forms on

the upper half-plane.

Example 5.2. Let f be a holomorphic cuspidal newform of weight κ ≥ 2, level q ∈ N
and nebentypus ψ modulo q, where ψ(−1) = (−1)κ. Then the underlying automorphic

representation of GL2(AQ), as described in [Cas73, Section 3], has as its archimedean
component a discrete series of weight κ, Dκ. In particular, the conductor exponent of this

archimedean component is simply the weight κ.

Example 5.3. Let f be a Maaß cuspidal newform of weight κ ∈ {0,1}, level q ∈ N and
nebentypus ψ, where ψ(−1) = (−1)κ. The archimedean component of the underlying

automorphic representation of GL2(AQ) is one of three possible representations:

• If κ = 1, then the archimedean component is a principal series representation of
the form | · |itf �χ| · |−itf or χ| · |itf � | · |−itf , where tf ∈R is the spectral parameter
of f. The conductor exponent is 1.

• If κ= 0 and f is even, so that f(−z) = f(z), then the archimedean component is
of the form | · |itf � | · |−itf , where tf ∈ R∪ i(−1/2,1/2). The conductor exponent
is 0.

• If κ = 0 and f is odd, so that f(−z) = −f(z), then the archimedean component
is of the form χ| · |itf �χ| · |−itf , where again tf ∈ R∪ i(−1/2,1/2). The conductor
exponent is 2.

Remark 5.4. The newform K -type of the archimedean component of the automorphic

representation associated to an odd Maaß form of weight zero is not its minimal K -
type: the newform K -type is τ(2,0), whereas the minimal K -type is the determinant

representation τ(1,1). Classically, this manifests itself via the fact that an odd Maaß form

f of weight zero is not a test vector for the Rankin–Selberg integral∫ ∞

0

f(iy)ys−
1
2
dy

y
.

Instead, one must use Maaß raising and lowering operators on such a Maaß form to obtain

a test vector.
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5.2.3. A non-application: the analytic conductor and analytic newvector.
We have introduced in Section 4.3 the notion of the conductor exponent of a

generic irreducible Casselman–Wallach representation π as a measure of the extent of

ramification. This can also be thought of as quantifying the (representation-theoretic)
complexity of π.

There is another well-known quantification of the complexity of π: the analytic

conductor. First introduced by Iwaniec and Sarnak [IwSa00, (31)], this is defined on
essentially square-integrable representations π by

q(π) :=

⎧⎪⎪⎨⎪⎪⎩
1+‖t+κ‖ if F = R and π = χκ| · |tR,(
1+

∥∥t+ κ−1
2

∥∥)(1+∥∥t+ κ+1
2

∥∥) if F = R and π =Dκ⊗|det| tR,(
1+

∥∥∥t+ ‖κ‖
2

∥∥∥)2

if F = C and π = χκ| · |tC,

and extended to arbitrary induced representations of Whittaker type π = π1� · · ·�πr via

multiplicativity:

q(π) :=

r∏
j=1

q(πj).

One can relate this to the asymptotic behaviour of the local γ-factor γ(s,π,ψ) as s tends
to 1/2; see, in particular, [JN19, Lemma 3.1 (1)] and also [CFKRS05, Section 3.1] (the

latter also alludes to how this similarly encompasses the conductor at the nonarchimedean

places).
These two quantifications are entirely distinct. This can be seen most clearly for

spherical representations π = | · |itf � | · |−itf of GL2(R) occurring as the archimedean

component of an automorphic representation associated to an even Maaß form f of weight

zero. As discussed in Example 5.3, the conductor exponent of such a representation π is
c(π) = 0; however, the analytic conductor is q(π) = (1+‖tf‖)2. This distinction boils down

to the fact that the analytic conductor q(π) is better thought of as being a measure of the

size of the L-function L(s,π) rather than a measure of the complexity of the representation
itself.

Similarly, the newform is unrelated to the analytic newvectors introduced by Jana

and Nelson in [JN19]. Analytic newvectors are a different archimedean analogue of
newforms; they are a family of vectors in a generic irreducible unitary Casselman–Wallach

representation that are almost invariant under certain subsets (but not subgroups) of

GLn(F ) that are archimedean analogues of the congruence subgroups K1(p
m). Notably,

analytic newvectors are not necessarily Kn-finite, though they are Kn−1-invariant; in
particular, they lie in the subspace spanned by the newform and all oldforms. Note that

Jana and Nelson call the newform an ‘algebraic newvector’.

5.2.4. Global Eulerian integrals. We mention a global application of the resolution

of the test vector problem for Rankin–Selberg integrals. In order to do so, we require some
discussion of global automorphic forms.

Let ψAQ
denote the standard additive character of AQ that is unramified at every place

of Q. Given a global number field F, define the additive character ψAF
:= ψAQ

◦TrAF /AQ
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of AF . The conductor of ψAF
is the inverse different d−1 of F ; furthermore, there is a finite

idèle d ∈ A×
F representing d such that ψAF

=
⊗

vψ
dv
v , where the additive character ψdv

v

of Fv of conductor d−1
v is defined by ψdv

v (x) := ψv(dvx) with ψv an unramified additive

character of Fv as in Section 2.1.2.

Let (π,Vπ) be a cuspidal automorphic representation of GLn(AF ) with n≥ 2, where Vπ

is a space of automorphic forms on GLn(AF ). Let Wϕ ∈W(π,ψAF
) denote the Whittaker

function of ϕ ∈ Vπ, so that

Wϕ(g) :=

∫
Nn(F )\Nn(AF )

ϕ(ug)ψAF ,n(u)du,

where du denotes the Tamagawa measure. If Wϕ is a pure tensor, we may write

Wϕ =
∏

vWϕ,v with Wϕ,v ∈W(πv,ψ
dv
v ), where the generic irreducible admissible smooth

representations πv are the local components of the automorphic representation π=
⊗

v πv.

We define the global newform ϕ◦ ∈ Vπ to be such that at each place v of F, we have that

Wϕ◦,v(gv) := Wv(diag(d
n−1
v , . . . ,dv,1)gv) ∈ W(πv,ψ

dv
v ) with Wv ∈ W(πv,ψv) the (local)

Whittaker newform as in Theorems 3.14 and 4.17.

Proposition 5.5. Let F be a global number field of absolute discriminant DF/Q, and let

(π,Vπ) be a cuspidal automorphic representation of GLn(AF ) with n≥ 2. Then the global
newform ϕ◦ ∈ Vπ is such that for all cuspidal automorphic representations (π′,Vπ′) of

GLn−1(AF ) that are everywhere unramified with global newforms ϕ′◦ ∈ Vπ′ and for �(s)
sufficiently large, the global GLn×GLn−1 Rankin–Selberg integral

I(s,ϕ◦,ϕ′◦) :=

∫
GLn−1(F )\GLn−1(AF )

ϕ◦
(
g 0

0 1

)
ϕ′◦(g) |detg|s−

1
2

AF
dg

with dg the Tamagawa measure is equal, up to multiplication by a constant dependent

only on F, to the product of ω−1
π′ (d)D

n(n−1)s
2

F/Q , where ωπ′ denotes the central character of

π′, and of the global completed Rankin–Selberg L-function Λ(s,π×π′) :=
∏

vL(s,πv×π′
v).

Remark 5.6. Via a regularisation process due to Ichino and Yamana [IY15, Theorem

1.1], a suitably modified version of this result still holds even if either π or π′ (or both)
is not cuspidal.

Proof. By unfolding,

I(s,ϕ◦,ϕ′◦) =

∫
Nn−1(AF )\GLn−1(AF )

Wϕ◦

(
g 0

0 1

)
Wϕ′◦(g) |detg|s−

1
2

AF
dg

= cF/Q

∏
v

Ψ(s,Wϕ◦,v,Wϕ′◦,v),

where the local Rankin–Selberg integrals Ψ(s,Wϕ◦,v,Wϕ′◦,v) are as in (2.1), and cF/Q > 0
is an absolute constant dependent only on F that arises from the compatibility of

the global Tamagawa measure on Nn−1(AF )\GLn−1(AF ) compared to the local Haar

measure on Nn−1(Fv)\GLn−1(Fv) as normalised in Section 2.1. Upon making the change
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of variables g′v 
→ diag(d1−n
v , . . . ,d−1

v )g′v and using the fact that W ′
v(diag(d

−1
v , . . . ,d−1

v )g′v) =
ω−1
π′
v
(dv)W

′
v(g

′
v), we see that

Ψ(s,Wϕ◦,v,Wϕ′◦,v) = ω−1
π′
v
(dv)|dv|

−n(n−1)s
2 +

n(n−1)(2n−1)
12

v Ψ(s,Wv,W
′
v).

The result now follows from Theorems 3.14 and 4.17.

A similar result holds for global GLn×GLn Rankin–Selberg integrals via Theorems

3.18 and 4.18. These involve an Eisenstein series

E(g,s;Φ,η) = |detg|sAF

∫
F×\A×

F

Θ′
Φ(a,g)η(a)|a|nsAF

d×a,

where η : F×\A×
F →C× is a Hecke character, Φ ∈ S (Mat1×n(AF )) is a Schwartz–Bruhat

function, and

ΘΦ(a,g) :=
∑

ξ∈Mat1×n(F )

Φ(aξg), Θ′
Φ(a,g) := ΘΦ(a,g)−Φ(0).

Proposition 5.7. Let F be a number field of absolute discriminant DF/Q, and let

(π,Vπ) and (π′,Vπ′) be automorphic representations of GLn(AF ) with central characters
ωπ and ωπ′ . Suppose that at least one of π and π′ is cuspidal and that π and π′

have disjoint ramification. Then there exists a right K-finite Schwartz–Bruhat function

Φ ∈ S (Mat1×n(AF )) such that for �(s) sufficiently large, the global GLn×GLn Rankin–
Selberg integral

I(s,ϕ◦,ϕ′◦,Φ) :=

∫
Z(AF )GLn(F )\GLn(AF )

ϕ◦(g)ϕ′◦(g)E(g,s;Φ,ωπωπ′)dg

with dg the Tamagawa measure is equal, up to multiplication by a constant dependent only

on F, to the product of D
n(n−1)s

2

F/Q and of the global completed Rankin–Selberg L-function

Λ(s,π×π′) :=
∏

vL(s,πv ×π′
v).

Remark 5.8. When both π and π′ are noncuspidal, it ought to be possible to prove a
suitably modified version of this result by extending to GLn a regularisation process due

to Zagier [Zag82, Theorem] for GL2.

We also may show the existence of a test vector for the global Godement–Jacquet zeta

integral via Theorems 3.20 and 4.23.

Proposition 5.9. Let F be a number field, and let (π,Vπ) be an automorphic repre-

sentation of GLn(AF ). Then there exists a matrix coefficient β(g) := 〈π(g) ·ϕ◦,ϕ̃◦〉 and a

bi-K-finite Schwartz–Bruhat function Φ∈S (Matn×n(AF )) such that for �(s) sufficiently
large, the global Godement–Jacquet zeta integral

Z(s,β,Φ) :=

∫
GLn(AF )

β(g)Φ(g) |detg|s+
n−1
2

AF
dg

with dg the Tamagawa measure is equal, up to multiplication by a constant dependent

only on F, to the global completed standard L-function Λ(s,π) :=
∏

vL(s,πv).
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A similar result also holds for the Piatetski-Shapiro–Rallis integral [P-SR87], since this

doubling integral is equal to the Godement–Jacquet zeta integral [P-SR87, Proposition

3.2].

Remark 5.10. In fact, we show something slightly stronger – namely, that∫
GLn(AF )

ϕ◦(hg)Φ(g) |detg|s+
n−1
2

AF
dg

is equal, up to multiplication by a constant dependent only on F, to Λ(s,π)ϕ◦(h) for all
h ∈GLn(AF ).

5.3. Strategy of the proofs

5.3.1. Nonarchimedean strategies. As discussed in Section 3, there are several
approaches towards developing nonarchimedean newform theory for GLn. We briefly

examine the challenges in transporting each of these methods to the archimedean setting.

Matringe [Mat13] uses the nonarchimedean theory of Bernstein–Zelevinsky derivatives

to explicitly construct the Whittaker newform. The archimedean theory of Bernstein–
Zelevinsky derivatives is less well-developed (though see [AGS15] and [Cha15] for two

different approaches), and it does not seem straightforward to transport Matringe’s proof

to this setting.
The method of Jacquet [Jac12] does not use Bernstein–Zelevinsky derivatives; the proof,

however, is nonconstructive and only shows the existence of a Kn−1-invariant test vector

for GLn×GLn−1 Rankin–Selberg integrals. In the archimedean setting, it seems difficult
to describe the newform K -type when one only knows of the existence of such a test

vector.

Finally, the method of Miyauchi [Miy14] assumes the existence of the newform in

V
K1(p

c(π))
π and uses the action of certain Hecke operators to derive a recursive relation

between certain values of the newform in the Whittaker model; using this, one can then

show that the newform in the Whittaker model is a test vector for Rankin–Selberg

integrals. The archimedean analogue of this is to assume the existence of the newform
in the newform K -type and use the action of certain differential operators (arising from

elements of the centre of the universal enveloping algebra) to derive systems of partial

differential equations satisfied by the newform in the Whittaker model. This is essentially
the approach undertaken in [HO09] and [IO14] (where the Whittaker function studied

lies in the minimal K -type, not the newform K -type); already for GL3(C), however, this
leads to immense combinatorial difficulties in solving these systems of partial differential
equations.

5.3.2. The archimedean strategy. We take a different path. To prove the existence

of the newform and newform K -type, we use Frobenius reciprocity to reduce the problem

to branching rules on the associated maximal compact subgroups. Here, we benefit from
the fact that, unlike in the nonarchimedean setting, irreducible representations of K and

explicit branching rules are well understood, and the induced representations of Whittaker

type are particularly easy to describe, since essentially square-integrable representations
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do not exist for GLn(F ) with n ≥ 3. This approach also determines the dimension of

spaces of oldforms and yields the additivity and inductivity of the conductor exponent.

All of this is proven in Section 6.
To study the newform in more detail, with an eye towards formulæ for the Whittaker

newform that are beneficial for evaluating GLn×GLn−1 and GLn×GLn Rankin–Selberg

integrals, we require additional knowledge, given in Section 7, of a particular model of the
newform K -type – namely, a space of homogeneous harmonic polynomials. Using this,

we explicitly construct the newform in the induced model of π in Section 8.

We give three different constructions of the newform in the induced model: via
the Iwasawa decomposition, via convolution sections and via Godement sections. Each

construction has its advantages and disadvantages. The construction via the Iwasawa

decomposition is straightforward but lacks a direct relation to Whittaker functions.

The construction via convolution sections, following work of Jacquet [Jac04], gives a
recursive formula for the newform in terms of a convolution of the newform itself with an

explicit standard Schwartz function; this gives an immediate resolution of the test vector

problem for archimedean Godement–Jacquet integrals. Finally, following Jacquet [Jac09],
the newform is shown to be given as an element of a Godement section, which gives a

recursive formula for the newform in terms of an integral of a distinguished newform

of a representation of GLn−1(F ) against a particular standard Schwartz function; this
is limited to certain induced representations of Whittaker type, but is invaluable as an

inductive step.

With these formulæ in hand, we then express the newform in the Whittaker model

via the Jacquet integral in Section 9. The usage of convolution sections and Godement
sections gives us recursive formulæ for the Whittaker newform. The latter, in particular,

gives what we call a propagation formula: this is a recursive formula for GLn(F ) Whittaker

functions in terms of GLn−1(F ) Whittaker functions.
Our expression for the newform via convolution sections gives a quick resolution of the

test vector problem for the Godement–Jacquet zeta integral. Our strategy for resolving

the test vector problems for GLn×GLn and GLn×GLn−1 Rankin–Selberg integrals
follows an approach pioneered by Jacquet [Jac09] (which is also followed in [IM22]). We

employ a double induction argument presented in Section 10. This type of argument is

due to Jacquet [Jac09] (who, in turn, attributes this strategy to Shalika): it expresses

the GLn×GLn Rankin–Selberg integral as the product of a GLn×GLn−1 Rankin–
Selberg integral and a GLn Godement–Jacquet zeta integral, and similarly expresses the

GLn×GLn−1 Rankin–Selberg integral as a product of a GLn−1×GLn−1 Rankin–Selberg

integral and a GLn−1 Godement–Jacquet zeta integral. (In fact, we find a slightly more
direct approach via convolution sections that masks the presence of Godement–Jacquet

zeta integrals.)

5.3.3. Additional remarks on the proofs. We emphasise that the proofs of

Theorems 4.17 and 4.18, given in Section 10, are independent of the proofs in [GLO08,
IsSt13, Sta01, Sta02] of the unramified cases. Although our proofs are somewhat involved

when ramification is present, they are particularly simple for spherical representations.

In particular, these give proofs of Stade’s formulæ – namely, the unramified cases of
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Theorems 4.17 and 4.18. These reproofs of Stade’s formulæ also follow from the proofs of
[IM22, Theorems 2.5 and 2.9]; they are essentially implicit in the work of Jacquet [Jac09].

Notably, we do not explicitly make use of the action of the universal enveloping algebra

of the complexified Lie algebra of GLn(F ) as differential operators onWhittaker functions,
nor do we require any calculations involving Mellin transforms. In this regard, our

construction of Whittaker functions is entirely distinct to that of much previous work

on archimedean Whittaker functions [HIM12, HIM16; HO09, IO14, IsSt13, Pop08, Sta90,

Sta95, Sta01, Sta02]. In particular, our proofs of Theorems 4.17 and 4.18 demonstrate
that the Jacquet integral is adequate for the direct computation of archimedean Rankin–

Selberg integrals, contrary to an assertion of Ishii and Oda [IO14, p. 1288], provided one

couples this with the usage of convolution sections and Godement sections.

6. The Newform K -Type

To study the newform K -type of an induced representation of Whittaker type π of

GLn(F ), as well as determine the dimension of spaces of oldforms, we must determine the

dimension of HomKn
(τ,π|Kn

) for each τ ∈ K̂n for which HomKn−1
(1,τ |Kn−1

) is nontrivial.

This is achieved via branching rules.

6.1. Branching from GLn(C) to U(n)

Let π = π1 � · · ·�πn be an induced representation of Whittaker type of GLn(C), so that

for each j ∈ {1, . . . ,n}, πj = χκj | · |tj for some κj ∈ Z and tj ∈ C.

Lemma 6.1. For τ ∈ Û(n), we have that

HomU(n)

(
τ,π|U(n)

)∼=HomU(1)n

⎛⎝τ |U(1)n,

n

�
j=1

τκj

⎞⎠ . (6.2)

Here, we view U(1)n as the subgroup of diagonal matrices in U(n); it is the maximal

compact subgroup of the Levi subgroup M(1,...,1)(C)∼=GL1(C)
n of the standard parabolic

subgroup P(C) = P(1,...,1)(C) of GLn(C) from which π is induced.

Proof. Mackey’s restriction-induction formula implies that

π|U(n)
∼= Ind

U(n)
U(1)n π|U(1)n,

and so by the Frobenius reciprocity theorem,

HomU(n)

(
τ,π|U(n)

)∼=HomU(1)n
(
τ |U(1)n,π|U(1)n

)
.

It remains to note that

π|U(1)n
∼=

n

�
j=1

τκj
.

The right-hand side of (6.2) is a branching from U(n) to U(1)n. This can be understood

via iterating the following branching rule from U(n) to U(n−1)×U(1).
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Lemma 6.3 [Pro94, Proposition 10.1]. For τμ ∈ Û(n) of highest weight

μ= (μ1, . . . ,μn) ∈ Λn,

τμ|U(n−1)×U(1)
∼=

⊕
λ∈Λ1

⊕
ν=(ν1,...,νn−1)∈Λn−1

μ1≥ν1≥μ2≥···≥νn−1≥μn∑n−1
j=1 νj=

∑n
j=1μj−λ

τν � τλ.

In particular,

τμ|U(n−1)
∼=

⊕
ν=(ν1,...,νn−1)∈Λn−1

μ1≥ν1≥μ2≥···≥νn−1≥μn

τν .

Corollary 6.4. The restriction to U(n− 1) of the irreducible representation τμ ∈ Û(n)
of highest weight μ = (μ1, . . . ,μn) ∈ Λn contains the trivial representation if and only if

μ1 ≥ 0, μ2 = · · · = μn−1 = 0, and μn ≤ 0, in which case the trivial representation occurs

with multiplicity one.

We now iterate the branching rule in Lemma 6.3 to determine the multiplicity of a

representation τλ1
� · · ·� τλn

of U(1)n in a given representation τμ of U(n).

Lemma 6.5. For τμ ∈ Û(n) of highest weight μ = (μ1,0, . . . ,0,μn) ∈ Λn and for any

λ1, . . . ,λn ∈ Λ1,

dimHomU(1)n

⎛⎝τμ|U(1)n,
n

�
j=1

τλj

⎞⎠
=

⎧⎪⎨⎪⎩
(
�+n−2
n−2

)
if μ1 =

∑n
j=1max{λj,0}+ � and μn =

∑n
j=1min{λj,0}− �

for some � ∈ N0,

0 otherwise.

Proof. We take μ= (μ1,0, . . . ,0,μn) in Lemma 6.3 and then iterate this branching rule in
order to find that

τμ|U(1)n
∼=

n−1⊕
j=1

⊕
λj∈Λ1

⊕
(νj,1,0,...,0,νj,n−j)∈Λn−j

νj,1≤νj−1,1, νj,n−j≥νj−1,n−j+1

νj,1+νj,n−j=νj−1,1+νj−1,n−j+1−λj

n

�
j=1

τλj
,

where we define ν0,1 := μ1, ν0,n := μn and λn := νn−1,1. By induction, the condition

νj,1+νj,n−j = νj−1,1+νj−1,n−j+1−λj implies that

μ1+μn−
j∑

k=1

λk =

⎧⎪⎨⎪⎩
νj,1+νj,n−j for j ∈ {1, . . . ,n−2},
νn−1,1 for j = n−1,

0 for j = n.

The multiplicity of τλ1
� · · ·� τλn

in τμ is thereby equal to

#
{
(ν1,1, . . . ,νn−2,1) ∈ Nn−2

0 : νj−1,1 ≥ νj,1+max{λj,0} for all j ∈ {1, . . . ,n−1}
}
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– namely, the number of (n−2)-tuples (ν1,1, . . . ,νn−2,1) for which the system of inequalities

μ1 ≥ ν1,1+max{λ1,0} ≥ · · · ≥ νn−2,1+

n−2∑
j=1

max{λj,0} ≥
n∑

j=1

max{λj,0}

holds. This is zero unless there exists some � ∈ N0 such that

μ1 =
n∑

j=1

max{λj,0}+ �, μn =
n∑

j=1

min{λj,0}− �,

in which case the multiplicity is precisely the number of ordered (n− 2)-tuples taking

values between 0 and �, which is (
�+n−2

n−2

)
.

With this in hand, we can now explicitly determine the right-hand side of (6.2).

Lemma 6.6. Suppose that the restriction of τμ ∈ Û(n) to U(n− 1) contains the trivial
representation. Then the highest weight of τμ is of the form μ= (μ1,0, . . . ,0,μn) ∈ Λn, the

trivial representation occurs with multiplicity one, and

dimHomU(1)n

⎛⎝τμ|U(1)n,

n

�
j=1

τκj

⎞⎠

=

⎧⎪⎪⎨⎪⎪⎩
(
�+n−2
n−2

)
if μ=

(∑n
j=1max{κj,0}+ �,0, . . . ,0,

∑n
j=1min{κj,0}− �

)
for some � ∈ N0,

0 otherwise.

Proof. This is a direct consequence of Lemma 6.5 together with Corollary 6.4.

Proofs of Theorems 4.7, 4.12, 4.14 and 4.15 for F = C. Lemmata 6.1 and 6.6

combine to complete the proofs of Theorems 4.7 and 4.12 for F = C, noting that for

π = π1 � · · ·�πn with πj = χκj | · |tj , the newform K -type τ◦ = τμ◦ has highest weight

μ◦ =

⎛⎝ n∑
j=1

max{κj,0},0, . . . ,0,
n∑

j=1

min{κj,0}

⎞⎠,

so that, recalling the definition (4.2) of degτ◦,

c(π) := degτ◦ =

∥∥∥∥∥∥
n∑

j=1

max{κj,0}

∥∥∥∥∥∥+
∥∥∥∥∥∥

n∑
j=1

min{κj,0}

∥∥∥∥∥∥=
n∑

j=1

‖κj‖.
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Theorem 4.14 then holds for F = C via the fact that

ε(s,π,ψ) =
n∏

j=1

ε(s,πj,ψ) =
n∏

j=1

i−‖κj‖ = i−‖κ1‖−···−‖κn‖ = i−c(π),

recalling (2.18), while the case n= 1 implies Theorem 4.15 for F = C.

Remark 6.7. Note that degτμ(�) = degτ◦+2� for

μ(�) :=

⎛⎝ n∑
j=1

max{κj,0}+ �,0, . . . ,0,

n∑
j=1

min{κj,0}− �

⎞⎠,

and, in particular, that degτμ(�) ≡ degτ◦ (mod 2). This congruence holds not just for a
K -type τ of π for which HomU(n−1)(1,τ |U(n−1)) is nontrivial, but for any K -type of π;

see [Fan18, Theorem 2.1].

Remark 6.8. The minimal K -type of π has highest weight

μ= (κσ(1), . . . ,κσ(n)),

where σ is a permutation for which κσ(1) ≥ ·· · ≥ κσ(n). The corresponding Vogan norm is

‖τμ‖2V =

n∑
j=1

(
κσ(j)+n+1−2j

)2
.

This minimal K -type is the newform K -type τ◦ if and only if κσ(2) = · · ·= κσ(n−1) = 0.

In general, the Vogan norm of the minimal K -type is not equal to c(π). However, the

same cannot be said for the Howe degree: the Howe degree of the minimal K -type is

n∑
j=1

∥∥κσ(j)

∥∥= degτ◦ = c(π).

6.2. Branching from GLn(R) to O(n)

Let π = π1 � · · ·�πr be an induced representation of Whittaker type of GLn(R). This
is induced from a standard parabolic subgroup P(R) = P(n1,...,nr)(R) of GLn(R); when
nj = 1, πj is of the form χκj | · |tj for some κj ∈ {0,1} and tj ∈ C, while when nj = 2, πj

is of the form Dκj
⊗|det| tj for some κj ≥ 2 and tj ∈ C.

Lemma 6.9. For τ ∈ Ô(n), the vector space HomO(n)

(
τ,π|O(n)

)
is isomorphic to

r⊕
j=1
nj=2

∞⊕
�j=κj

�j≡κj (mod 2)

HomO(n1)×···×O(nr)

⎛⎜⎜⎝τ |O(n1)×···×O(nr),
r

�
j=1
nj=1

τκj
�

r

�
j=1
nj=2

τ(�j,0)

⎞⎟⎟⎠ .

Here, we view O(n1)×·· ·×O(nr) as a subgroup of block-diagonal matrices in O(n); it is

the maximal compact subgroup of the Levi subgroup MP(R)∼=GLn1
(R)×·· ·×GLnr

(R)
of the parabolic subgroup P(R) = P(n1,...,nr)(R).
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Proof. Mackey’s restriction-induction formula implies that

π|O(n)
∼= Ind

O(n)
O(n1)×···×O(nr)

π|O(n1)×···×O(nr),

and HomO(n)

(
τ,π|O(n)

)
is isomorphic to

HomO(n1)×···×O(nr)

(
τ |O(n1)×···×O(nr),π|O(n1)×···×O(nr)

)
by the Frobenius reciprocity theorem. Note that if nj = 1, so that πj = χκj | · |tj , then
πj |O(1)

∼= τκj
, while if nj = 2, so that πj =Dκj

⊗|det| tj , then

πj |O(2)
∼=

∞⊕
�j=κj

�j≡κj (mod 2)

τ(�j,0),

from which it follows that

π|O(n1)×···×O(nr)
∼=

r⊕
j=1
nj=2

∞⊕
�j=κj

�j≡κj (mod 2)

r

�
j=1
nj=1

τκj
�

r

�
j=1
nj=2

τ(�j,0).

By restricting in stages and using the fact that #{j : nj = 1} = 2r − n and

#{j : nj = 2}= n− r, we deduce the following.

Corollary 6.10. For τ ∈ Ô(n), dimHomO(n)

(
τ,π|O(n)

)
is equal to

r∑
j=1
nj=2

∞∑
�j=κj

�j≡κj (mod 2)

∑
ν2(n−r)∈Λ2(n−r)

dimHomO(2)n−r

⎛⎜⎜⎝τν2(n−r)
|O(2)n−r,

r

�
j=1
nj=2

τ(�j,0)

⎞⎟⎟⎠ (6.11)

×dimHomO(2(n−r))×O(1)2r−n

⎛⎜⎜⎝τ |O(2(n−r))×O(1)2r−n,τν2(n−r)
�

r

�
j=1
nj=1

τκj

⎞⎟⎟⎠ .

To understand (6.11), which involves branching from O(n) to various subgroups, we
make use of the following branching rule from O(n) to O(n−1)×O(1).

Lemma 6.12 [Pro94, Proposition 10.1]. For τμ ∈ Ô(n) of highest weight μ=(μ1, . . . ,μn)∈
Λn,

τμ|O(n−1)×O(1)
∼=

⊕
λ∈Λ1

⊕
ν=(ν1,...,νn−1)∈Λn−1

μ1≥ν1≥μ2≥···≥νn−1≥μn∑n−1
j=1 νj≡

∑n
j=1μj−λ (mod 2)

τν � τλ.

In particular,

τμ|O(n−1)
∼=

⊕
ν=(ν1,...,νn−1)∈Λn−1

μ1≥ν1≥μ2≥···≥νn−1≥μn

τν .
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Corollary 6.13. The restriction to O(n−1) of the irreducible representation τμ ∈ Ô(n) of

highest weight μ= (μ1, . . . ,μn)∈Λn contains the trivial representation if and only if μ1 ≥ 0
and μ2 = · · ·= μn =0, in which case the trivial representation occurs with multiplicity one.

Now we iterate the branching rule in Lemma 6.12.

Lemma 6.14. For τμ ∈ Ô(n) of highest weight μ = (μ1,0, . . . ,0) ∈ Λn, and for

λ1, . . . ,λ2r−n ∈ Λ1 and ν2(n−r) ∈ Λ2(n−r),

dimHomO(2(n−r))×O(1)2r−n

⎛⎝τμ|O(2(n−r))×O(1)2r−n,τν2(n−r)
�

2r−n

�
j=1

τλj

⎞⎠
is equal to {

1 if ν2(n−r) = (μ1−λ1−2�,0, . . . ,0) for some � ∈ N0,

0 otherwise

if #{j : nj = 1}= 1, while if #{j : nj = 1} ≥ 2, this is equal to{(
�+n′−1
n′−1

)
if ν2(n−r) =

(
μ1−

∑2r−n
j=1 λj −2�,0, . . . ,0

)
for some � ∈ N0,

0 otherwise.

Proof. We take μ = (μ1,0, . . . ,0) in Lemma 6.12; the case #{j : nj = 1} = 1 is then

immediate, while if #{j : nj = 1} ≥ 2, we iterate this branching rule in order to find
that

τμ|O(2(n−r))×O(1)2r−n
∼=

2r−n⊕
j=1

⊕
λj∈Λ1

⊕
(νj,1,0,...,0)∈Λn−j

νj,1≤νj−1,1

νj,1≡νj−1,1−λj (mod 2)

τ(νn′,1,0,...,0) �
2r−n

�
j=1

τλj
,

where we set ν0,1 := μ1. It follows that for fixed μ= (μ1,0, . . . ,0) ∈ Λn, λ1, . . . ,λ2r−n ∈ Λ1,
and ν2(n−r) ∈ Λ2(n−r), the multiplicity of τν2(n−r)

� τλ1
� · · ·� τλ2r−n

in τμ is zero unless
ν2(n−r) is of the form (νn′,1,0, . . . ,0) for some νn′,1 ∈ N0, in which case it is equal to

#
{
(ν1,1, . . . ,νn′−1,1) ∈ Nn′−1

0 : νj−1,1 ≥ νj,1, νj,1 ≡ νj−1,1−λj (mod 2) for all j ∈ {1, . . . ,n′}
}

– namely, the number of (n′ − 1)-tuples (ν1,1, . . . ,νn′−1,1) for which the system of

inequalities

μ1 ≥ ν1,1+λ1 ≥ ·· · ≥ νn′,1+
2r−n∑
j=1

λj

holds with each quantity being of the same parity. This is zero unless

μ1 = νn′,1+
2r−n∑
j=1

λj +2�
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for some � ∈N0, in which case the multiplicity is precisely the number of ordered (n′−1)-

tuples taking values between 0 and �, which is(
�+n′−2

n′−2

)
.

We also require a special case of the branching rule from O(n) to O(n−2)×O(2).

Lemma 6.15 [Pro94, Proposition 10.3]. For n ≥ 3 and τμ ∈ Ô(n) of highest weight

μ= (μ1,0, . . . ,0) ∈ Λn,

τμ|O(n−2)×O(2)
∼=

⊕
λ=(λ1,0)∈Λ2

λ1≤μ1

⊕
ν=(ν1,0,...,0)∈Λn−2

ν1≤μ1−λ1

ν1≡μ1−λ1 (mod 2)

τν � τλ.

We again iterate this branching rule.

Lemma 6.16. For τμ ∈ ̂O(2(n− r)) of highest weight μ= (μ1,0, . . . ,0) ∈ Λ2(n−r) and for

(λj,1,λj,2) ∈ Λ2 with j ∈ {1, . . . ,n− r},

dimHomO(2)n−r

⎛⎝τμ|O(2)n−r,

n−r

�
j=1

τ(λj,1,λj,2)

⎞⎠

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if #{j : nj = 2}= 1 and (λ1,1,λ1,2) = (μ1,0),(
�+n−r−2
n−r−2

)
if #{j : nj = 2} ≥ 2,μ1 =

∑n−r
j=1 λj,1+2� for some � ∈ N0,

and λj,2 = 0 for all j ∈ {1, . . . ,n− r},
0 otherwise.

Proof. The result follows from Schur’s lemma if #{j : nj = 2}= 1. If #{j : nj = 2} ≥ 2,

iterating Lemma 6.15 yields

τμ|O(2)n−r
∼=

n−r−1⊕
j=1

⊕
(λj,1,0)∈Λ2

λj,1≤νj−1,1

⊕
(νj,1,0,...,0)∈Λ2(n−r−j)

νj,1≤νj−1,1−λj,1

νj,1≡νj−1,1−λj,1 (mod 2)

n−r

�
j=1

τ(λj,1,λj,2),

where we again set ν0,1 := μ1. So the multiplicity of τ(λ1,1,λ1,2) � · · ·� τ(λn−r,1,λn−r,2) in
τμ is equal to the number of (n− r−1)-tuples (ν1,1, . . . ,νn−r−1) for which the system of

inequalities

μ1 ≥ ν1,1+λ1,1 ≥ ν2,1+λ1,1+λ2,1 ≥ ·· · ≥ νn−r−1,1+
n−r−1∑
j=1

λj,1 ≥
n−r∑
j=1

λj,1

holds with each quantity being of the same parity. This is zero unless

μ1 =
n−r∑
j=1

λj,1+2�

https://doi.org/10.1017/S1474748024000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000227


Archimedean newform theory for GLn 39

for some � ∈N0, in which case the multiplicity is precisely the number of ordered (n−r−
2)-tuples taking values between 0 and �, which is(

�+n− r−2

n− r−2

)
.

Shortly, we shall require the following combinatorial identity involving binomial

coefficients.

Lemma 6.17. For k,m,n ∈ N0, we have that

k∑
j=0

(
j+m

m

)(
k− j+n

n

)
=

(
k+m+n+1

m+n+1

)
.

Proof. Such an identity begs for a proof via a generating series:

∞∑
k=0

(
k+m+n+1

m+n+1

)
xk =

1

(1−x)m+n+2

=
1

(1−x)m+1

1

(1−x)n+1

=
∞∑

k1=0

(
k1+m

m

)
xk1

∞∑
k2=0

(
k2+n

n

)
xk2

=

∞∑
k=0

k∑
j=0

(
j+m

m

)(
k− j+n

n

)
xk.

With these results in hand, we can now explicitly determine (6.11).

Lemma 6.18. Suppose that the restriction of τμ ∈ Ô(n) to O(n−1) contains the trivial
representation. Then the highest weight of τμ is of the form μ = (μ1,0, . . . ,0), the trivial

representation occurs with multiplicity one, and

r∑
j=1
nj=2

∞∑
�j=κj

�j≡κj (mod 2)

∑
ν2(n−r)∈Λ2(n−r)

dimHomO(2)n−r

⎛⎜⎜⎝τν2(n−r)
|O(2)n−r,

r

�
j=1
nj=2

τ(�j,0)

⎞⎟⎟⎠ (6.19)

×dimHomO(2(n−r))×O(1)2r−n

⎛⎜⎜⎝τμ|O(2(n−r))×O(1)2r−n,τν2(n−r)
�

r

�
j=1
nj=1

τκj

⎞⎟⎟⎠
=

{(
�+n−2
n−2

)
if μ=

(∑r
j=1κj +2�,0, . . . ,0

)
for some � ∈ N0,

0 otherwise.

Proof. The first claim two claims are Corollary 6.13. To prove the identity (6.19), we

first note that if #{j : nj = 2}= 0, Lemma 6.14 implies the result upon replacing 2r−n
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with 2r−n−1. If #{j : nj = 2} ≥ 1, we combine Lemmata 6.14 and 6.16 to see that the

inner sum over ν2(n−r) ∈ Λ2(n−r) in the left-hand side of (6.19) is equal to zero unless

μ1 =

r∑
j=1
nj=1

κj +

r∑
j=1
nj=2

�j +2�

for some � ∈ N0, so that

ν2(n−r) =

⎛⎜⎜⎝ r∑
j=1
nj=2

�j +2(�− �′),0, . . . ,0

⎞⎟⎟⎠
for some �′ ∈ {0, . . . ,�}, in which case this inner sum is equal to

�∑
�′=0

(
�′+n′−2

n′−2

)(
�− �′+n− r−2

n− r−2

)
.

Coupled with Corollary 6.10, we find that the left-hand side of (6.19) is equal to zero

unless

μ1 =

r∑
j=1

κj +2�

for some � ∈ N0, in which case it is equal to

n−r∑
i=1

∞∑
αi=0

�−
∑n−r

i=1 αi∑
�′=0

(
�′+2r−n−1

2r−n−1

)(
�− �′−

∑n−r
i=1 αi+n− r−2

n− r−2

)
upon defining αi such that there is an equality of the sets {αi} and {(�j−κj)/2 : nj = 2}.
Interchanging the order of summation, this becomes

�∑
�′=0

(
�′+2r−n−1

2r−n−1

)n−r∑
i=1

�−�′−
∑i−1

m=1αm∑
αi=0

(
�− �′−

∑n−r
i=1 αi+n− r−2

n− r−2

)
. (6.20)

Using the fact that
(
n−1
k−1

)
=
(
n
k

)
−
(
n−1
k

)
, the sum over αn−r telescopes to(

�− �′−
∑n−r−1

i=1 αi+n− r−1

n− r−1

)
,

and so upon iterating this process, we find that the inner double sum in (6.20) is equal to(
�− �′+2n− r−2

2n− r−2

)
,

at which point Lemma 6.17 completes the proof.

Proofs of Theorems 4.7, 4.12, 4.14, 4.15 and 4.16 for F = R. Lemmata 6.9 and

6.18 combine to complete the proofs of Theorems 4.7 and 4.12 for F = R: for
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π = π1 � · · ·�πr with πj = χκj | · |tj when nj = 1 and πj =Dκj
⊗|det| tj when nj = 2, the

newform K -type τ◦ = τμ◦ has highest weight

μ◦ =

⎛⎝ r∑
j=1

κj,0, . . . ,0

⎞⎠,

so that, recalling the definition (4.4) of degτ◦,

c(π) := degτ◦ =
r∑

j=1

κj .

Theorem 4.14 then holds for F = R via the fact that

ε(s,π,ψ) =

r∏
j=1

ε(s,πj,ψ) =

r∏
j=1

i−κj = i−κ1−···−κr = i−c(π),

while the cases n=#{j : nj = 1}= 1, so that π = χκ| · |t, and n= 2#{j : nj = 2}= 2, so
that π=Dκ⊗|det| t, imply Theorem 4.15 for F =R. Finally, for an induced representation

of Whittaker type of GLn(C) of the form π = χκ1 | · |t1C � · · ·� χκn | · |tnC , the induced

representation AIC/Rπ is isomorphic to the isobaric sum

n

�
j=1

Ind
GL2(R)
GL1(C)

χκj | · |tjC ,

and

Ind
GL2(R)
GL1(C)

χκ| · |tC ∼=
{
| · |tR �χ| · |tR if κ= 0,

D‖κ‖+1⊗|det| tR if κ �= 0,

so that

c
(
AIC/Rπ

)
=

n∑
j=1

(‖κj‖+1) = c(π)+n,

thereby proving Theorem 4.16.

Remark 6.21. Just as was observed in Remark 6.7 for F = C, the Howe degree of a

K -type of π is always congruent to degτ◦ modulo 2.

Remark 6.22. From [Lin18, Proposition 4.3], the minimal K -type of π = π1 � · · ·�πr

has highest weight

μ=

⎛⎝κσ(1), . . . ,κσ(r), 0, . . . ,0︸ ︷︷ ︸
n−r times

⎞⎠,

where σ is a permutation for which κσ(1) ≥ ·· · ≥ κσ(r). This minimal K -type is τ◦ if and

only if r = n−1 and κj = 0 whenever nj = 1 or r = n and κj �= 0 for at most one j.
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Once again, the Howe degree of the minimal K -type is

n∑
j=1

κσ(j) = degτ◦ = c(π).

7. Homogeneous Harmonic Polynomials

Having identified the newform K -type, we now study a particular model, a space of
homogeneous harmonic polynomials, of this representation of K. This allows us to

explicitly describe the matrix coefficients of this representation, which are used to

construct the explicit Schwartz functions Φ◦ ∈ S (Mat1×n(F )) and Φ ∈ S (Matn×n(F ))
given in (4.19) and (4.24).

7.1. Homogeneous harmonic polynomials and representations of U(n)

For nonnegative integers p,q, let Hp,q(Cn) denote the vector space consisting of harmonic

polynomials that are homogeneous of bidegree (p,q) – namely, the set of polynomials

P (z) = P (z1, . . . ,zn,z1, . . . ,zn) in z ∈ Mat1×n(C) = Cn that are annihilated by the
Laplacian

Δ = 4

n∑
j=1

∂2

∂zj∂zj

and satisfy

P (λz) = P
(
λz1, . . . ,λzn,λz1, . . . ,λzn

)
= λpλ

q
P (z1, . . . ,zn,z1, . . . ,zn)

for all λ ∈ C. The dimension of Hp,q(Cn) is 1 for n= 1 and

(p+ q+n−1)(p+n−2)!(q+n−2)!

p!q!(n−2)!(n−1)!
=

p+ q+n−1

n−1

(
p+n−2

n−2

)(
q+n−2

n−2

)
for n≥ 2.

Let τ be an irreducible representation of U(n) of highest weight μ = (p,0, . . . ,0,− q);

note that for n= 1, either p or q must be zero. Then Hp,q(C
n) is a model of τ , where the

group U(n) 	 k acts on Hp,q(Cn) 	 P via right translation – namely,

(τ(k) ·P )(z1, . . . ,zn,z1, . . . ,zn) := P
((
z1 · · · zn

)
k,
(
z1 · · · zn

)
k
)
;

that is, (τ(k) ·P )(z) := P (zk). We define a U(n)-invariant inner product on Hp,q(C
n) 	

P,Q by

〈P,Q〉 :=
∫
U(n)

P (enk)Q(enk)dk.

From the branching rule in Lemma 6.3, there is a one-dimensional subspace of Hp,q(C
n)

that is invariant under the action of U(n−1)	 k′ embedded in U(n) via k′ 
→
(
k′ 0
0 1

)
, which

we can describe explicitly.

Lemma 7.1 [Rud08, Proposition 12.2.6]. There exists a unique homogeneous harmonic

polynomial P ◦ ∈Hp,q(C
n) satisfying P ◦(en) = 1 and τ

(
k′ 0
0 1

)
·P ◦ =P ◦ for all k′ ∈U(n−1)
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– namely,

P ◦(z) :=

min{p,q}∑
ν=0

(−1)ν
(
p
ν

)(
q
ν

)(
ν+n−2
n−2

) (z1z1+ · · ·+ zn−1zn−1)
ν
zp−ν
n zn

q−ν . (7.2)

In particular, for n= 1, so that either p or q is equal to 0,

P ◦(z1) =

{
zp1 for p ∈ N0 and q = 0,

z1
q for p= 0 and q ∈ N0.

(7.3)

Remark 7.4. When restricted to the unit sphere in Cn, this polynomial is sometimes

referred to as the zonal spherical harmonic of bidegree (p,q) in dimension n. When z1z1+
· · ·+ zn−1zn−1 = 1− znzn, P

◦(z1, . . . ,zn,z1, . . . ,zn) is a polynomial in zn,zn and can be

expressed in terms of the generalised Zernike polynomial Pn−2
q,p (also called a generalised

disc polynomial) or the Jacobi polynomial P
(n−2,p−q)
q .

We make crucial use of the fact that for all P ∈ Hp,q(C
n) and k ∈ U(n), P (enk) is

equal to a matrix coefficient of τ . This can be thought of as an explicit form of Schur

orthogonality.

Lemma 7.5 [Rud08, Theorem 12.2.5]. The reproducing kernel for Hp,q(Cn) is (dimτ)P ◦,
so that for all P ∈Hp,q(C

n) and k ∈U(n),

P (enk) = (dimτ)〈τ(k) ·P,P ◦〉 .

In particular, 〈P ◦,P ◦〉= (dimτ)−1. Moreover, for all P ∈Hp,q(C
n) and z ∈ Cn,

P (z) = dimτ

∫
U(n)

P (enk
−1)P ◦(zk)dk.

Finally, we also require the following identity, which states that homogeneous harmonic
polynomials P ∈Hp,q(Cn) are eigenfunctions of the Fourier transform.

Lemma 7.6 (Hecke’s Identity; cf. [SW71, Chapter IV, Theorem 3.4]). For any homoge-

neous harmonic polynomial P ∈Hp,q(C
n) and w ∈ Cn, we have that∫

Cn

P (z)exp
(
−2πz tz

)
ψ
(
z tw

)
dz = i−p−qP (w)exp

(
−2πw tw

)
.

Proof. First, we prove this for P (z) = zp1zn
q, the highest weight vector of τ . In this case,

i−p−qP (w)exp
(
−2πw tw

)
= (−2πi)−p−q ∂p+q

∂w1
p∂wq

n
exp

(
−2πw tw

)
= (−2πi)−p−q ∂p+q

∂w1
p∂wq

n

∫
Cn

exp
(
−2πz tz

)
ψ
(
z tw

)
dz

=

∫
Cn

P (z)exp
(
−2πz tz

)
ψ
(
z tw

)
dz.
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For any other Q∈Hp,q(C
n), we may write Q(z) as a linear combination of elements of the

form P (zk) with k ∈U(n), and so using the above calculation with w replaced by wk and

making the change of variables z 
→ zk yields the result upon recalling that k
t
k = 1n.

7.2. Homogeneous harmonic polynomials and representations of O(n)

Similarly, for a nonnegative integer p, let Hp(R
n) denote the vector space consisting of

homogeneous harmonic polynomials of degree p – namely, the set of polynomials P (x) =

P (x1, . . . ,xn) in x ∈Mat1×n(R) = Rn that are annihilated by the Laplacian

Δ =

n∑
j=1

∂2

∂x2
j

and satisfy P (λx) = λpP (x) for all λ ∈ R. This space has dimension 1 for n = 1 and

p ∈ {0,1} and has dimension(
p+n−2

n−2

)
+

(
p+n−3

n−3

)
=

(2p+n−2)(p+n−3)!

p!(n−2)!
=

2p+n−2

p+n−2

(
p+n−2

n−2

)
for n≥ 2 and p ∈ N0.

Let τ be an irreducible representation of O(n) of highest weight μ= (p,0, . . . ,0), where
p is a nonnegative integer; note that p ∈ {0,1} for n = 1. Then Hp(Rn) is a model of τ ,

where the group O(n) 	 k acts on the space Hp(R
n) 	 P via right translation – namely,

(τ(k) ·P )(x) := P (xk). We define an O(n)-invariant inner product on Hp(R
n) 	 P,Q by

〈P,Q〉 :=
∫
O(n)

P (enk)Q(enk)dk.

We record the following results, all of which are analogous to those for Hp,q(C
n) in

Section 7.1.

Lemma 7.7 [AH12, Section 2.1.2]. There exists a unique homogeneous harmonic

polynomial P ◦ ∈Hp(R
n) satisfying P ◦(en) = 1 and τ

(
k′ 0
0 1

)
·P ◦ = P ◦ for all k′ ∈O(n−1)

– namely,

P ◦(x) :=

p∑
ν=0

ν≡0 (mod 2)

iνp!Γ
(
n−1
2

)
2ν
(
ν
2

)
!(p−ν)!Γ

(
ν+n−1

2

) (x2
1+ · · ·+x2

n−1

) ν
2 xp−ν

n . (7.8)

In particular, for n= 1, so that p ∈ {0,1},

P ◦(x1) = xp
1, (7.9)

while for n= 2, so that p ∈ N0,

P ◦(x1,x2) =
1

2
(x2− ix1)

p
+

1

2
(x2+ ix1)

p
=

p∑
ν=0

ν≡0 (mod 2)

(
p

ν

)
(ix1)

νxp−ν
2 . (7.10)

Remark 7.11. Atkinson and Han name P ◦ the Legendre polynomial of degree p in n

dimensions [AH12, Section 2.1.2]; when restricted to the unit sphere in Rn, this polynomial
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is also referred to as the zonal spherical harmonic. When x2
1 + · · ·+ x2

n−1 = 1− x2
n,

P ◦(x1, . . . ,xn) is a polynomial in xn and can be expressed in terms of the Gegenbauer

polynomial C
n−2
2

p (also called an ultraspherical polynomial) or the Jacobi polynomial

P
(n−3

2 , n−3
2 )

p ; in particular, when n = 2, this is just the usual Legendre polynomial of
degree p.

Lemma 7.12 [AH12, Section 2.2]. The reproducing kernel for Hp(R
n) is (dimτ)P ◦, so

that for all P ∈Hp(R
n) and k ∈O(n),

P (enk) = (dimτ)〈τ(k) ·P,P ◦〉 .

In particular, 〈P ◦,P ◦〉= (dimτ)−1. Moreover, for all P ∈Hp(R
n) and x ∈ Rn,

P (x) = dimτ

∫
O(n)

P (enk
−1)P ◦(xk)dk.

Lemma 7.13 (Hecke’s Identity [SW71, Chapter IV, Theorem 3.4]). For any homogeneous

harmonic polynomial P ∈Hp(R
n) and ξ ∈ Rn, we have that∫

Rn

P (x)exp
(
−πx tx

)
ψ(x tξ)dx= i−pP (ξ)exp

(
−πξ tξ

)
.

8. The Newform in the Induced Model

8.1. The induced model

Let π = π1 � · · ·� πr be an induced representation of Whittaker type. Let Vπj
be the

space of πj ; the space Vπ of π may then be viewed as the space of smooth functions
f : GLn(F )→ Vπ1

⊗·· ·⊗Vπr
that satisfy

f(umg) = δ
1/2
P (m)π1(m1)⊗·· ·⊗πr(mr) ·f(g),

for any u ∈ NP(F ), m = blockdiag(m1, . . . ,mr) ∈ MP(F ), and g ∈ GLn(F ), where

P(F ) = P(n1,...,nr)(F ). The action of π on Vπ is via right translation – namely, (π(h) ·
f)(g) := f(gh).

To make this more explicit, we first describe the space Vπj
of the essentially square-

integrable representation πj of GLnj
(F ). The following result is well-known; see, for

example, [GH11, Chapter 7].

Lemma 8.1.

(1) Let π = χκ| · |t be a character of GL1(F ) = F×. The space Vπ of π is simply the

one-dimensional vector space spanned by the function χκ(x)|x|t.
(2) Let π=Dκ⊗|det| t be an essentially discrete series representation of GL2(R). Then

π is a subrepresentation of the reducible principal series representation π� := | ·
|t+κ−1

2 �χκ| · |t−κ−1
2 of GL2(R). Moreover, if Vπ� denotes the induced model of π�

consisting of smooth functions f : GL2(R)→ C that satisfy

f(uag) = |a1|t+
κ
2 χκ(a2)|a2|t−

κ
2 f(g)
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for all u ∈ N2(R), a = diag(a1,a2) ∈ A2(R) and g ∈ GL2(R), where π� acts on Vπ�

via right translation, then the induced model of π is precisely the subspace

Vπ :=
κ−2⋂
μ1=0

μ1≡κ (mod 2)

kerΠτ(μ1,0)

of Vπ� , where Πτ denotes the projection of Vπ� onto the τ -isotypic component V τ
π� .

Corollary 8.2. Let π = π1 � · · ·� πr be an induced representation of Whittaker type.

Then the induced model of π may be taken to be the space Vπ of smooth functions f :

GLn(F )×MP(F )→ C satisfying

f(umg;m′) = δ
1/2
P (m)f(g;m′m) (8.3)

for all u ∈ NP(F ), m,m′ ∈MP(F ) and g ∈ GLn(F ) and such that for each g ∈ GLn(F ),

f(g; ·) : MP(F )→ C is an element of Vπ1
⊗·· ·⊗Vπr

with Vπj
as in Lemma 8.1.

For f ∈ Vπ, we write f(g) to denote f(g;1n).

Example 8.4. Suppose that π = χκ1 | · |t1 � · · ·�χκn | · |tn is a principal series representa-

tion, so that κj ∈ Z for F = C for F = R and κj ∈ {0,1}. The induced model of π is the

vector space Vπ of smooth functions f : GLn(F )→ C that satisfy

f(uag) = f(g)δ1/2n (a)

n∏
j=1

χκj (aj)|aj |tj

for all u ∈Nn(F ), a= diag(a1, . . . ,an) ∈An(F ), and g ∈GLn(F ).

Our goal now is to explicitly describe the newform f◦ in the induced model Vπ of an
induced representation of Whittaker type π. We give three different explicit constructions:

via the Iwasawa decomposition, via convolution sections and via Godement sections.

Initially, we define the newform in the induced model only up to multiplication by a
nonzero constant; eventually in Definitions 8.10 and 9.2, we specify a normalisation that

is particularly useful when proceeding to study the newform in the Whittaker model.

8.2. The newform via the Iwasawa decomposition

8.2.1. Essentially square-integrable representations. We first describe the new-
form in the induced model of essentially square-integrable representations.

Lemma 8.5.

(1) For π = χκ| · |t, the newform in the induced model is simply

f◦(x) = c◦χκ(x)|x|t (8.6)

for any c◦ ∈ C×.
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(2) For F = R and π =Dκ⊗|det| t, the newform in the induced model of π is

f◦(g) = c◦|a1|t+
κ
2 χκ(a2)|a2|t−

κ
2 P ◦(e2k

−1) (8.7)

for any c◦ ∈ C× and g ∈ GL2(R) having the Iwasawa decomposition g = uak with
u ∈ N2(R), a = diag(a1,a2) ∈ A2(R) and k ∈ O(2), where P ◦ is the homogeneous

harmonic polynomial associated to the newform K-type τ◦ given by (7.10).

Remark 8.8. Strictly speaking, there is no need to write P ◦ instead of P ◦, since this

is real-valued; we do this simply to ensure notational consistency when later treating the

cases F =R and F =C simultaneously, for the distinction is no longer moot in the latter
case.

Proof. This is clear for π = χκ| · |t. For π = Dκ⊗ |det| t, we must first check that f◦ is

well defined, for the Iwasawa decomposition is not unique as A2(R) and O(2) intersect

nontrivially. If a′ = diag(a′1,a
′
2) ∈ A2(R)∩O(2), so that a′1,a

′
2 ∈ {1,−1}, then on the one

hand,

f◦(uaa′k) = c◦|a1|t+
κ
2 χκ(a′2)χ

κ(a2)|a2|t−
κ
2 P ◦(e2k

−1)

since a′ ∈A2(R) with |a′1|= |a′2|= 1, while on the other hand,

f◦(uaa′k) = c◦|a1|t+
κ
2 χκ(a2)|a2|t−

κ
2 P ◦(e2a

′k−1)

since a′ ∈O(2), and these are equal since e2a
′ = a′2e2, P

◦ is homogeneous of degree κ as

τ◦ = τ(κ,0), so that P ◦ ∈Hκ(R
2), and a′κ2 = χκ(a′2) as a

′
2 ∈ {1,−1}.

Next, Schur orthogonality shows that f◦ ∈ kerΠτ(μ1,0) for 0 ≤ μ1 ≤ κ−2 with μ1 ≡ κ
(mod 2) since P ◦ ∈ Hκ(R2), and so f◦ is indeed an element of the induced model Vπ of

π as defined in Lemma 8.1.

Finally, to prove that f◦ is the newform, we must show that∫
O(2)

ξτ
◦|O(1)(k)(π(k) ·f◦)(g)dk = f◦(g).

From the definition (8.7) of f◦, it suffices to show that∫
O(2)

ξτ
◦|O(1)(k)P ◦

(
e2k

−1k′−1
)
dk = P ◦

(
e2k

′−1
)

(8.9)

for any k′ ∈O(2). We note that

ξτ
◦|O(1)(k) = (dimτ◦)

〈
τ◦(k−1) ·P ◦,P ◦〉

〈P ◦,P ◦〉 = (dimτ◦)P ◦(e2k
−1),

where the first equality follows from the definitions (4.6) of ξτ
◦|O(1) and (7.10) of P ◦,

while the second follows from Lemma 7.12. The equality (8.9) then follows from one more
application of Lemma 7.12.

For our applications, we require explicit choices of the constants c◦ appearing in (8.6)

and (8.7).
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Definition 8.10. Let π be an essentially square-integrable representation of GLn(F ),

and let f◦ denote the newform in the induced model, which is given by (8.6) if n= 1, so

that π = χκ| · |t, and by (8.7) if n= 2, so that F =R and π =Dκ⊗|det| t. We say that f◦

is canonically normalised if

c◦ =

{
1 if π = χκ| · |t,
iκζR(κ)ζR(κ+1) if π =Dκ⊗|det| t.

(8.11)

8.2.2. Induced representations of Whittaker type. We now give an explicit

construction of the newform f◦ : GLn(F )×MP(F )→C in the induced model of an induced

representation of Whittaker type π= π1� · · ·�πr of GLn(F ) when g ∈GLn(F ) is written

in terms of its Iwasawa decomposition.
This description involves a distinguished homogeneous harmonic polynomial P ◦

(n1,...,nr)

that is defined in terms of polynomials P ◦
j in the following way. To each essentially

square-integrable representation πj of GLnj
(F ) with newform K -type τ◦j , we associate a

distinguished homogeneous harmonic polynomial P ◦
j .

• For F =R, nj =1, πj = χκj | · |tjR and τ◦j the one-dimensional representation of O(1)
of highest weight κj ∈ {0,1}, P ◦

j ∈Hp(R) is the homogeneous harmonic polynomial
associated to τ = τ◦j given by (7.9) with p= κj .

• For F = R, nj = 2, πj =Dκj
⊗|det| tjR and τ◦j the two-dimensional representation

of O(2) of highest weight (κj,0) with κj ≥ 2 a positive integer, P ◦
j ∈ Hp(R

2) is
the homogeneous harmonic polynomial associated to τ = τ◦j given by (7.10) with
p= κj .

• For F = C, so that nj = 1, πj = χκj | · |tjC and τ◦j the one-dimensional repre-
sentation of U(1) of highest weight κj ∈ Z, P ◦

j ∈ Hp,q(C) is the homogeneous
harmonic polynomial associated to τ = τ◦j given by (7.3) with p=max{κj,0} and
q =−min{κj,0}.

We then define

P ◦
(n1,...,nr)

(x) :=
r∏

j=1

{
P ◦
j (x�) if �= n1+ · · ·+nj and πj = χκj | · |tjR ,

P ◦
j (x�,x�+1) if �= n1+ · · ·+nj −1 and πj =Dκj

⊗|det| tjR
(8.12)

for F = R, while for F = C, we define

P ◦
(n1,...,nr)

(z) :=
r∏

j=1

P ◦
j (zj). (8.13)

It is straightforward to see that the polynomials P ◦
(n1,...,nr)

(x) and P ◦
(n1,...,nr)

(z) are

elements of Hμ◦
1
(Rn) and Hμ◦

1,−μ◦
n
(Cn), respectively, where μ◦ = (μ◦

1, . . . ,μ
◦
n) is the highest

weight of the newform K -type τ◦ = τμ◦ of π = π1 � · · ·�πr.
The description of the newform f◦ in the induced model of π = π1 � · · · � πr

also involves the canonically normalised newforms f◦
1 , . . . ,f

◦
r of the essentially square-

integrable representations π1, . . . ,πr.
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Proposition 8.14. Let π = π1 � · · ·�πr be an induced representation of Whittaker type
with r≥ 2. For g ∈GLn(F ) having the Iwasawa decomposition g= umk with respect to the

parabolic subgroup P(F ) =P(n1,...,nr)(F ), so that u∈NP(F ), m=blockdiag(m1, . . . ,mr)∈
MP(F ), and k ∈ K, and for m′ = blockdiag(m′

1, . . . ,m
′
r) ∈ MP(F ), the newform f◦ :

GLn(F )×MP(F )→ C in the induced model Vπ of π is of the form

f◦(g;m′) := c◦dimτ◦1 · · ·dimτ◦r δ
1/2
P (m)

∫
Kn1

· · ·
∫
Knr

f◦
1 (m

′
1m1k1) · · ·f◦

r (m
′
rmrkr) (8.15)

×P ◦
(n1,...,nr)

(
enk

−1blockdiag(k1, . . . ,kr)
)
dkr · · ·dk1

for some constant c◦ ∈ C×, where each f◦
j is the canonically normalised newform of πj

and τ◦j is the newform Knj
-type of πj.

Proof. Since the Iwasawa decomposition is not unique as MP(F ) and K intersect

nontrivially, our first task is to show that f◦(umm′′k;m′) is well defined for

m′′ = blockdiag(m′′
1, . . . ,m

′′
r ) ∈MP(F )∩K. On the one hand, this is

c◦dimτ◦
1 · · ·dimτ◦

r δ
1/2
P (m)

∫
Kn1

· · ·
∫
Knr

f◦
1

(
m′

1m1m
′′
1k1

)
· · ·f◦

r

(
m′

rmrm
′′
rkr

)
×P ◦

(n1,...,nr)

(
enk

−1blockdiag(k1, . . . ,kr)
)
dkr · · ·dk1

since m′′ ∈MP(F ), noting that δP(m
′′) = 1 as m′′ ∈K. On the other hand, this is

c◦ dimτ◦
1 · · ·dimτ◦

r δ
1/2
P (m)

∫
Kn1

· · ·
∫
Knr

f◦
1 (m′

1m1k1) · · ·f◦
r (m′

rmrkr)

×P◦
(n1,...,nr)

(
enk

−1m′′−1 blockdiag(k1, . . . ,kr)
)
dkr · · ·dk1

since m′′ ∈K; as m′′
j ∈Knj

, this is seen to be equal to the first expression upon making

the change of variables kj 
→m′′
j kj .

Next, we confirm that this is an element of the induced model Vπ of π. It is clear that f◦

is a smooth function from GLn(F )×MP(F ) to C that satisfies (8.3). Moreover, f◦(g; ·) is
indeed an element of Vπ1

⊗·· ·⊗Vπr
for each g ∈GLn(F ), since upon writing P ◦

(n1,...,nr)
=∏r

j=1P
◦
j , the integrals over Knj

	 kj are either trivial if nj = 1, or lead to f◦
j P

◦
j being

replaced with the sum of two such products of elements of Vπj
and homogeneous harmonic

polynomials, for we may use Schur orthogonality for the two-dimensional representation

τ◦j = τ(κj,0) for πj =Dκj
⊗|det| tj .

Finally, we show that this is the newform, which requires confirming that∫
Kn

ξτ
◦,Kn−1(k)(π(k) ·f◦)(g;m′)dk = f◦(g;m′).

From the definition (8.15) of f◦ together with the Iwasawa decomposition, it suffices to

show that for each k′ ∈Kn,∫
Kn

ξτ
◦,Kn−1(k)P ◦

(n1,...,nr)

(
enk

−1k′−1
)
dk = P ◦

(n1,...,nr)

(
enk

′−1
)
. (8.16)
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We note that

ξτ
◦,Kn−1(k) = (dimτ◦)

〈
τ◦(k−1) ·P ◦,P ◦〉

〈P ◦,P ◦〉 = (dimτ◦)P ◦(enk
−1),

where the first equality follows from the definitions (4.6) of ξτ
◦,Kn−1 and (7.2) and (7.8)

of P ◦, while the second follows from Lemmata 7.5 and 7.12. The equality (8.16) then

follows from one more application of Lemmata 7.5 and 7.12.

Proposition 8.14 completely prescribes the behaviour of the newform f◦(g) := f◦(g;1n)
when g = uak is given by the Iwasawa decomposition with respect to the standard Borel
subgroup.

Corollary 8.17. For u ∈ Nn(F ), a = diag(a1, . . . ,an) ∈ An(F ) and g ∈ GLn(F ), the
newform in the induced model satisfies

f◦(uag) = f◦(g)δ1/2n (a)

r∏
j=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χκj (a�)|a�|tj if �= n1+ · · ·+nj and

πj = χκj | · |tj ,
χκj (a�+1)|a�|tj+

κj−1

2 |a�+1|tj−
κj−1

2 if �= n1+ · · ·+nj −1

and πj =Dκj
⊗|det| tj,

(8.18)

and for k ∈Kn,

f◦(k) = c◦c◦1 · · ·c◦rP ◦
(n1,...,nr)

(enk
−1)

= c◦
r∏

j=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ◦
j

(
k�,n

)
if �= n1+ · · ·+nj and πj =

χκj | · |tj ,
iκjζR(κj)ζR(κj +1)P ◦

j

(
k�,n,k�+1,n

)
if �= n1+ · · ·+nj −1 and πj =

Dκj
⊗|det| tj .

(8.19)

Proof. Via the Iwasawa decomposition, it suffices to prove (8.18) for g = k ∈ K. We
write u ∈ Nn(F ) as u′u′′ with u′ ∈ NP(F ) and u′′ = blockdiag(u′′

1, . . . ,u
′′
r ) ∈MP(F ) with

u′′
j ∈Nnj

(F ), so that u′′a ∈MP(F ) whenever a ∈An(F ). We then take g = uak = u′u′′ak
and m′ = 1n in (8.15) and apply (8.6) and (8.7) to deduce (8.18). The identity (8.19) then
follows upon taking u= a= 1n, writing P ◦

(n1,...,nr)
=
∏r

j=1P
◦
j and invoking Lemmata 7.5

and 7.12 to evaluate the integrals over Knj
	 kj .

8.3. The newform via convolution sections

We now give a different description of the newform in the induced model. This description

is a recursive formula for f◦ as an integral over GLn(F ) involving f◦ itself and a

distinguished standard Schwartz function Φ ∈ S0(Matn×n(F )), where the space of

standard Schwartz functions S0(Matn×n(F )) consists of functions Φ : Matn×n(F ) → C
of the form

Φ(x) = P (x)exp
(
−dFπTr

(
x tx

))
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with P a polynomial in the entries of x and x and dF := [F : R] as in (4.19). When π

is a spherical representation and f is the spherical vector, such a formula is known by

the work of Gerasimov, Lebedev and Oblezin [GLO08, Theorem 5.1] and Ishii and Stade
[IsSt13, Proposition 2.6] (with the latter expressed in terms of the Mellin transform of

the Whittaker function); see also [IsSt13, Section 5].

Proposition 8.20. Let π = π1 � · · ·�πr be an induced representation of Whittaker type
of GLn(F ) with newform f◦ in the induced model Vπ. Then for all h ∈GLn(F ) and for

�(s) sufficiently large,∫
GLn(F )

f◦(hg)Φ(g) |detg|s+n−1
2 dg = L(s,π)f◦(h), (8.21)

where Φ ∈ S0(Matn×n(F )) is the standard Schwartz function

Φ(x) := (dimτ◦)P ◦(enx)exp
(
−dFπTr

(
x tx

))
, (8.22)

with P ◦ the homogeneous harmonic polynomial associated to the newform K-type τ◦ of π
via (7.2) and (7.8).

In particular, the integral (8.21) converges absolutely if �(s) > −�(tj) for each

j ∈ {1, . . . ,r} for which nj = 1, so that πj = χκj | · |tj , and �(s) > −�(tj) + (κj − 1)/2
for each j ∈ {1, . . . ,r} for which nj = 2, so that F = R and πj =Dκj

⊗|det| tj .
We may think of the integral (8.21) as defining a convolution section of Vπ in

the sense of Jacquet [Jac04], where the convolution is with respect to the function

φ(g) := Φ(g) |detg|s+n−1
2 . (Note that Jacquet deals only with functions φ : GLn(F )→ C

that are smooth and compactly supported.) Alternatively, the identity (8.21) may be

thought of as a Pieri-type formula, generalising [Ish18, Theorem 3.8].

Proof. Via the Iwasawa decomposition with respect to the standard Borel subgroup

and (8.18), it suffices to show the identity (8.21) for h = k ∈ Kn. We make the

change of variables g 
→ k−1g, then use the Iwasawa decomposition g = umk′ with
respect to the parabolic subgroup P(F ) = P(n1,...,nr)(F ); the Haar measure becomes

dg = δ−1
P (m)dud×mdk′. We see that the left-hand side of (8.21) is∫
MP(F )

|detm|s+n−1
2 δ−1

P (m)

∫
NP(F )

∫
Kn

f◦(umk′)Φ(k−1umk′)dk′ dud×m. (8.23)

The absolute convergence of this integral for �(s) sufficiently large is not difficult; it

follows directly from the definitions (8.15) of the newform in the induced model and
(8.22) of the standard Schwartz function Φ ∈ S0(Matn×n(F )) together with the bounds

from [Jac09, Lemma 3.3 (ii)].

We may evaluate the integral over Kn 	 k′ in (8.23) by inserting (8.15) and (8.22)
and using Lemmata 7.5 and 7.12. We subsequently make the change of variables mj 
→
mjk

−1
j , where m=blockdiag(m1, . . . ,mr), to trivially evaluate the integrals over Knj

	 kj ,

leading to

https://doi.org/10.1017/S1474748024000227 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000227


52 P. Humphries

c◦dimτ◦1 · · ·dimτ◦r

∫
MP(F )

∫
NP(F )

|detm|s+n−1
2 δ

−1/2
P (m) (8.24)

×f◦
1 (m1) · · ·f◦

r (mr)P ◦
(n1,...,nr)

(enk
−1um)exp

(
−dFπTr

(
um tm tu

))
dud×m,

We evaluate the integrals over MP(F ) 	 m and NP(F ) 	 u in (8.24) by breaking these

integrals up into parts, where this decomposition is dependent on the size of nj ∈ {1,2}
for j ∈ {1, . . . ,r}. In doing so, we use the fact that k−1 =

t
k and recall the definitions

(8.13) and (8.12) of the polynomial P ◦
(n1,...,nr)

in order to write

dimτ◦1 · · ·dimτ◦r P
◦
(n1,...,nr)

(eng) =

r∏
j=1

dimτ◦j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ◦
j (gn,�) if �= n1+ · · ·+nj and

πj = χκj | · |tj ,
P ◦
j (gn,�,gn,�+1) if �= n1+ · · ·+nj −1

and πj =Dκj
⊗|det| tj .

We first deal with the case of nj = 1, so that πj = χκj | · |tj ; in this case, we evaluate the

integrals over F× 	mj and F 	 ui,� with i∈{1, . . . ,�−1} for �=n1+ · · ·+nj . After making
the change of variables ui,� 
→m−1

j ui,�, recalling the definitions (8.6) of the newform in

the induced model f◦
j and (7.3) and (7.9) of the polynomial P ◦

j , and expanding this

polynomial via the multinomial theorem, we are left with evaluating

c◦j
∑

ν1+···+ν�=‖κj‖

(
‖κj‖

ν1, . . . ,ν�

) �∏
i=1

k
max{sgn(κj)νi,0}
i,n ki,n

−min{sgn(κj)νi,0}

×
∫
F×

mj
max{sgn(κj)ν�,0}m

−min{sgn(κj)ν�,0}
j χκj (mj)|mj |s+tj exp(−dFπmjmj) dmj

×
�−1∏
i=1

∫
F

ui,�
max{sgn(κj)νi,0}u

−min{sgn(κj)νi,0}
i,� exp(−dFπui,�ui,�) dui,�.

Here, (
κ

ν1, . . . ,ν�

)
:=

κ!

ν1! · · ·ν�!
denotes the multinomial coefficient for κ,ν1, . . . ,ν� ∈N0 with ν1+ · · ·+ν� = κ. The integral
over F 	 ui,� vanishes unless νi = 0, in which case it is 1, upon applying Hecke’s identity,

Lemmata 7.6 and 7.13. All that remains is the integral over F× 	mj , which is equal to

c◦jk
max{κj,0}
�,n k�,n

−min{κj,0}
∫
F×

|mj |s+tj+
‖κj‖
dF exp(−dFπmjmj)dmj = c◦jL(s,πj)P ◦

j

(
k�,n

)
having used the fact that

|x|
‖κ‖
dF = χ−κ(x)xmax{κ,0}x−min{κ,0} = χκ(x)xmax{κ,0}x−min{κ,0} (8.25)

and recalling the definitions (7.3) and (7.9) of the polynomial P ◦
j , (2.7) and (2.10) of the

L-function L(s,πj) in terms of ζF (s), and (2.8) and (2.11) of the zeta function ζF (s) as

an integral over F×.
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Next, we deal with the case of nj = 2, so that F = R and πj = Dκj
⊗ |det| tj ; we

evaluate the integrals over GL2(R) 	mj and R2 	 (ui,�,ui,�+1) with i ∈ {1, . . . ,�− 1} for

� = n1 + · · ·+nj − 1. We write mj =
(
1 u�,�+1

0 1

)(a� 0
0 a�+1

)
k′ for u�,�+1 ∈ R, a�,a�+1 ∈ R×,

and k′ ∈O(2); the Haar measure becomes dmj = |a�|−1|a�+1|du�,�+1 d
×a� d

×a�+1 dk
′. We

use Schur orthogonality to evaluate the integral over O(2) 	 k′ and then make the change

of variables u�,�+1 
→ a−1
�+1u�,�+1, ui,� 
→ a−1

� ui,�, and ui,�+1 
→ a−1
�+1ui,�+1−u�,�+1ui,� for

i∈ {1, . . . ,�−1}. Recalling the definitions (8.7) of f◦
j and (7.10) of P ◦

j , and expanding this
polynomial via the multinomial theorem, we are led to

c◦j
2

∑
±

∑
ν1+···+ν�+1=κj

(
κj

ν1, . . . ,ν�+1

) �+1∏
i=1

kνi
i,n

×
∫
R×

a
ν�+1

�+1 χ
κj (a�+1)|a�+1|s+tj−

κj−1

2 exp
(
−πa2�+1

)
d×a�+1

×
∫
R×

|a�|s+tj+
κj−1

2 exp
(
−πa2�

)∫
R

(u�,�+1∓ ia�)
ν� exp

(
−πu2

�,�+1

)
du�,�+1 d

×a�

×
�−1∏
i=1

∫
R2

(ui,�+1∓ iui,�)
νi exp

(
−π

(
u2
i,�+u2

i,�+1

))
dui,� dui,�+1.

We use Hecke’s identity, Lemma 7.13, to see that the integral over R2 	 (ui,�,ui,�+1)

vanishes unless νi = 0, in which case it is 1; consequently, the only nonzero summands are
those for which ν� = κj −ν�+1 =: ν. For the integral over R 	 u�,�+1, we make the change

of variables u�,�+1 
→ u�,�+1 ± ia� and shift the contour of integration back to the line

�(u�,�+1) = 0 via Cauchy’s integral theorem, for the integrand extends holomorphically
to an entire function of the complex variable u�,�+1. Since

∫
R

uν exp
(
−πu2

)
ψ(ua)du= iν(2π)−ν ∂ν

∂aν
exp

(
−πa2

)
,

we arrive at

c◦j

κj∑
ν=0

ν≡0 (mod 2)

(
κj

ν

)
(ik�,n)

ν k
κj−ν

�+1,n

× (2π)−ν

∫
R×

|a�+1|s+tj+
κj+1

2
−ν exp

(
−πa2

�+1

)
d×a�+1

∫
R×

|a�|s+tj+
κj−1

2
∂ν

∂aν
�

exp
(
−πa2

�

)
d×a�,

having observed the vanishing of the integral over R× 	 a�+1 for odd ν. We integrate by
parts ν times with respect to a� and then integrate by parts ν/2 times with respect

to a�, differentiating exp(−πa2�), and ν/2 times with respect to a�+1, differentiating

exp(−πa2�+1). We end up at
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c◦j

κj∑
ν=0

ν≡0 (mod 2)

(
κj

ν

)
(ik�,n)

ν
k
κj−ν
�+1,n

×
∫
R×

|a�+1|s+tj+
κj+1

2 exp
(
−πa2�+1

)
d×a�+1

∫
R×

|a�|s+tj+
κj−1

2 exp
(
−πa2�

)
d×a�

= c◦jL(s,πj)P ◦
j

(
k�,n,k�+1,n

)
,

again recalling the definitions (7.10) of P ◦
j , (2.13) of L(s,πj) in terms of products of ζF (s),

and (2.11) of ζF (s) as an integral over F×.
Combining these calculations, we find that∫
GLn(F )

f◦(kg)Φ(g) |detg|s+n−1
2 dg

= c◦
r∏

j=1

c◦jL(s,πj)

{
P ◦
j (k�,n) if �= n1+ · · ·+nj and πj = χκj | · |tj ,

P ◦
j (k�,n,k�+1,n) if �= n1+ · · ·+nj −1 and πj =Dκj

⊗|det| tj,

which is precisely L(s,π)f◦(k) via the isobaric decomposition (2.5) of L(s,π) and the

identity (8.19) for f◦(k).
Finally, an inspection of the proof above shows that the integral (8.24) converges

absolutely if �(s)>−�(tj) for each j ∈ {1, . . . ,r} for which nj = 1 and �(s)>−�(tj)+
(κj −1)/2 for each j ∈ {1, . . . ,r} for which nj = 2.

We may use the identity (8.21) to prove Theorem 4.23, thereby resolving the test vector

problem for archimedean Godement–Jacquet zeta integrals.

Proof of Theorem 4.23. From the definition (2.3) of the Godement–Jacquet zeta
integral and Proposition 8.20, we have that

Z(s,β,Φ) =

∫
GLn(F )

〈π(g) ·v◦,ṽ◦〉Φ(g) |detg|s+n−1
2 dg

=

〈∫
GLn(F )

(π(g) ·v◦)Φ(g) |detg|s+n−1
2 dg,ṽ◦

〉
= 〈L(s,π)v◦,ṽ◦〉
= L(s,π)〈v◦,ṽ◦〉
= L(s,π).

A similar calculation to that of the proof of Proposition 8.20 yields the following.

Proposition 8.26. Let π be an induced representation of Whittaker type of GLn(F ) with

newform f◦ in the induced model Vπ. Define f̃◦(g) := f◦(tg−1). Then for all h ∈GLn(F )

and for �(s) sufficiently large,∫
GLn(F )

f̃◦(hg)Φ̃(g) |detg|s+n−1
2 dg = L(s,π̃)f̃◦(h), (8.27)
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where Φ̃ ∈ S0(Matn×n(F )) is the standard Schwartz function

Φ̃(x) := (dimτ◦)P ◦(enx)exp
(
−dFπTr

(
x tx

))
(8.28)

with P ◦ the homogeneous harmonic polynomial associated to the newform K-type τ◦ of π
via (7.2) and (7.8).

In particular, the integral (8.27) converges absolutely if �(s) > �(tj) for each j ∈
{1, . . . ,r} for which nj = 1, so that πj = χκj | · |tj , and �(s) > �(tj)+ (κj − 1)/2 for each
j ∈ {1, . . . ,r} for which nj = 2, so that F = R and πj =Dκj

⊗|det| tj .

Remark 8.29. From (8.27), we see that Z(s,β̃,Φ̃) = L(s,π̃), where β̃(g) := β(tg−1).

This is in perfect accordance with the local functional equation (2.15) upon noting that
Φ̃ = ic(π)Φ̂ via Hecke’s identity, Lemmata 7.6 and 7.13.

8.4. The newform via Godement sections

Our third description of the newform in the induced model is via Godement sections. This

is a recursive formula for the newform f◦ of π = π1 �π2 � · · ·�πr in terms of an integral

involving the newform f◦
0 of π0 := π2 � · · ·�πr and a distinguished standard Schwartz

function. Unlike our earlier descriptions of f◦ via the Iwasawa decomposition and via

convolution sections, this description via Godement sections is only valid for certain

induced representations of Whittaker type; we require the parameter t1 associated to π1

to have sufficiently large real part. When we proceed to studying the Whittaker newform,
we remove this condition via analytic continuation.

8.4.1. The case π1 = χκ1 | · |t1 . We first consider the case for which π = π1 � · · ·�πr

with n1 =1, so that π1 =χκ1 | · |t1 . We begin with a simple modification of Proposition 8.14.

Lemma 8.30. For n ≥ 2, let π = π1 � π2 � · · ·� πr and π0 := π2 � · · ·� πr be induced
representations of Whittaker type of GLn(F ) and GLn−1(F ) with π1 = χκ1 | · |t1 . Let f◦

0

be the newform of π0 in the induced model Vπ0
. Then for v ∈ Mat1×(n−1)(F ), x ∈ F×,

h ∈GLn−1(F ) and k ∈Kn, the newform f◦ in the induced model Vπ satisfies

f◦
((

1 v

0 1n−1

)(
x 0

0 h

)
k

)
=

c◦

c◦0
(dimτ◦0 )|x|

n−1
2 |deth|− 1

2

×
∫
K1

∫
Kn−1

χκ1(xk1)|xk1|t1f◦
0 (hk2)P

◦
(1,n−1)

(
enk

−1

(
k1 0
0 k2

))
dk2 dk1.

(8.31)

Here, the constants c◦ and c◦0 are those associated to f◦ and f◦
0 via (8.15), while

P ◦
(1,n−1)(x) := P ◦

1 (x1)P
◦
0 (x2, . . . ,xn),

where P ◦
1 and P ◦

0 are the homogeneous harmonic polynomials associated to the newform

K-types τ◦1 and τ◦0 of π1 and π0, respectively, via (7.2) and (7.8).
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Proof. We show that (8.31) reproduces Corollary 8.17, which determines f◦ completely.

Writing P ◦
(1,n−1) = P ◦

1 P
◦
0 , we see that the integral over K1 	 k1 is trivial by the

homogeneity of P ◦
1 and (8.25). We then use the Iwasawa decomposition h = u′a′k′ with

respect to the standard Borel subgroup, so that u′ ∈ Nn−1(F ), a′ = diag(a′1, . . . ,a
′
n−1) ∈

An−1(F ) and k′ ∈Kn−1, and we apply Corollary 8.17 in order to rewrite f◦
0 (hk2). The

integral over Kn−1 	 k2 may then be evaluated via Lemmata 7.5 and 7.12. The resulting
expression for f◦ is then precisely that given in Corollary 8.17 with u=

(
1 v
0 vu′

)
∈Nn(F ),

a= diag(x,a′1, . . . ,a
′
n−1) ∈An(F ) and

(
1 0
0 k′

)
k ∈Kn in place of k.

We now use the identity (8.31) in conjunction with the convolution section (8.27) in

order to prove that f◦ may be written as a Godement section.

Proposition 8.32. For n≥ 2, let π = π1�π2� · · ·�πr and π0 := π2� · · ·�πr be induced

representations of Whittaker type of GLn(F ) and GLn−1(F ) with π1 = χκ1 | · |t1 . Let f◦
0 be

the newform of π0 in the induced model Vπ0
. Let Φ ∈S0(Mat(n−1)×n(F )) be the standard

Schwartz function of the form

Φ(x) := P ◦
1

(
det

(
x

(
1n−1

0

)))
(dimτ◦0 )P

◦
0

(
en

tx
)
exp

(
−dFπTr

(
x tx

))
,

where P ◦
1 and P ◦

0 are the homogeneous harmonic polynomials associated to the newform

K-types τ◦1 and τ◦0 of π1 and π0, respectively, via (7.2) and (7.8). Then if �(t1) is
sufficiently large, the newform f◦ in the induced model Vπ satisfies the identity

f◦(g) =
c◦(−1)κ1(n−1)

c◦0L
(
1+ t1+

‖κ1‖
dF

,π̃0

)χκ1(detg) |detg| t1+n−1
2

×
∫
GLn−1(F )

f◦
0 (h)Φ

(
h−1

(
0 1n−1

)
g
)
χ−κ1(deth) |deth|−t1−n

2 dh, (8.33)

where the constants c◦ and c◦0 are those associated to f◦ and f◦
0 via (8.15).

In particular, the integral (8.33) converges absolutely if �(t1)>�(tj)−1−‖κ1‖/dF for

each j ∈ {2, . . . ,r} for which nj = 1, so that πj = χκj | · |tj , and �(t1)>�(tj)+(κj−1)/2−
1−κ1 for each j ∈ {2, . . . ,r} for which nj = 2, so that F = R and πj =Dκj

⊗|det| tj .

Proof. We take s= 1+ t1+‖κ1‖/dF in the convolution section identity (8.27), so that

f◦(g) =
1

L
(
1+ t1+

‖κ1‖
dF

,π̃
) ∫

GLn(F )

f◦ (g tg′−1
)
Φ̃(g′) |detg′|1+t1+

‖κ1‖
dF

+n−1
2 dg′,

with Φ̃ as in (8.28). We make the change of variables g′ 
→ tg tg′−1 and use the Iwasawa
decomposition g′ = umk with respect to the parabolic subgroup P(F ) = P(1,n−1)(F ),

where u =
(
1 v
0 1n−1

)
∈ NP(F ) with v ∈ Mat1×(n−1)(F ), m = (x 0

0 h) ∈MP(F ) with x ∈ F×

and h ∈GLn−1(F ), and k ∈Kn; the Haar measure is dg′ = |x|1−n |deth| dvd×xdhdk. We
may now insert the identity (8.31) for f◦. Next, we make the change of variables x 
→ xk−1

1 ,

h 
→ hk−1
2 , and k 
→

(
k1 0
0 k2

)
k, so that the integrals over K1 	 k1 and Kn−1 	 k2 are trivial;

subsequently, the integral over Kn 	 k may be evaluated via Lemmata 7.5 and 7.12 after
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inserting the definition (8.28) of Φ̃. After making the change of variables v 
→ −xv and

x 
→ x−1, we write v′ :=
(
x v

)
∈ Mat1×n(F ), so that dv′ = ζF (1)

−1|x|d×xdv, and we

make the change of variables v′ 
→ v′g−1. Finally, we use (8.25) in conjunction with the
homogeneity of P ◦

1 and the fact that

L

(
1+ t1+

‖κ1‖
dF

,π̃

)
= ζF

(
1+

2‖κ1‖
dF

)
L

(
1+ t1+

‖κ1‖
dF

,π̃0

)
via (2.5), (2.9) and (2.12). We arrive at the identity

f◦(g) =
c◦

c◦0L
(
1+ t1+

‖κ1‖
dF

,π̃0

)χκ1(detg) |detg|t1+
n−1

2

∫
GLn−1(F )

f◦
0 (h)χ

−κ1(deth) |deth|−t1− n

2

× (dimτ◦
0 )P

◦
0

(
en

tg

(
0

1n−1

)
t
h−1

)
exp

(
−dFπTr

(
h−1

(
0 1n−1

)
g tg

(
0

1n−1

)
t
h−1

))

× ζF (1)

ζF
(
1+ 2‖κ1‖

dF

) ∫
Mat1×n(F )

P◦
1

(
(deth−1)v′ adj(g) te1en

t
v′
)
exp

(
−dFπv′

t
v′
)
dv′ dh,

(8.34)

having recalled that the adjugate of g is adj(g) := (detg)g−1. To evaluate the last line of

(8.34), we expand P ◦
1 as a polynomial in v′1, . . . ,v

′
n via the multinomial theorem, yielding

ζF (1)

ζF

(
1+ 2‖κ1‖

dF

) (deth−1)max{κ1,0}(deth−1)−min{κ1,0}
∑

ν1+···+νn=‖κ1‖

(
‖κ1‖

ν1, . . . ,νn

)

×
n∏

i=1

(adj(g)i,1)
max{sgn(κ1)νi,0}(adj(g)i,1)

−min{sgn(κ1)νi,0}

×
n−1∏
i=1

∫
F

v′i
max{sgn(κ1)νi,0}

v′i
−min{sgn(κ1)νi,0} exp

(
−dFπv

′
iv

′
i

)
dv′i

×
∫
F

v′n
max{sgn(κ1)νn,0}−min{κ1,0}

v′n
−min{sgn(κ1)νn,0}+max{κ1,0} exp

(
−dFπv

′
nv

′
n

)
dv′n.

Via Hecke’s identity, Lemmata 7.6 and 7.13, the integral over F 	 v′n vanishes unless

ν1 = · · ·= νn−1 =0 and νn = ‖κ1‖, in which case the integral over F 	 v′i for i∈{1, . . . ,n−1}
is equal to 1. Via (8.25) and the fact that ζF (1)|v′n|−1 dv′n = d×v′n, we are left with

P ◦
1

(
(deth−1)adj(g)n,1

)
ζF

(
1+ 2‖κ1‖

dF

) ∫
F×

|v′n|
1+

2‖κ1‖
dF exp

(
−dFπv

′
nv

′
n

)
d×v′n = P ◦

1

(
(deth−1)adj(g)n,1

)
by (2.8) and (2.11). Since

adj(g)n,1 = (−1)n−1det

((
0 1n−1

)
g

(
1n−1

0

))
,

the result then follows from (8.34) and the homogeneity of P ◦
1 .
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8.4.2. The case π1 = Dκ1
⊗ |det| t1 . Next, we give a description of the newform in

the induced model when F = R, n1 = 2 and π1 =Dκ1
⊗|det| t1 is an essentially discrete

series representation. We do this first when n= 2, so that π = π1.

Proposition 8.35. Let π = Dκ ⊗ |det| t be an essentially discrete series representation

of GL2(R). Let Φ ∈ S0(Mat1×2(R)) be the standard Schwartz function of the form

Φ(x) :=

∫
R

P ◦
(
v,e2

tx
)
exp(−πv2)dv exp

(
−πx tx

)
, (8.36)

where P ◦ is the homogeneous harmonic polynomial associated to the newform K-type
τ◦ = τ(κ,0) of π via (7.8). Then the canonically normalised newform f◦ in the induced

model Vπ satisfies the identity

f◦(g) = iκ |detg| t+κ
2

∫
R×

a−κ
2 Φ

(
a−1
2

(
0 1

)
g
)
d×a2. (8.37)

Remark 8.38. The integral over R 	 v in (8.36) may be expressed in terms of Hermite

polynomials, though we do not make direct use of this fact.

Proof. We take s= 1+ t+(κ−1)/2 in the convolution section identity (8.27), so that

f◦(g) =
1

L
(
1+ t+ κ−1

2 ,π̃
) ∫

GL2(R)

f◦ (g tg′−1
)
Φ̃(g′) |detg′|1+t+κ

2 dg′,

with Φ̃ as in (8.28). We make the change of variables g′ 
→ tg tg′−1 and use the Iwasawa
decomposition g′ = uak with respect to the standard Borel subgroup, where u= (1 v

0 1 ) ∈
N2(R) with v ∈ R, a = diag(a1,a2) ∈ A2(R) with a1,a2 ∈ R×, and k ∈ O(2); the Haar

measure is dg′ = |a1|−1|a2|dvd×a1 d×a2 dk. We may now insert the identity (8.7) for f◦,
at which point Lemma 7.12 allows us to evaluate the integral over O(2) 	 k. Next, we
make the change of variables a1 
→ a−1

1 , v 
→ −a−1
1 v and

(
a1 v

)

→

(
a1 v

)
g−1, noting

that d×a1 = |a1|−1 da1 as ζR(1) = 1. Finally, we use the fact that

L

(
1+ t+

κ−1

2
,π̃

)
= ζR(κ)ζR(κ+1)

via (2.14). In this way, we find that

f◦(g) =
c◦

ζR(κ)ζR(κ+1)
|detg| t+κ

2

∫
R×

a−κ
2

∫
R

exp(−πa21)

×
∫
R

P ◦
(
v,e2

tg

(
0
1

)
a−1
2

)
exp(−πv2)exp

(
−πa−1

2

(
0 1

)
g tg

(
0
1

)
a−1
2

)
dvda1 d

×a2.

It remains to note that the integral over R 	 a1 is equal to 1 and to recall the definition

(8.11) of the normalising constant c◦.

Finally, we consider the more general case for which π = π1 � · · ·�πr with n1 = 2 and

π1 = Dκ1
⊗ |det| t1 . We first require a simple modification of Proposition 8.14 akin to

Lemma 8.30.
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Lemma 8.39. For n ≥ 3, let π = π1 � π2 � · · ·� πr and π0 := π2 � · · ·� πr be induced

representations of Whittaker type of GLn(R) and GLn−2(R) with π1 =Dκ1
⊗|det| t1 . Let

f◦
0 be the newform of π0 in the induced model Vπ0

. Then for v1,v2 ∈ Mat1×(n−2)(R),

v3 ∈R, a1,a2 ∈R×h ∈GLn−2(R), and k ∈O(n), the newform f◦ in the induced model Vπ

satisfies

f◦

⎛⎜⎝
⎛⎜⎝1 v1 v2

0 1 v3

0 0 1n−2

⎞⎟⎠
⎛⎜⎝a1 0 0

0 a2 0

0 0 h

⎞⎟⎠k

⎞⎟⎠=
c◦c◦1
c◦0

|a1|t1+
κ1−1

2
+ n−1

2 χκ1(a2)|a2|t1−
κ1−1

2
+ n−3

2 |deth|−1

×dimτ◦
0

∫
O(n−2)

f◦
0 (hk2)P

◦
(2,n−2)

(
enk

−1

(
12 0

0 k2

))
dk2. (8.40)

Here, the constants c◦, c◦1 and c◦0 are those associated to f◦, f◦
1 and f◦

0 via (8.15) and

(8.7), while

P ◦
(2,n−2)(x) := P ◦

1 (x1,x2)P
◦
0 (x3, . . . ,xn),

where P ◦
1 and P ◦

0 are the homogeneous harmonic polynomials associated to the newform
K-types τ◦1 and τ◦0 of π1 and π0, respectively, via (7.8).

Proof. The proof is essentially identical to that of Lemma 8.30.

We now use the identity (8.40) in conjunction with the convolution section (8.27) in
order to prove that f◦ may be written as a Godement section.

Proposition 8.41. For n≥ 3, let π = π1�π2� · · ·�πr and π0 := π2� · · ·�πr be induced

representations of Whittaker type of GLn(R) and GLn−2(R) with π1 =Dκ1
⊗|det| t1 . Let

f◦
0 be the newform of π0 in the induced model Vπ0

. Let Φ ∈ S0(Mat(n−1)×n(R)) be the
standard Schwartz function of the form

Φ(x) :=

∫
R

P ◦
1

(
v,en

tx te1
)
exp(−πv2)dv(dimτ◦0 )P

◦
0

(
en

tx

(
0

1n−2

))
exp

(
−πTr

(
x tx

))
,

where P ◦
1 and P ◦

0 are the homogeneous harmonic polynomials associated to the newform
K-types τ◦1 and τ◦0 of π1 and π0, respectively, via (7.8). Then if �(t1) is sufficiently large,

the newform f◦ in the induced model Vπ satisfies the identity

f◦(g) =
c◦iκ1

c◦0L
(
1+ t1+

κ1−1
2 ,π̃0

) |detg| t1+κ1−1
2 +n−1

2

∫
GLn−2(R)

f◦
0 (h) |deth|−t1−κ1−1

2 −n−1
2

(8.42)

×
∫
R×

a−κ1
2

∫
Mat1×(n−2)(R)

Φ

((
a−1
2 v3
0 h−1

)(
0 1n−1

)
g

)
dv3 d

×a2 dh,

where the constants c◦ and c◦0 are those associated to f◦ and f◦
0 via (8.15).

In particular, the integral (8.42) converges absolutely if �(t1) > �(tj)− 1− (κ1− 1)/2

for each j ∈ {2, . . . ,r} for which nj = 1, so that πj = χκj | · |tj , and �(t1) > �(tj)+ (κj −
1)/2−1− (κ1−1)/2 for each j ∈ {2, . . . ,r} for which nj = 2, so that πj =Dκj

⊗|det| tj .
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Proof. We take s= 1+ t1+(κ1−1)/2 in the convolution section identity (8.27), so that

f◦(g) =
1

L
(
1+ t1+

κ1−1
2 ,π̃

) ∫
GLn(R)

f◦ (g tg′−1
)
Φ̃(g′) |detg′|1+t1+

κ1−1
2 +n−1

2 dg′,

with Φ̃ as in (8.28). We make the change of variables g′ 
→ tg tg′−1 and then

use the Iwasawa decomposition g′ = umk with respect to the parabolic subgroup

P(R) = P(1,1,n−2)(R), where u=

(
1 v1 v2
0 1 v3
0 0 1n−2

)
∈NP(R) with v1 ∈R, v2,v3 ∈Mat1×(n−2)(R),

m =
(

a1 0 0
0 a2 0
0 0 h

)
∈ MP(R) with a1,a2 ∈ R× and h ∈ GLn−2(R), and k ∈ O(n); the Haar

measure is

dg′ = |a1|1−n|a2|3−n |deth|2 dv1 dv2 dv3 d×a1 d×a2 dhdk.

We may now insert the identity (8.40) for f◦. Next, we make the change of variables

h 
→ hk−1
2 and k′ 
→

(
12 0
0 k2

)
k′, so that the integral over O(n − 2) 	 k2 is trivial;

subsequently, the integral over O(n) 	 k may be evaluated via Lemma 7.12. Next, we
make the change of variables v1 
→ −a1v1, v2 
→ −a1v2−v1v3, v3 
→ −a2v3, a1 
→ a−1

1 , and(
a1 v1 v2

)

→

(
a1 v1 v2

)
g−1, noting that d×a1 = |a1|−1 da1 as ζR(1) = 1. Finally, we

use the fact that

L

(
1+ t1+

κ1−1

2
,π̃

)
= ζR(κ1)ζR(κ1+1)L

(
1+ t1+

κ1−1

2
,π̃0

)
via (2.5) and (2.14). In this way, we find that

f◦(g) =
c◦c◦1

c◦0ζR(κ1)ζR(κ1+1)L
(
1+ t1+

κ1−1
2

,π̃0

) |detg| t1+κ1−1
2

+n−1
2

×
∫
GLn−2(R)

f◦
0 (h) |deth|−t1−

κ1−1
2

−n−1
2

× (dimτ◦
0 )P

◦
0

(
en

tg

(
0

1n−2

)
th−1

)
exp

(
−πTr

(
h−1

(
0 1n−2

)
g tg

(
0

1n−2

)
th−1

))

×
∫
R×

a−κ1
2

∫
R

exp(−πa2
1)

∫
Mat1×(n−2)(R)

exp

⎛⎜⎝−πTr

⎛⎜⎝(
0 a−1

2 v3

)
g tg

⎛⎜⎝ 0

a−1
2

tv3

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠

×
∫

Mat1×(n−2)(R)

P ◦
1

⎛⎜⎝en−1v2,en
tg

⎛⎜⎝ 0

a−1
2

tv3

⎞⎟⎠
⎞⎟⎠exp

(
−πv2

tv2
)∫

R

exp(−πv21)dv1 dv2 dv3 d
×a1 d

×a2 dh.

It remains to note that the integrals over R 	 a1, R 	 v1 and R 	 v2,i for i ∈ {1, . . . ,n−3}
are trivial and to recall the definition (8.11) of the normalising constant c◦1.

In order to prove a recursive formula for the newform in the Whittaker model, we require

a similar identity to (8.42) for a slightly modified induced representation of Whittaker

type.
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Lemma 8.43. For n≥ 3, let π∗ = π∗
1 �π∗

2 �π2� · · ·�πr and π0 := π2� · · ·�πr be induced
representations of Whittaker type of GLn(R) and GLn−2(R) with π∗

1 = | · |t∗1 and π∗
2 = | · |t∗2 .

Let f◦
0 be the newform of π0 in the induced model Vπ0

. Let Φ ∈ S0(Mat(n−1)×n(R)) be

the standard Schwartz function of the form

Φ∗(x) := (dimτ◦0 )P
◦
0

(
en

tx

(
0

1n−2

))
exp

(
−πTr

(
x tx

))
,

where P ◦
0 is the homogeneous harmonic polynomial associated to the newform K-type τ◦0

of π0 via (7.8). Then if �(t∗1) is sufficiently large, the newform f∗◦ in the induced model

Vπ∗ satisfies the identity

f∗◦(g) =
c∗◦

c◦0ζR(1+ t∗1− t∗2)L(1+ t∗1,π̃0)
|detg| t∗1+n−1

2

∫
GLn−2(R)

f◦
0 (h) |deth|−t∗1−n−1

2

(8.44)

×
∫
R×

|a2|−1−t∗1+t∗2

∫
Mat1×(n−2)(R)

Φ

((
a−1
2 v3
0 h−1

)(
0 1n−1

)
g

)
dv3 d

×a2 dh,

where the constants c∗◦ and c◦0 are those associated to f∗◦ and f◦
0 via (8.15).

In particular, the integral (8.44) converges absolutely if �(t∗1) > �(t∗2) − 1,

�(t∗1) > �(tj) − 1 for each j ∈ {2, . . . ,r} for which nj = 1, so that πj = χκj | · |tj ,
and �(t∗1) > �(tj) + (κj − 1)/2− 1 for each j ∈ {2, . . . ,r} for which nj = 2, so that

πj =Dκj
⊗|det| tj .

Proof. This follows via the same method as the proof of Proposition 8.41.

9. The Newform in the Whittaker Model

9.1. The Jacquet integral

Let π = π1 � · · ·�πr be an induced representation of Whittaker type of GLn(F ), so that

each πj is of the form χκj | · |tj or Dκj
⊗|det| tj . Given an element f of the induced model

Vπ of π, we define the Jacquet integral

W (g) :=

∫
Nn(F )

f(wnug)ψn(u)du. (9.1)

This integral converges absolutely if �(t1)> · · ·>�(tr) and defines a Whittaker function

W =Wf ∈W(π,ψ); that is, as a function of f ∈ Vπ, Λ(f) :=Wf (1n) defines a Whittaker

functional, which is therefore unique up to scalar multiplication.
Wallach [Wal92] has shown that the Jacquet integral gives a Whittaker functional

for all induced representations of Whittaker type, and not just those for which

�(t1)> · · ·> �(tr), via analytic continuation in the following way. Write π = πt1,...,tr

for such a representation, and let Vπ = Vπt1,...,tr
denote its induced model. Fixing each

χκj and Dκj
but regarding tj as a complex variable, we may view the space Vπt1,...,tr

as a

holomorphic fibre bundle. A section ft1,...,tr (g;m
′) is a map from GLn(F )×MP(F )×Cr
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to C such that ft1,...,tr (·; ·) is an element of Vπt1,...,tr
for each fixed (t1, . . . ,tr) ∈ Cr; a

standard section (or flat section) is a section for which ft1,...,tr (k;1n) is independent of

(t1, . . . ,tr) ∈ Cr for all k ∈K. From [Wal92, Theorem 15.4.1], the Jacquet integral (9.1)
evaluated on a standard section extends holomorphically as a function of (t1, . . . ,tr) ∈Cr

with �(t1) > · · · > �(tr) to all of Cr, and hence via analytic continuation defines an

equivariant map from Vπt1,...,tr
to W(πt1,...,tr,ψ).

From this, we see that the newform f◦ in the induced model Vπ defined via the

Iwasawa decomposition (8.15) gives a standard section of newforms f◦
t1,...,tr provided

that we choose the normalising constant c◦ to be independent of (t1, . . . ,tr) ∈ Cr. The
corresponding Whittaker function is then given via the analytic continuation of the

Jacquet integral (9.1). Furthermore, we may choose the normalising constant c◦ to be

dependent on (t1, . . . ,tr) ∈ Cr and still obtain the corresponding Whittaker function via

the analytic continuation of the Jacquet integral so long as c◦ is holomorphic as a function
of (t1, . . . ,tr) ∈ Cr.

With this in mind, we may now define the canonically normalised newform in the

induced and Whittaker models.

Definition 9.2. Let π = π1 � · · ·�πr be an induced representation of Langlands type of

GLn(F ). The canonically normalised newform f◦ in the induced model Vπ is defined via

(8.6) and (8.7) with normalising constant (8.11) if r = 1, while for r ≥ 2, it is defined via
(8.15) with normalising constant

c◦ :=
r−1∏
j=1

r∏
�=j+1

ic(π�)

⎧⎨⎩L
(
1+ tj +

‖κj‖
dF

,π̃�

)
if πj = χκj | · |tj ,

L
(
1+ tj +

κj−1
2 ,π̃�

)
L
(
1+ tj +

κj+1
2 ,π̃�

)
if πj =Dκj

⊗|det| tj .

The canonically normalised newform W ◦ in the Whittaker model W(π,ψ) is given by the

analytic continuation of the Jacquet integral (9.1) of the canonically normalised newform

f◦. We call W ◦ the Whittaker newform.

Remark 9.3. When π is spherical, some authors refer to the canonically normalised

Whittaker function as the completed Whittaker function; see, for example, [BHM20,

Section 2.1]. We follow the nomenclature of [GMW21, Section 8].

Recalling the identities (2.9), (2.12) and (2.14) relating L-functions to zeta functions,

we observe that the normalising constant c◦ is well defined since ζF (s) is holomorphic

for �(s) > 0 and π being an induced representation of Langlands type means that
�(t1)≥ ·· · ≥ �(tr). We also note that if π = π1 � π2 � · · ·� πr and π0 := π2 � · · ·� πr,

then the associated normalising constants satisfy the relation

c◦ =

{
ic(π0)L

(
1+ t1+

‖κ1‖
dF

,π̃0

)
c◦0 if π1 = χκ1 | · |t1,

ic(π0)L
(
1+ t1+

κ1−1
2 ,π̃0

)
L
(
1+ t1+

κ1+1
2 ,π̃0

)
c◦0 if π1 =Dκ1

⊗|det| t1 .
(9.4)

This is a consequence of Definition 9.2, Theorem 4.15 and (2.5).

Remark 9.5. While we do not prove this, our methods below can be extended to

show that not only is the Whittaker newform well defined for induced representations
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of Langlands type, it is also well defined for induced representations of Whittaker type,
including those for which c◦ is not well defined (note that in these cases, the Whittaker

model is a model for a quotient of π rather than for π itself). Furthermore, one can show

that the Whittaker newform of π = π1 � · · ·�πr remains unchanged when π is replaced
by πσ(1)� · · ·�πσ(r) for any permutation σ ∈ Sr (cf. Remark 4.10). When π is a spherical

induced representation of Whittaker type, these claims follow from the work of Jacquet

[Jac67, Théorème (8.6)].

9.2. The newform via convolution sections

We now use the convolution section identity (8.21) for the newform in the induced model

together with the Jacquet integral (9.1) in order to give a convolution section identity for
the Whittaker newform. This is a recursive formula for W ◦ as an integral over GLn(F )

involving W ◦ and the distinguished standard Schwartz function Φ given by (8.22).

Lemma 9.6. Let π be an induced representation of Langlands type of GLn(F ) with
Whittaker newform W ◦ ∈ W(π,ψ). Then for all h ∈ GLn(F ) and for �(s) sufficiently

large, ∫
GLn(F )

W ◦(hg)Φ(g) |detg|s+n−1
2 dg = L(s,π)W ◦(h), (9.7)

where Φ ∈ S0(Matn×n(F )) is the standard Schwartz function given by (8.22).

Proof. We show this initially for �(t1) > · · · > �(tr) with �(t1) sufficiently large; this

identity then extends via analytic continuation to all induced representations of Langlands
type, for the left-hand side is absolutely convergent for �(s) sufficiently large by [Jac09,

Lemma 3.2 (ii) and Proposition 3.3].

We replace h with wnuh in the convolution section identity (8.21) for f◦ and insert this
identity into the Jacquet integral (9.1). The result then follows upon interchanging the

order of integration, which is justified by the absolute convergence of the Jacquet integral

together with the absolute convergence of the integral (8.21).

9.3. The newform via Godement sections

Next, we use Godement section identities for the newform in the induced model together

with the Jacquet integral (9.1) in order to give a Godement section identity for the
Whittaker newform. This is a propagation formula: a recursive formula for W ◦ in terms

of an integral over GLn−1(F ) involving a GLn−1 Whittaker function and a distinguished

standard Schwartz function.

9.3.1. The case π1 = χκ1 | · |t1 . As in Section 8.4, we first treat the case for which

π = π1 � · · ·�πr with n1 = 1, so that π1 = χκ1 | · |t1 .

Lemma 9.8. For n ≥ 2, let π = π1 � π2 � · · ·� πr and π0 := π2 � · · ·� πr be induced

representations of Langlands type of GLn(F ) and GLn−1(F ) with π1 = χκ1 | · |t1 . Let

W ◦ ∈ W(π,ψ) and W ◦
0 ∈ W(π0,ψ) be the Whittaker newforms of π and π0. Then for
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g ∈GLn−1(F ),

W◦

(
g 0

0 1

)
= |detg|t1+

‖κ1‖
dF

+ n−1

2

∫
GLn−1(F )

W◦
0 (h)Φ1(h

−1g)Φ◦
0(en−1h) |deth|

−t1−
‖κ1‖
dF

− n

2
+1

dh,

(9.9)

with the standard Schwartz functions Φ1 ∈ S0(Mat(n−1)×(n−1)(F )) and Φ◦
0 ∈ S0

(Mat1×(n−1)(F )) given by

Φ1(x1) := exp
(
−dFπTr

(
x1

tx1

))
, (9.10)

Φ◦
0(x2) := (dimτ◦0 )P

◦
0 (x2)exp

(
−dFπx2

tx2

)
, (9.11)

where P ◦
0 is the homogeneous harmonic polynomial associated to the newform Kn−1-type

τ◦0 of π0 via (7.2) and (7.8).

Remark 9.12. When n= 2, so that π = χκ1 | · |t1 �χκ2 | · |t2 , the integral over GL1(F ) =

F× 	 h in (9.9) may be explicitly evaluated in order to show that

W ◦
(
g 0

0 1

)
=

⎧⎨⎩2|g|
t1+t2+1+κ1+κ2

2 K t1−t2+κ1−κ2
2

(2π|g|) if F = R,

4|g|
t1+t2+1

2 +
‖κ1‖+‖κ2‖

4 K
t1−t2+

‖κ1‖−‖κ2‖
2

(4π|g|1/2) if F = C,

where Kν(z) denotes the modified Bessel function of the second kind.

Proof. We show this initially for �(t1) > · · · > �(tr) with �(t1) sufficiently large; from
[Jac09, Proposition 7.2], this identity then extends via analytic continuation to all induced

representations of Langlands type (note that Jacquet instead works with representations

that are induced from a lower parabolic subgroup rather than an upper parabolic
subgroup). We may write

W ◦
(
g 0

0 1

)
=

∫
Mat(n−1)×1(F )

∫
Nn−1(F )

f◦
((

0 1

wn−1 0

)(
u v

0 1

)(
g 0

0 1

))
ψn−1(u)ψ(en−1v)dudv

from the definition (9.1) of the Jacquet integral. We insert the Godement section identity

(8.33) for f◦ with g replaced by
(

0 1
wn−1 0

)
(u v
0 1 )

(
g 0
0 1

)
into this expression, additionally

inserting the identity (9.4) for the normalising constant c◦. As explicated in [Jac09, Section

7.2], the ensuing double integral is absolutely convergent, so that we can make the change

of variables h 
→ wn−1uh and v 
→ uhv; we find that W ◦(g 0
0 1

)
is equal to

ic(π0)(−1)κ1(n−1)χκ1(detwn)χ
−κ1(detwn−1)χ

κ1(detg) |detg| t1+
n−1

2

×
∫
GLn−1(F )

P◦
1

(
det

(
h−1g

))
exp

(
−dFπTr

(
h−1g tg

t
h−1

))
χ−κ1(deth) |deth|−t1− n

2
+1

× (dimτ◦
0 )

∫
Mat(n−1)×1(F )

P◦
0

(
tv

)
exp

(
−dFπ tvv

)
ψ(en−1hv)dv

∫
Nn−1(F )

f◦
0 (wn−1uh)ψn−1(u)dudh.
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The integral over Mat(n−1)×1(F ) 	 v is equal to

i−c(π0)P ◦
0 (en−1h)exp(−πen−1h

th ten−1)

via Hecke’s identity, Lemmata 7.6 and 7.13, while the integral over Nn−1(F ) 	 u is equal

to W ◦
0 (h) via (9.1). It remains to use (8.25) in conjunction with the definition of P ◦

1

as well as to note that detwndetwn−1 = (−1)n−1, so that χκ1(detwn)χ
−κ1(detwn−1) =

(−1)κ1(n−1).

Remark 9.13. For spherical Whittaker functions, such a propagation formula (in a

slightly modified form) is due to Gerasimov, Lebedev and Oblezin [GLO08, Proposition

4.1] and Ishii and Stade [IsSt13, Proposition 2.1] (cf. [IM22, Appendix A]); iterating this
propagation formula gives a recursive formula for GLn(F ) Whittaker functions in terms

of GL2(F ) and GLn−2(F ) Whittaker functions known earlier by the work of Stade [Sta90,

Theorem 2.1].

We also require the following propagation formula for W ′◦ ∈ W(π′,ψ) when π′ is

spherical, which follows analogously to Lemma 9.8.

Lemma 9.14. For n ≥ 2, let π′ = | · |t′1 � | · |t′2 � · · · � | · |t′n and π′
0 := | · |t′2 � · · · �

| · |t′n be spherical representations of Langlands type of GLn(F ) and GLn−1(F ). Let

W ′◦ ∈ W(π′,ψ) and W ′◦
0 ∈ W(π′

0,ψ) be the spherical Whittaker functions of π′ and π′
0.

Then for g ∈GLn(F ),

W ′◦(g) = |detg| t′1+n−1
2

∫
GLn−1(F )

W ′◦
0 (h) |deth|−t′1−n

2

×
∫

Mat(n−1)×1(F )

Φ′ (h−1
(
1n−1 v

)
g
)
ψ(en−1v)dvdh,

(9.15)

with the standard Schwartz function Φ′ ∈ S0(Mat(n−1)×n(F )) given by

Φ′(x) := exp
(
−dFπTr

(
x tx

))
. (9.16)

9.3.2. The case π1 =Dκ1
⊗|det| t1 . We next treat the case for which π= π1� · · ·�πr

with n1 = 2, so that F = R and π1 =Dκ1
⊗|det| t1 .

Lemma 9.17. For n≥ 2, let π = π1�π2� · · ·�πr and π∗
0 := π∗

1 �π2� · · ·�πr be induced

representations of Langlands type of GLn(R) and GLn−1(R) with π1 =Dκ1
⊗|det| t1 and

π∗
1 := | · |t1+

κ1+1
2 . Let W ◦ ∈W(π,ψ) and W ∗◦

0 ∈W(π∗
0,ψ) be the Whittaker newforms of π

and π∗
0 . Then for g ∈GLn−1(R),

W◦

(
g 0

0 1

)
= |detg| t1+

κ1−1

2
+ n−1

2

∫
GLn−1(R)

W∗◦
0 (h)Φ1(h

−1g)Φ◦
0(en−1h) |deth|−t1−

κ1−1

2
− n

2
+1 dh,

(9.18)
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with the standard Schwartz functions Φ1 ∈ S0(Mat(n−1)×(n−1)(R)) as in (9.10) and

Φ∗◦
0 ∈ S0(Mat1×(n−1)(R)) given by

Φ∗◦
0 (x2) := (dimτ∗◦0 )P ∗◦

0 (x2)exp
(
−πx2

tx2

)
, (9.19)

where P ∗◦
0 is the homogeneous harmonic polynomial associated to the newform O(n−1)-

type τ∗◦0 of π∗
0 via (7.8).

Remark 9.20. When n= 2, so that π =Dκ⊗|det| t, the integral over GL1(R) =R× 	 h

in (9.18) may be explicitly evaluated in order to show that

W ◦
(
g 0
0 1

)
= |g|t+κ

2 exp(−2π|g|).

Proof. First, we consider the case n= 2, so that π =Dκ⊗|det| t and π∗
0 = | · |t+κ+1

2 . We

insert the Godement section identity (8.37) for f◦ with g replaced by (0 1
1 0)

(
1 v′
0 1

)(
g 0
0 1

)
into

the Jacquet integral (9.1), and we then interchange the order of integration and make the
change of variables v′ 
→ a2v

′, yielding

W ◦
(
g 0

0 1

)
= iκ|g|t+κ

2

∫
R×

|a2|a−κ
2 exp

(
−π(a−1

2 g)2
)

×
∫
R

∫
R

P ◦(v,v′)exp
(
−π

(
v2+v′2

))
ψ(a2v

′)dvdv′ d×a2.

Via Hecke’s identity, Lemma 7.13, the integral over R2 	 (v,v′) is

i−κP ◦(0,a2)exp(−πa22) = i−κaκ2 exp(−πa22),

and so we obtain the identity (9.18) upon relabelling a2 as h.
Now we consider the case n ≥ 3. We again show this initially for �(t1) > · · · > �(tr)

with �(t1) sufficiently large; from [Jac09, Proposition 7.2], this identity then extends via

analytic continuation to all induced representations of Langlands type. The derivation of

the identity (9.18) is somewhat indirect: we first determine an alternate expression for the
right-hand side of (9.18) and then show that the left-hand side is equal to this expression.

To begin, let π∗ := π∗
1 � π∗

2 � π2 � · · ·� πr and π∗
0 := π∗

2 � π2 � · · ·� πr be induced

representations of Langlands type of GLn(R) and GLn−1(R) with π∗
1 = | · |t∗1 and π∗

2 = | · |t∗2 ,
and let W ∗◦ ∈W(π∗,ψ) and W ∗◦

0 ∈W(π∗
0,ψ) be the Whittaker newforms of π∗ and π∗

0 .

On the one hand, we have from (9.9) that W ∗◦(g 0
0 1

)
is equal to

|detg| t∗1+n−1
2

∫
GLn−1(R)

W ∗◦
0 (h)Φ1(h

−1g)Φ∗◦
0 (en−1h) |deth|−t∗1−n

2 +1 dh, (9.21)

with Φ1 as in (9.10) and Φ∗◦
0 as in (9.19).

On the other hand, for �(t∗1) sufficiently large, W ∗◦(g 0
0 1

)
is equal to∫

Mat(n−2)×1(R)

∫
Mat(n−2)×1(R)

∫
R

∫
Nn−2(R)

f∗◦

⎛⎝⎛⎝ 0 0 1

0 1 0

wn−2 0 0

⎞⎠⎛⎝u′ v′1 v′2
0 1 v′3
0 0 1

⎞⎠(
g 0

0 1

)⎞⎠
×ψn−2(u)ψ(en−2v

′
1)ψ(v

′
3)dudv

′
3 dv

′
2 dv

′
1.
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We insert the Godement section identity (8.44) for f∗◦ into this expression, additionally

inserting the identity (9.4) for the normalising constant c∗◦. By a straightforward exten-

sion of [Jac09, Proposition 7.2], the ensuing multiple integral is absolutely convergent,
so that we can make the change of variables h 
→ wn−2u

′h, v′1 
→ u′v′1, v′2 
→ u′hv′2,
v3 
→ u′−1wn−2 and v′3 
→ a2(v

′
3 − v3hv

′
2). Using the definition of the Jacquet integral,

(9.1), to evaluate the ensuing integral over Nn−2(R) 	 u′ and Hecke’s identity, Lemma
7.13, to evaluate the ensuing integrals over Mat(n−2)×1(R) 	 v′2 and R 	 v′3, we find that

W ∗◦
(
g 0

0 1

)
= (−1)c(π0)L(1+ t∗2,π̃0) |detg| t

∗
1+

n−1
2

∫
GLn−2(R)

W ◦
0 (h) |deth|1−t∗1−n−1

2

(9.22)

×
∫

Mat(n−2)×1(R)

exp

(
−πTr

(
h−1

(
1n−2 v′1

)
g tg

(
1n−2
tv′1

)
th−1

))
ψ(en−2v

′
1)

×
∫
R×

|a2|−t∗1+t∗2 exp(−πa22)

∫
Mat1×(n−2)(R)

(dimτ◦0 )P
◦
0 (a2v3h)exp(−πa22v3h

th tv3)

× exp

(
−πTr

((
v3 v3v

′
1+a−1

2

)
g tg

(
tv3

v′1v3+a−1
2

)))
dv3 d

×a2 dv
′
1 dh.

Here, W ◦
0 is the Whittaker newform for π◦

0 := π2 � · · ·�πr and P ◦
0 is the homogeneous

harmonic polynomial associated to the newform O(n−2)-type τ◦0 of π◦ via (7.8), and we
have used Theorem 4.15 to write c(π∗

0) = c(π∗
2)+ c(π0) = c(π0).

Next, we note that the identities (9.21) and (9.22) forW ∗◦(g 0
0 1

)
both extend holomorphi-

cally to t∗1 = t1+(κ1−1)/2 and t∗2 = t1+(κ1+1)/2. From this, we see that the right-hand

side of (9.18) is equal to

(−1)c(π0)L

(
1+ t1+

κ1+1

2
,π̃0

)
|detg|t1+

κ1−1

2
+ n−1

2

∫
GLn−2(R)

W◦
0 (h) |deth|1−t1−

κ1−1

2
− n−1

2 (9.23)

×
∫

Mat(n−2)×1(R)

exp

(
−πTr

(
h−1

(
1n−2 v′1

)
g tg

(
1n−2

tv′1

)
th−1

))
ψ(en−2v

′
1)

×
∫
R×

|a2|exp(−πa2
2)

∫
Mat1×(n−2)(R)

(dimτ◦
0 )P

◦
0 (a2v3h)exp(−πa2

2v3h
th tv3)

× exp

(
−πTr

((
v3 v3v′1+a−1

2

)
g tg

(
tv3

v′1v3+a−1
2

)))
dv3 d

×a2 dv
′
1 dh.

Now we show that W ◦(g 0
0 1

)
is equal to (9.23) when �(t1) is sufficiently large, from which

the result shall follow via analytic continuation. We begin by noting that it is equal to∫
Mat(n−2)×1(R)

∫
Mat(n−2)×1(R)

∫
R

∫
Nn−2(R)

f◦

⎛⎝⎛⎝ 0 0 1

0 1 0

wn−2 0 0

⎞⎠⎛⎝u′ v′1 v′2
0 1 v′3
0 0 1

⎞⎠(
g 0

0 1

)⎞⎠
×ψn−2(u)ψ(en−2v

′
1)ψ(v

′
3)dudv

′
3 dv

′
2 dv

′
1.
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We insert the Godement section identity (8.42) for f◦ into this expression, additionally

inserting the identity (9.4) for the normalising constant c◦. The ensuing multiple integral

is again absolutely convergent, so that we can make the change of variables h 
→wn−2u
′h,

v′1 
→ u′v′1, v
′
2 
→ u′hv′2, v3 
→ u′−1wn−2 and v′3 
→ a2(v

′
3− v3hv

′
2). We again evaluate the

ensuing integral over Nn−2(R) 	 u′ via the definition of the Jacquet integral and use

Hecke’s identity, Lemma 7.13, to evaluate the integrals over Mat(n−2)×1(R) 	 v′2 and
R2 	 (v3,v

′
3). The latter integral is equal to

i−κ1P ◦
1 (0,a2)exp(−πa22) = i−κ1aκ1

2 exp(−πa22).

The resulting expression is precisely (9.23).

10. Rankin–Selberg Integrals

It is time to put the propagation formulæ (9.9), (9.15) and (9.18) for W ◦ and W ′◦ to good

use. Following the method of Jacquet [Jac09, Section 8], we use these formulæ to express
the GLn×GLn Rankin–Selberg integral as the product of a GLn×GLn−1 Rankin–

Selberg integral and a GLn×GL1 Rankin–Selberg L-function, and similarly express the

GLn×GLn−1 Rankin–Selberg integral as a product of a GLn−1×GLn−1 Rankin–Selberg
integral and a GL1×GLn−1 Rankin–Selberg L-function.

10.1. GLn×GLn Rankin–Selberg integrals

We first consider the GL1×GL1 Rankin–Selberg integral defined by (2.2); this is simply

the Tate zeta integral.

Proposition 10.1. Let π = χκ| · |t be a character of F×, and let π′ = | · |t′ be a

spherical character of F×. Let W ◦ ∈ W(π,ψ) be the Whittaker newform of π and let

W ′◦ ∈W(π′,ψ) be the spherical Whittaker function of π′. Then for �(s) sufficiently large,
the GL1×GL1 Rankin–Selberg integral Ψ(s,W ◦,W ′◦,Φ◦) is equal to L(s,π×π′) with the

standard Schwartz function Φ◦ ∈ S0(Mat1×1(F )) given by

Φ◦(x) := P ◦(x)exp(−dFπxx),

where P ◦ is the homogeneous harmonic polynomial associated to the newform K-type τ◦

of π via (7.2) and (7.8).

Proof. By definition, W ◦(g) = χκ(g)|g|t and W ′◦(g) = |g|t′ . We then use (8.25) in
conjunction with the definition of P ◦ in order to see that

Ψ(s,W ◦,W ′◦,Φ◦) =

∫
F×

|x|s+t+
‖κ‖
dF

+t′
exp(−dFπxx)d

×x.

By the identities (2.8) and (2.11) relating the integral to zeta functions, the identities

(2.7) and (2.10) relating zeta functions to L-functions, and the identity (2.6) relating
Rankin–Selberg L-functions involving twists by a character to standard L-functions, this

is precisely L(s,π×π′).

Next, we prove a recursive formula for the GLn×GLn Rankin–Selberg integral for

n≥ 2.
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Proposition 10.2. For n ≥ 2, let π = π1 � · · ·� πr be an induced representations of
Langlands type of GLn(F ), and let π′ = | · |t′1 � | · |t′2 � · · ·� | · |t′n and π′

0 := | · |t′2 � · · ·� | ·
|t′n be spherical representations of Langlands type of GLn(F ) and GLn−1(F ). Let W ◦ ∈
W(π,ψ) be the Whittaker newform of π, and let W ′◦ ∈ W(π′,ψ) and W ′◦

0 ∈ W(π′
0,ψ)

be the spherical Whittaker functions of π′ and π′
0. Then for �(s) sufficiently large, the

GLn×GLn Rankin–Selberg integral Ψ(s,W ◦,W ′◦,Φ◦) is equal to

Ψ(s,W ◦,W ′◦
0 )L

(
s,π×| · |t′1

)
,

with the standard Schwartz function Φ◦ ∈ S0(Mat1×n(F )) given by

Φ◦(x) := (dimτ◦)P ◦(x)exp
(
−dFπx

tx
)
,

where P ◦ is the homogeneous harmonic polynomial associated to the newform K-type τ◦

of π via (7.2) and (7.8).

Proof. Just as in [Jac09, Equation (8.1)], we insert the propagation formula (9.15) for
W ′◦(g) into the definition (2.2) of Ψ(s,W ◦,W ′◦,Φ◦); the absolute convergence of the

triple integral is shown in [Jac09, Section 8.2]. We replace h with uh, where now u ∈
Nn−1(F ) and h ∈ Nn−1(F )\GLn−1(F ), make the change of variables u 
→ u−1 and v 
→
u−1v, then replace (u v

0 1 )g with g, where now g ∈ GLn(F ); in doing so, we use the fact

that W ′◦(uh) =ψn−1(u)W
′◦(h) and that ψn−1(u)ψ(en−1v)W

◦(g) =W ◦ ((u v
0 1 )g). We then

make the change of variables g 
→ (h 0
0 1)g. In this way, we find that Ψ(s,W ◦,W ′◦,Φ◦) is

equal to ∫
Nn−1(F )\GLn−1(F )

W ′◦
0 (h) |deth|s− 1

2

∫
GLn(F )

W ◦
((

h 0

0 1

)
g

)
Φ(g) |detg|s+t′1+

n−1
2 dgdh,

where we have defined Φ(g) :=Φ◦(eng)Φ
′ ((1n−1 0

)
g
)
, where Φ′ ∈S0(Mat(n−1)×n(F )) is

as in (9.16). Since the standard Schwartz function Φ∈S0(Matn×n(F )) is as in (8.22), the
integral over GLn(F )	 g is equal to L(s+t′1,π)W

◦(h 0
0 1) from (9.7). This yields the desired

identity upon recalling the definition (2.1) of Ψ(s,W ◦,W ′◦
0 ) and the identity (2.6) relating

Rankin–Selberg L-functions involving twists by a character to standard L-functions.

10.2. GLn×GLn−1 Rankin–Selberg integrals

10.2.1. The case π1 = χκ1 | · |t1 . We now prove a recursive formula for the

GLn×GLn−1 Rankin–Selberg integral. As in Sections 8.4 and 9.3, we first treat the
case for which π = π1 � · · ·�πr with n1 = 1, so that π1 = χκ1 | · |t1 .

Proposition 10.3. For n≥ 2, let π = π1�π2� · · ·�πr and π0 := π2� · · ·�πr be induced
representations of Langlands type of GLn(F ) and GLn−1(F ) with π1 =χκ1 | · |t1 a character

of F×, and let π′ = | · |t′1 � · · ·� | · |t′n−1 be a spherical representation of Langlands type of

GLn−1(F ). Let W ◦ ∈W(π,ψ) and W ◦
0 ∈W(π0,ψ) be the Whittaker newforms of π and

π0, and let W ′◦ ∈ W(π′,ψ) be the spherical Whittaker function of π′. Then for �(s)
sufficiently large, the GLn×GLn−1 Rankin–Selberg integral Ψ(s,W ◦,W ′◦) is equal to

Ψ(s,W ◦
0 ,W

′◦,Φ◦
0)L(s,π1×π′),
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with the standard Schwartz function Φ◦
0 ∈ S0(Mat1×(n−1)(F )) given by

Φ◦
0(x) := (dimτ◦0 )P

◦
0 (x)exp

(
−dFπx

tx
)
,

where P ◦
0 is the homogeneous harmonic polynomial associated to the newform Kn−1-type

τ◦0 of π0 via (7.2) and (7.8).

Proof. Just as in [Jac09, Equation (8.3)], we insert the propagation formula (9.9) for

W ◦(g 0
0 1

)
into the definition (2.1) of Ψ(s,W ◦,W ′◦); the absolute convergence of the ensuing

double integral is justified in [Jac09, Section 8.3]. We replace h with uh, where now

u ∈ Nn−1(F ) and h ∈ Nn−1(F )\GLn−1(F ), make the change of variables u 
→ u−1, and

then replace ug with g, where now g ∈ GLn−1(F ); in doing so, we use the fact that
W ◦

0 (uh) = ψn−1(u)W
◦
0 (h) and that ψn−1(u)W

′◦(g) =W ′◦(ug). We then make the change

of variables g 
→ hg, leading to the identity

Ψ(s,W ◦,W ′◦) =

∫
Nn−1(F )\GLn−1(F )

W ◦
0 (h)Φ

◦
0(en−1h) |deth|s

×
∫
GLn−1(F )

W ′◦(hg)Φ1(g) |detg|s+t1+
‖κ1‖
dF

+n
2 −1

dgdh,

where the standard Schwartz functions Φ1 ∈ S0(Mat(n−1)×(n−1)(F )) and
Φ◦

0 ∈ S0(Mat1×(n−1)(F )) are as in (9.10) and (9.11). From (9.7), the integral over

GLn−1(F ) 	 g is equal to

L

(
s+ t1+

‖κ1‖
dF

,π′
)
W ′◦(h).

From (2.5), (2.6), (2.7) and (2.10), we have that

L

(
s+ t1+

‖κ1‖
dF

,π′
)
= L(s,π1×π′).

This yields the desired identity upon recalling the definition (2.2) of Ψ(s,W ◦
0 ,W

′◦,Φ◦
0).

10.2.2. The case π1 =Dκ1
⊗|det| t1 . We next treat the case for which π= π1� · · ·�πr

with n1 = 2, so that F = R and π1 =Dκ1
⊗|det| t1 .

Proposition 10.4. For n ≥ 2, let π = π1 �π2 � · · ·�πr and π∗
0 := π∗

1 �π2 � · · ·�πr be

induced representations of Langlands type of GLn(R) and GLn−1(R) with π1 = Dκ1
⊗

|det| t1 and π∗
1 = | · |t1+

κ1+1
2 , and let π′ = | · |t′1 � · · ·� | · |t′n−1 be a spherical representation

of Langlands type of GLn−1(R). Let W
◦ ∈W(π,ψ) and W ∗◦

0 ∈W(π∗
0,ψ) be the Whittaker

newforms of π and π∗
0 , and let W ′◦ ∈W(π′,ψ) be the spherical Whittaker function of π′.

Then for �(s) sufficiently large, the GLn×GLn−1 Rankin–Selberg integral Ψ(s,W ◦,W ′◦)
is equal to

Ψ(s,W ∗◦
0 ,W ′◦,Φ∗◦

0 )L

(
s+ t1+

κ1−1

2
,π′

)
,
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with the standard Schwartz function Φ◦
0 ∈ S0(Mat1×(n−1)(R)) given by

Φ∗◦
0 (x) := (dimτ∗◦0 )P ∗◦

0 (x)exp
(
−πx tx

)
,

where P ∗◦
0 is the homogeneous harmonic polynomial associated to the newform O(n−1)-

type τ∗◦0 of π∗
0 via (7.8).

Proof. The proof is identical to that of Proposition 10.3 except that we use the Godement

section identity (9.18) for W ◦(g 0
0 1

)
in place of (9.9).

10.3. Proofs of Theorems 4.17 and 4.18

We first record the following uniqueness principle.

Lemma 10.5. Suppose that W is a smooth function on GLn−1(F ) of moderate growth
that satisfies W (ugk) = ψn−1(u)W (g) for all u ∈Nn−1(F ), g ∈GLn−1(F ) and k ∈Kn−1.

Then if ∫
Nn−1(F )\GLn−1(F )

W (g)W ′◦(g) |detg|s− 1
2 dg = 0

for all s ∈ C and spherical representations π′ of GLn−1(F ), we must have that W (g) = 0

for all g ∈GLn−1(F ).

Proof. This is proved by Jacquet, Piatetski-Shapiro and Shalika [JP-SS81, Lemme (3.5)]
when F is nonarchimedean; the same proof holds for archimedean F with minimal

modifications. Alternatively, one can show this via the Whittaker–Plancherel theorem

[Wal92, Chapter 15].

With these results in hand, we may complete the proofs of Theorems 4.17 and 4.18.

Proofs of Theorems 4.17 and 4.18. We prove these theorems by double induction.

The base case is the case n= 1 of Theorem 4.18, which is precisely Proposition 10.1.

Suppose by induction that Theorem 4.18 holds with n−1 in place in n. If π = π1�π2�
· · ·�πr and π0 := π2� · · ·�πr with π1 = χκ1 | · |t1 , then Proposition 10.3 and the induction
hypothesis imply that

Ψ(s,W ◦,W ′◦) = L(s,π0×π′)L(s,π1×π′).

By (2.5), this is precisely L(s,π×π′). Similarly, if π = π1 �π2 � · · ·�πr and π∗
0 := π∗

1 �
π2 � · · ·�πr with π1 =Dκ1

⊗|det| t1 and π∗
1 := | · |t1+

κ1+1
2 , then Proposition 10.4 and the

induction hypothesis imply that

Ψ(s,W ◦,W ′◦) = L(s,π∗
0 ×π′)L

(
s+ t1+

κ1−1

2
,π′

)
.
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By (2.5) and (2.6), this is

L

(
s+ t1+

κ1−1

2
,π′

)
L

(
s+ t1+

κ1+1

2
,π′

) r∏
j=2

L(s,πj ×π′),

which by (2.10), (2.13) and (2.5) is again L(s,π×π′).
Next, suppose by induction that Theorem 4.17 holds. Then Proposition 10.2 and the

induction hypothesis imply that for π′ = | · |t′1 � | · |t′2 � · · ·� | · |t′n and π′
0 := | · |t′2 � · · ·� | · |t′n ,

Ψ(s,W ◦,W ′◦,Ψ◦) = L(s,π×π′
0)L(s,π×| · |t′1).

By (2.5), this is precisely L(s,π×π′).
Finally, Lemma 10.5 implies the uniqueness of W ◦ as a right Kn−1-invariant test

function for the GLn×GLn−1 Rankin–Selberg integral.
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