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Abstract

Pure type systems make use of domain-full λ-abstractions λx : D .M. We present a variant of

pure type systems, which we call domain-free pure type systems, with domain-free λ-abstractions

λx .M. Domain-free pure type systems have a number of advantages over both pure type

systems and so-called type assignment systems (they also have some disadvantages), and have

been used in theoretical developments as well as in implementations of proof-assistants. We

study the basic properties of domain-free pure type systems, establish their formal relationship

with pure type systems and type assignment systems, and give a number of applications of

these correspondences.

Capsule Review

The distinction between Curry style and Church style of presentation of type systems,

introduced by Barendregt, is well known. The authors point out an interesting third way of

presenting type systems, which is intermediate between Curry and Church, and which is called

here “domain-free” type systems. This presentation is actually the one used in Martin-Löf’s

logical framework, and it presents various interesting aspects, both theoretical and practical,

that are carefully described in this paper.

1 Introduction

Typed versions of the λ-calculus were introduced independently by Church (1940)

and Curry (1934). More precisely, Curry (1934) introduced types into the theory

of combinators, and Curry and Feys (1958) modified the system in a natural way

to λ-calculus. In Church’s system abstractions have domains, i.e. are of the form

λx :D . t, whereas in Curry’s system abstractions have no domain, i.e. are of the form

λx . t. Thus, in Church’s system one writes

λx : α . x : α→ α
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whereas in Curry’s system one writes

λx . x : α→ α

There are two ways to perceive the terms that have types in Curry’s system:

1. As a subset of the untyped λ-terms;

2. As those that have types in Church’s system, but with domains omitted.

For the pair of systems introduced by Church and Curry the two views are equivalent,

but for some other systems the two views diverge. Consider, for instance, the

second-order typed λ-calculus à la Church, which was invented independently by

Girard (1970) and Reynolds (1974). An example term and type is

Λα : ∗ . λx : α . x : ∀α : ∗ . α→ α

In Leivant’s (1983) formulation of second-order typed λ-calculus à la Curry, the

similar term and type is

λx . x : ∀α : ∗ . α→ α

This clearly fits view (1). The similar term and type in view (2) is

Λα . λx . x : ∀α : ∗ . α→ α

Thus, we may distinguish three approaches to type systems: Church’s approach,

which we call the domain-full approach, and the variants (1) and (2) of Curry’s

approach. View (1), traditionally known as the type assignment approach, has been

extensively studied in the literature – see (Barendregt, 1992) and (van Bakel et al.,

1994). In contrast, view (2), which we call the domain-free approach, has received

little attention.1

This is surprising, since:

1. Domain-free type systems provide a framework for the description of logics.2

2. Domain-free type systems are in use in Martin-Löf’s Logical Frameworks and

in some versions of Martin-Löf’s Intuitionistic Type Theory, e.g. see Tasistro

(1997).

3. A number of proof-development systems, most notably Alf (Magnusson, 1994),

rely on domain-free type systems, while others, most notably Elf (Pfenning,

1994), allow for domain-free λ-abstractions.

1 Incidentally, the difference between (1) and (2) should not be confused with another difference between
Curry’s and Church’s original systems. Curry considered as a starting point the whole set of untyped
λ-terms, thus including, for example, λx . x x, and defined the legal terms as those having a type in his
system, including, for instance, λx . x (since it has type α→ α) but excluding, for example, λx . x x (since
it has no type). In contrast, Church built the type system directly into the term formation rules. For
Church there were no other terms than the legal ones, e.g. λx : α . x. Objects like λx : α . x x did not exist
anywhere in his approach. The distinction between (1) and (2) does not concern the question whether
the legal terms are constructed directly, or selected from a broader set of terms, but rather whether
there is a single kind of abstraction λx . t (as in untyped λ-calculus) or several kinds of abstraction like
λx . t and Λα . t (as in the corresponding Church system). All the systems presented in this paper – with
or without domains – start out from some set of terms and use a typing relation to select among these
the legal ones.

2 A major difference between domain-full type systems and domain-free ones is that the latter may not
have decidable type-checking. However domain-free type systems may describe logics in the same way
as domain-full type systems do.
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4. Domain-free type systems offer some advantages over both domain-full type

systems and type assignment systems.

Advantages over domain-full type systems include the following:

• Extensibility. Domain-free type systems are sometimes easier to extend than

domain-full type systems. For example, extending Girard’s (1972) domain-full

higher-order typed λ-calculus with a catch/throw mechanism leads to non-left

linear rules, which are notoriously difficult to handle. An example of such a

rule is given by

catch α : A in (throw M to α : A) → M if α 6∈ FV(M)

The similar domain-free rule

catch α in (throw M to α) → M if α 6∈ FV(M)

is much simpler.

• Efficiency. Domain-free reduction is sometimes more efficient than domain-full

reduction. For example, consider for the extension mentioned above the rule

(catch α : (Πx: C. D) in M)N → catch β : D{x := N} in M ′ N

where M ′ arises from M by replacing all occurrences of throw K to α : A by

throw KN to β : D{x := N} (ignoring the question as to whether we should

insist that A ≡ Πx: C. D). In order to reduce (catch α : B in M) N with

B ≡ (λy : ∗ . y) Πz: ∗. z, we need to reduce B first. The domain-free rule

(catch α in M)N → catch β in M ′ N

where M ′ arises from M by replacing all occurrences of throw K to α by

throw K N to β does not require this (and sidesteps the complications re-

garding the form of A).

• Simplicity. Domain-free type systems are sometimes easier to study than

domain-full type systems. For example, continuation-passing style (CPS) trans-

lations are easier to define for domain-free type systems (see Barthe et al.,

1999). This observation is especially relevant as continuation-passing style

translations are, apart from their theoretical interest, a fundamental tool in

compilation (Appel, 1992). In addition, strong normalization is often easier to

prove for domain-free type systems than for their (domain-full) counterpart.3

Advantages of domain-free type systems over type assignment systems include the

following:

• Uniformity. Domain-free type systems are more uniform than type assign-

ment systems. For example, domain-free type systems use a single rule for

abstraction, whereas some type assignment systems, e.g. the higher-order type

3 It is, for example, straightforward to prove strong normalization of a domain-free classical Calculus
of Constructions, i.e. a Calculus of Constructions enhanced with a control/double negation operator.
Proving a similar result for a domain-full Calculus of Constructions is immensely more complicated.
See Barthe et al. (1997).
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assignment of Giannini and Ronchi Della Rocca (1988), use λ-abstractions

both with and without domains and two rules for abstraction.

• Clarity. Domain-free type systems are easier to formulate for complex type

disciplines. For example, providing a type assignment system for the Calculus

of Constructions is a non-trivial task (see van Bakel et al., 1994). In contrast,

providing a domain-free type system for the Calculus of Constructions is easy.

We do not claim that domain-free type systems are better than domain-full

systems or type assignment systems. Indeed, they have their own drawbacks; for

instance, a domain-free type system may have undecidable type checking problem

even when type-checking for the domain-full counterpart is decidable. Nevertheless,

the above discussion suggests that domain-free type systems are interesting in their

own right.

The purpose of this paper is to present a framework in which to study domain-

free type systems. The framework, which we call domain-free pure type systems,

is inspired by pure type systems (Barendregt, 1992; Berardi, 1990; Geuvers, 1993;

Terlouw, 1989), which give an abstract, unifying view of type systems with domain-

full abstractions. Just as pure type systems contain as a special case the λ-cube, the

domain-free pure type systems contain as a special case the domain-free λ-cube.

Our contribution is three-fold. First, we introduce domain-free pure type systems

(section 2) and develop their basic theory (section 3); it turns out that they satisfy

almost the same properties as pure type systems. Secondly, we study the relationship

between pure type systems and domain-free pure type systems (section 4); the two

formalisms are equivalent – in a precise sense – for many of the systems appearing

in the literature. Thirdly, we demonstrate that this equivalence is very useful in that

it allows to transfer several results from one formalism to another (section 5).

There is no general formalism available which is to the type assignment approach

what pure type systems and domain-free pure type systems are to the domain-full and

domain-free approach, respectively. However, there is a type assignment λ-cube (van

Bakel et al., 1994) which is to the type assignment approach what the λ-cube and the

domain-free λ-cube are to the domain-full and domain-free approach, respectively

(see Figure 1). For the sake of completeness, we also study the relationship between

the type assignment cube and the two other cubes (section 6).

The paper is an extended and updated version of Barthe and Sørensen (1997).

2 Domain-free pure type systems

Domain-free pure type systems are generated from specifications, just like pure

type systems are (see Barendregt, 1992). Specifications are triples expressing certain

abstract dependencies.

Definition 1

A specification is a triple S = (S,A,R) where

1. S is a set of sorts;

2. A ⊆ S×S is a set of axioms;

3. R ⊆ S×S×S is a set of rules.
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Type systems
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Church view

��

Curry view (1)

��

Curry view (2)

��
Domain-full

��

Domain-free

��

Type assignment

��
λ-cube

��

Domain-free λ-cube

��

Type assignment cube

��
Pure type systems Domain-free pure type systems ??

Fig. 1. Approaches to type systems.

As usual, a rule of form (s1, s2, s2) is also written (s1, s2). A sort s ∈ S is a top-sort

if (s, s′) 6∈ A for all s′ ∈ S. The set of top-sorts is denoted by S>.

In the rest of the paper V denotes a fixed, countably infinite set of variables.

Definition 2

Let S = (S,A,R) be a specification.

1. The set E of (domain-free) expressions (over S) is given by the abstract syntax:

E = V | S | E E | λV .E |ΠV : E.E
We use a, b, c, d, A, B, C, D,K, L,M,N, etc. to denote elements of E; x, y, z, etc.

to denote elements of V ; and s, s′, etc. to denote elements of S. We assume

the reader is familiar with the notions of free and bound variables and related

conventions; FV(M) denotes the set of variables occurring free in M, and ≡
denotes syntactic equality (see Barendregt, 1992).

2. A (domain-free) context is a finite sequence of form x1 : A1, . . . , xn : An; the

empty sequence is written 〈〉. The set of all contexts is called G. We write

dom(x1: A1, . . . , xn: An) = {x1, . . . , xm} and use Γ,∆, etc. to denote elements of

G. If Γ is x1: A1, . . . , xn: An we also write xi: Ai ∈ Γ for each i ∈ {1, . . . , n}.
3. β-reduction →β on E is defined as the compatible closure of the contraction

(λx.M) N →β M{x := N}
where •{• := •} is the obvious substitution operator. Multi-step β-reduction →→β

and β-equality =β are the reflexive, transitive closure and reflexive, transitive,

symmetric closure, respectively, of →β .

The relation →β is extended to G by:

A→β B ⇒ Γ, x: A,∆→β Γ, x: B,∆

The relations →→β and =β on G are the obvious closures of →β on G.
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(axiom) 〈〉 `̀ s1 : s2 if (s1, s2) ∈ A

(start)
Γ `̀ A : s

Γ, x: A `̀ x : A
if x 6∈ dom(Γ)

(weakening)
Γ `̀ A : B Γ `̀ C : s

Γ, x: C `̀ A : B
if x 6∈ dom(Γ)

(product)
Γ `̀ A : s1 Γ, x: A `̀ B : s2

Γ `̀ (Πx: A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ `̀ F : (Πx: A. B) Γ `̀ a : A

Γ `̀ F a : B{x := a}

(abstraction)
Γ, x: A `̀ b : B Γ `̀ (Πx: A. B) : s

Γ `̀ λx . b : Πx: A. B

(conversion)
Γ `̀ A : B Γ `̀ B′ : s

Γ `̀ A : B′
if B =β B

′

Fig. 2. Domain-Free Pure Type Systems (DFPTS).

4. The derivability relation `̀ is given by the rules of Figure 2. We occasionally

write `̀S to explicate the dependence of the derivability relation on S. If

Γ `̀ A : B then Γ, A, and B are legal. We write Γ `̀ A : B : C if Γ `̀ A : B and

Γ `̀ B : C .

5. The tuple λS = (E,G,=β, `̀ ) is the Domain-Free Pure Type System (DFPTS)

induced by S.

The most significant DFPTSs that appear in the literature (in variant form) are

generated by specifications that belong to the Barendregt’s cube of specifications.

These DFPTSs roughly correspond to Curry’s version of the simply typed λ-calculus

(in our setting, this system is generated by the specification →), Martin-Löf’s

Logical Frameworks (generated by the specification P of Logical Frameworks) and

Martin-Löf’s type theory with one universe (generated by the specification Pω).

Other specifications that correspond to well-known domain-full type systems are 2

(System F or polymorphic λ-calculus), ω (System Fω or higher-order polymorphic

λ-calculus) and C (Calculus of Constructions).

Definition 3

Let S = {∗,2} and A = {(∗ : 2)}. The cube-specifications are

→ =(S,A, {(∗, ∗)}) P =(S,A, {(∗, ∗), (∗,2)})
2 =(S,A, {(∗, ∗), (2, ∗)}) P2 =(S,A, {(∗, ∗), (2, ∗), (∗,2)})
ω =(S,A, {(∗, ∗), (2,2)}) Pω=(S,A, {(∗, ∗), (2,2), (∗,2)})
ω2=(S,A, {(∗, ∗), (2, ∗), (2,2)}) Pω=(S,A, {(∗, ∗), (2, ∗), (2,2), (∗,2)})

We use the standard abbreviations ω = ω2 and C = Pω = Pω2.

The DFPTSs generated by the cube-specifications form the λ-cube (see Figure 3),

which we also call the domain-free λ-cube.
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λω // λC

λ2

??����������
// λP2

??����������

λω //

OO

λPω

OO

λ→

OO

//

??����������
λP

??����������

OO

Fig. 3. The λ-cube.

Remark 4

In the rest of this paper we often consider a specification S and speak about, for

example, a sort s or a domain-free expression M. In such cases it must be understood

that s ∈ S where S = (S,A,R) and M ∈ E where λS = (E,G,=β, `̀ ).

We close this section with some definitions required in the following sections.

Definition 5

Let S be a specification.

Types = {M ∈ E | Γ `̀ M : s for some Γ}
Terms = {M ∈ E | Γ `̀ M : A : s for some Γ and A}

Also, Type = ∪s∈STypes and Term = ∪s∈STerms.

Definition 6

Let S be a specification. A β-reduction path from M0 ∈ E is a finite or infinite

sequence

M0 →β M1 →β M2 →β . . .

If the sequence is finite it ends in the last term Mn and has length n.

Definition 7

Let S be a specification and M ∈ E.

1. M ∈ NFβ iff there is no β-reduction path from M of length 1 or more.

2. M ∈ WNβ iff there is a β-reduction path from M ending in an N ∈ NFβ .

3. M ∈ SNβ iff all β-reduction paths from M are finite.

Elements of NFβ , WNβ , and SNβ are called β-normal forms, β-(weakly) normalizing,

and β-strongly normalizing, respectively.
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3 Properties of domain-free pure type systems

In this section, we study properties of DFPTSs. In the first subsection we develop

the basic properties such as correctness of types and subject reduction, following

the structure of Barendregt (1992, section 5.2); proof details are omitted when the

proof proceeds by induction and is similar to the proof for the corresponding result

for pure type systems. In the second subsection we present the classification lemma,

which is useful in several applications, e.g. to define CPS-translations for the domain-

free λ-cube (Barthe et al., 1999). In the third subsection we consider type-checking

issues. We show that although type-checking may be undecidable, even for systems

of the λ-cube, one can prove a weaker result which allows for DFPTSs to be used in

practice.

3.1 Basic properties

Throughout this subsection, S denotes a fixed specification.

Lemma 8 (Properties of Substitution)

1. A{x := B}{y := C} ≡ A{y := C}{x := B{y := C}}, if y 6∈ FV(B);

2. B =β C ⇒ A{x := B} =β A{x := C};
3. A =β B & C =β D ⇒ A{x := C} =β B{x := D}.

Proof

(1)–(2): induction on A. (3): induction on A =β B, using (1)-(2). q

Proposition 9 (Church–Rosser)

The relation →β on E is confluent.

Proof

By the technique of Tait and Martin-Löf (e.g. see Barendregt, 1992). q

Alternatively, note that (E,→β) is an orthogonal rewriting system and invoke

Klop et al. (1993).

Lemma 10 (Free Variables)

If x1: A1, . . . , xn: An `̀ B : C then:

1. x1, . . . , xn are distinct;

2. FV(B) ∪ FV(C) ⊆ {x1, . . . , xn};
3. FV(Ai) ⊆ {x1, . . . , xi−1} for 1 6 i 6 n.

Proof

By induction on the derivation of x1: A1, . . . , xn: An `̀ B : C . q

Lemma 11 (Start)

If Γ is legal then:

1. (s1, s2) ∈ A ⇒ Γ `̀ s1 : s2;

2. x: A ∈ Γ ⇒ Γ `̀ x : A.
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Proof

Since Γ is legal Γ `̀ B : C for some B,C . Proceed by induction on the derivation of

Γ `̀ B : C . q

Lemma 12 (Transitivity)

Let ∆ be legal. If x1 : A1 . . . , xn : An `̀ A : B and ∆ `̀ xi : Ai for i = 1, . . . , n then

∆ `̀ A : B.

Proof

By induction on the derivation of x1: A1, . . . , xn: An `̀ A : B making use of the start

lemma. q

Lemma 13 (Substitution)

If Γ, x: A,∆ `̀ B : C and Γ `̀ a : A, then4 Γ,∆{x := a} `̀ A{x := a} : B{x := a}.
Proof

By induction on the derivation of Γ, x: A,∆ `̀ B : C using the free variables lemma

and properties of substitution. q

Lemma 14 (Thinning)

If Γ `̀ A : B, ∆ is legal, and every x: A in Γ is also in ∆, then ∆ `̀ A : B.

Proof

This follows from the start lemma and the transitivity lemma. q

Lemma 15 (Generation)

Suppose that Γ `̀M : C .

1. M ≡ s ⇒ ∃(s, s′) ∈ A. C =β s
′

2. M ≡ x ⇒ ∃D ∈ E. C =β D & x:D ∈ Γ.

3. M ≡ λx . b⇒∃s∈S, A,B ∈ E. C =β Πx: A.B & Γ,x: A`̀ b : B & Γ`̀Πx: A.B : s.

4. M ≡ Πx: A. B ⇒ ∃(s1, s2, s3) ∈ R. C =β s3 & Γ `̀ A : s1 & Γ, x: A `̀ B : s2.

5. M ≡ F a ⇒ ∃x∈V , A,B ∈ E. C =β B{x := a} & Γ `̀ F : Πx: A. B & Γ `̀ a : A.

Proof

By induction on the derivation of Γ `̀M : C . q

Lemma 16 (Correctness of types)

If Γ `̀ A : B then either B ∈ S or ∃s ∈ S. Γ `̀ B : s.

Proof

By induction on Γ `̀ A : B, using the generation and substitution lemmas. q

Theorem 17 (Subject Reduction)

If Γ `̀ A : B and A→β A
′ then Γ `̀ A′ : B.

Proof

Prove by simultaneous induction on the derivation of Γ `̀ A : B:

1. if Γ `̀ A : B and A→β A
′ then Γ `̀ A′ : B;

2. if Γ `̀ A : B and Γ→β Γ′ then Γ′ `̀ A : B.

The proof uses the substitution lemma. q

4 Substitution (and any other map) is extended from expressions to contexts in the usual way.
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(start-s)
Γ `̀ A : s

Γ, x: A `̀ x : A
if x ∈ V s \ dom(Γ)

(weakening-s)
Γ `̀ A : B Γ `̀ C : s

Γ, x: C `̀ A : B
if x ∈ V s \ dom(Γ)

Fig. 4. Domain-Free Pure Type Systems with sorted variables.

We conclude this subsection by pointing out that we have not been able to prove

the strengthening lemma, i.e.

Γ1, x : A,Γ2 `̀M : B & x 6∈ FV(Γ2) ∪ FV(M) ∪ FV(B) ⇒ Γ1,Γ2 `̀M : B

Indeed the standard proof relies on the following implication, which does not holds

for DFPTSs:

Γ1, x : A,Γ2 `̀M : B & x 6∈ FV(Γ2) ∪ FV(M)

⇒ ∃B′ ∈ E. Γ1,Γ2 `̀M : B & B =β B
′

3.2 The classification lemma

Traditional formulations of type theories distinguish between different syntactic

categories: for instance, in the system Fω (Girard, 1972) one distinguishes between

objects, constructors, and kinds. Such a distinction is used in several practical and

theoretical applications, but is not enforced in the syntax of DFPTSs. However it

can be recovered a posteriori using the classification lemma.

As usual, the classification lemma will be proved for a variant of DFPTSs with

sorted variables. In this variant, it is assumed that V is partitioned into
⋃
s∈S V s,

with each V s being countably infinite, and that variables are manipulated according

to the rules in Figure 4.

The classification lemma does not hold for all DFPTSs; therefore, we consider the

following standard classes of specifications.

Definition 18

Let S be a specification.

1. S is functional if for every s1, s2, s
′
2, s3, s

′
3 ∈ S,

(a) (s1, s2) ∈ A & (s1, s
′
2) ∈ A ⇒ s2 ≡ s′2

(b) (s1, s2, s3) ∈ R & (s1, s2, s
′
3) ∈ R ⇒ s3 ≡ s′3

2. S is injective if S is functional and for every s1, s
′
1, s2, s

′
2, s3 ∈ S,

(a) (s1, s2) ∈ A & (s′1, s2) ∈ A ⇒ s1 ≡ s′1
(b) (s1, s2, s3) ∈ R & (s1, s

′
2, s3) ∈ R ⇒ s2 ≡ s′2

For pure type systems, the classification lemma is proved using uniqueness of types,

a property which fails in even very simple domain-free pure type systems.

Lemma 19 (Failure of Uniqueness of Types)

In λ→, there exist M and Γ with Γ `̀M : C and Γ `̀M : C ′ but C 6=β C
′.
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Proof

Take Γ ≡ y: ∗, z: ∗ and M ≡ λx . x. Then Γ `̀M : y → y and Γ `̀M : z → z. q

The key to the proof of the classification lemma for DFPTSs is to observe that

one can replace, throughout the proof, uses of the uniqueness of types property with

uses of the weaker property of preservation of sorts, inspired from Geuvers (1993).

Definition 20

Let S be a specification.

1. S satisfies uniqueness of types if

Γ `̀M : A & Γ `̀M : A′ ⇒ A =β A
′

2. S preserves sorts if for every s, s′ ∈ S,

Γ `̀ A : s & Γ `̀ A′ : s′ & A =β A
′ ⇒ s ≡ s′

Remark 21

Note that the uniqueness of types property is equivalent to

Γ `̀M : A & Γ `̀M ′ : A′ & M =β M
′ ⇒ A =β A

′ (∗)
Indeed, the implication from (*) to the uniqueness of types property is trivial – the

latter is a special case of the former. For the opposite direction, assume

Γ `̀M : A & Γ `̀M ′ : A′ & M =β M
′

By Church-Rosser and subject reduction Γ `̀M ′′ : A & Γ `̀M ′′ : A′ for some M ′′ so

A =β A
′ by uniqueness of types.

The preservation of sorts property is the special case of (*) where we only consider

A′s and A′s that are sorts.

We now set out to prove the classification lemma for injective systems that in

addition preserve sorts – this takes up the following two lemmas and two corollaries.

After this we show that all functional specifications with normalizing types enjoy

preservation of sorts.

Lemma 22

Let S preserve sorts and M∈Types. Then

1. M ≡ x ⇒ x ∈ V s′ for some (s, s′) ∈ A;

2. M ≡ s′ ⇒ (s′, s) ∈ A;

3. M 6≡ λx . B;

4. M ≡ B A ⇒ B ∈ Terms3 & A ∈ Terms1 for some (s1, s2, s3)∈R, (s, s2)∈A;

5. M ≡ Πx: A. B ⇒ A ∈ Types1 & B ∈ Types2 for some (s1, s2, s) ∈ R.

Proof

Let Γ`̀M : s and use in each case generation, making use of Church–Rosser, subject

reduction, and preservation of sorts where necessary. q

Lemma 23

Let S preserve sorts and M ∈ Terms. Then
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1. M ≡ x ⇒ x ∈ V s;

2. M ≡ s′ ⇒ (s′, s′′), (s′′, s) ∈ A for some s′′;
3. M ≡ λx . B ⇒ x ∈ V s1 & B ∈ Terms2 for some (s1, s2, s) ∈ R;

4. M ≡ B A ⇒ B ∈ Terms3 & A ∈ Terms1 for some (s1, s, s3) ∈ R;

5. M ≡ Πx: A. B ⇒ A ∈ Types1 & B ∈ Types2 for some (s1, s2, s3)∈R, (s3, s)∈A.

Proof

Let Γ `̀ M : D : s and use in each case generation, making use of Church–Rosser,

subject reduction, and preservation of sorts where necessary. q

The following fundamental property is similar to results proved by Geuvers (1993),

Berardi (1990), and Geuvers and Nederhof (1991).

Corollary 24 (Classification Lemma)

Let S be injective and preserve sorts. Then for all sorts s 6≡ s′,
Terms ∩ Terms′ = ∅
Types ∩ Types

′
= ∅

Proof

Use Lemmas 22 and 23 to prove

M ∈ Terms ∩ Terms′ ⇒ s ≡ s′
M ∈ Types ∩ Types

′ ⇒ s ≡ s′
simultaneously by induction on M. q

Corollary 25

Let S be injective and preserve sorts, and M be legal. Then

1. M ∈ Terms for some s ∈ S; or

2. M ∈ Types for some s ∈ S>; or

3. M ≡ s for some s ∈ S>.

Moreover, (1)–(3) are mutually exclusive and s is unique in (1)–(3).

Proof

We first show that one of (1)–(3) hold. Since M is legal either Γ`̀M : A or Γ`̀A : M

for some A.

1. Γ `̀M : A. By correctness of types either Γ `̀ A : s or A ∈ S.

(a) Γ `̀ A : s. Then M ∈ Terms.

(b) A ∈ S. If A is a top-sort then M ∈ Types for a top-sort s. If A is not a

top-sort there is a sort s′ with (A, s′) ∈ A, so M ∈ Terms′ .

2. Γ `̀ A : M. By correctness of types, either Γ `̀M : s or M ∈ S. In the former

case proceed as in Case 1. In the latter case, either M is a top-sort, or M is

not a top-sort in which case proceed again as in Case 1.

By the preceding corollary it follows that s is unique in (1)–(3). It remains to show

that the clauses (1)–(3) are mutually exclusive. This is proved by induction on M

using Lemmas 22 and 23. q
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We next show that all functional systems with Type ⊆ WNβ preserve sorts; al-

though this includes the cube specifications by Proposition 52, we also show directly

(i.e. without using Type ⊆ WNβ) that these preserve sorts. Thus, the classifica-

tion lemma holds for all injective systems with Type ⊆ WNβ , and for all cube

specifications.

Lemma 26
The following specifications preserve sorts:

1. All cube-specifications;
2. All functional specifications with Type ⊆ WNβ .

Proof
We consider the two cases separately.

1. Let S be a cube-specification. First, show that Γ 6`̀ 2 : A for all Γ and A

by induction on derivations. Using this then show, again by induction on

derivations, that Γ `̀ M : 2 implies M ∈ K+, where K+ is defined by the

abstract syntax

K+ = ∗ |Πx: E.K+

Now show by induction on M using generation that Γ `̀ M : ∗ implies

M 6∈ K+.

Now, if Γ `̀ A : s, Γ `̀ A′ : s′ and A =β A
′, then by Church–Rosser and subject

reduction Γ`̀A′′ : s and Γ`̀A′′ : s′ for some A′′. If s 6≡ s′, e.g. s ≡ ∗ and s′ ≡ 2,

then A′′ 6∈ K+ and A′′ ∈ K+, a contradiction.
2. Let S be a functional specification S with Type ⊆ WNβ . Define the class U by

the abstract syntax

B = V | B E
U = S | B |ΠV:U.U

Now show that for every M ∈ U,

Γ `̀M : B & Γ `̀M : C ⇒ B =β C

by induction on the definition of U. Consider also the class N defined by the

abstract syntax

N = x | λx .E |N E
Now show by induction on M, using generation, that

Γ `̀M : Πx: A. B ⇒ M ∈ N
Using this property show by induction on A that

A ∈ NFβ & Γ `̀ A : s ⇒ A ∈ U
Thus,

A ∈ NFβ & Γ `̀ A : s & Γ `̀ A : s′ ⇒ s ≡ s′
Since Type ⊆ WNβ the claim now follows using Church–Rosser and subject

reduction.

This concludes the proof. q
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For some purposes it is desirable that the classification of expressions into cate-

gories be decidable. We conclude this subsection with such a decidable classification;

for the sake of brevity, we consider the λ-cube only.

Definition 27

Let E′ = O ∪ C ∪K ∪ {2} where the sets O, C, K of domain-free expressions are

given by the abstract syntax:

O = V ∗ | λV ∗ .O | O O | λV2 .O | O C
C = V2 |ΠV ∗:C. C |ΠV2:K. C | λV ∗ .C | λV2 .C | C C | C O
K = ∗ |ΠV ∗:C.K |ΠV2:K.K

The following is a decidable variant of Corollary 25 for the λ-cube.

Lemma 28

Let S = C and M ∈ E be legal. Then

1. M ∈ O; or

2. M ∈ C; or

3. M ∈ K; or

4. M ≡ 2.

Moreover, the sets O,C,K, {2} are pairwise disjoint.

Remark 29

It is a routine matter to derive corresponding classifications for the remaining cube

specifications. For →, one takes

O = V ∗ | λV ∗ .O | O O C = V2 |ΠV ∗:C. C K = ∗
Moreover,

1. For 2 one takes in addition to the classes for →
O = . . . | λV2 .O | O C C = . . . |ΠV2:K. C

2. For P one takes in addition to the classes for →:

C = . . . | λV ∗ .C | C O K = . . . |ΠV ∗:C.K
3. For ω one takes in addition to the classes for →

C = . . . | λV2 .C | C C K = . . . |ΠV2:K.K
For C = 2Pω, 2P , ω = 2ω, and Pω one combines the above sets.

As one might guess, the relation between the characterizations in Corollary 25

and Lemma 28 is as follows.

Lemma 30

Let S = C . If M ∈ E is legal then

M ∈ Term∗ ⇔ M ∈ O
M ∈ Term2 ⇔ M ∈ C
M ∈ Type2 ⇔ M ∈ K
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3.3 Type-checking

Decidability of type-checking and related problems is a central issue in the design of

programming languages and proof-assistants. Many modern programming languages

(e.g. ML) are designed so as to accommodate an implicit programming style in which

typing information is inferred automatically by the compiler. Proof assistants are

usually designed in such a way that proof-checking can be done mechanically.

Depending upon the style of programming language or proof-assistant considered,

decidability questions may take several forms. Here we shall concern ourselves with

the following three questions.

Definition 31

Let S be a specification.

1. The type-checking problem (TC) consists in deciding, given Γ,M, A, whether

Γ `̀M : A; symbolically: Γ `̀M : A ?.

2. The type-synthesis problem (TS) consists in deciding, given Γ,M, whether there

exists A such that Γ `̀M : A; symbolically: Γ `̀M :?.

3. The strong typability problem (TY) consists in deciding, given Γ0 and M,

whether there exists Γ, A such that Γ0,Γ `̀M : A; symbolically: Γ0, ? `̀M :?.5

First, we focus on the systems λ→, λ ω λ2 and λP . We show that polymorphism,

i.e. the rule (2, ∗) of λ2, and dependencies, i.e. the rule (∗,2) of λP , lead to

undecidable type-checking. Then, we show that normalizing DFPTSs have a weak

form of decidable type-checking. Note that undecidability of type-checking for λ2

was proved independently by Fujita (1999) in a recent manuscript.

Theorem 32 (Decidability results for the λ-cube)

1. For λ→: TC, TS and TY are decidable.

2. For λ2: TC, TS and TY are undecidable.

3. For λω: TC, TS and TY are decidable.

4. For λP : TC and TS are undecidable.

Proof

We use the variant of DFPTSs with sorted variables (see Figure 4), and use the

classification of Lemma 28. Besides we let K ≡ λx . λy . x, triv ≡ λβ . λz . z and

⊥ = Πα: ∗. α.
1. See, for example, Barendregt (1992).

2. This is the most interesting result. We prove the undecidability of TY, then

deduce undecidability of TS from that of TY, and finally deduce undecidability

of TC from that of TS.

• TY is undecidable for λ2. Define a translation6 d•e : O → O as follows,

5 A specific instance of the strong typability problem is the typability problem, where Γ0 is taken to be
the empty context.

6 The categories O,C,K of domain-full expressions are defined in section 4.1 where a corresponding
classification lemma is proved.
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where δ is a fresh variable:

dxe = x

dt ue = dte due
dt Ae = dte A

dλx : A.te = λx.K dte (δ (A→ A) x)

dλx : ∗.te = λx. dte
where t, u ∈ O and A ∈ C. Then one can prove by induction on the structure

of M that

Γ ` M : A ⇔ δ : ⊥,Γ `̀ dMe : A

Hence we have for every M ∈ O,

∃Γ ∈ G. ∃A ∈ C. Γ ` M : A⇔ ∃Γ ∈ G. ∃A ∈ C. δ : ⊥,Γ `̀ dMe : A

Schubert (1998) has shown that the left-hand side is undecidable. It follows

that the right-hand side is also undecidable. The right-hand side is an

instance of (TY) with Γ0 = δ : ⊥, therefore TY for λ2 is undecidable.

• TS is undecidable for λ2. Let M ∈ O, {α1, . . . , αp} = FV(M) ∩ V2 and

{x1, . . . , xn} = FV(M) ∩ V ∗. Then

∃C ∈ C. δ : ⊥ `̀ (λα1, . . . , αp, x1, . . . , xn .M) : C

⇔ ∃~B,C ∈ C. δ : ⊥, α1 : ∗, . . . , αp : ∗, x1 : B1, . . . , xn : Bn `̀M : C

⇔ ∃Γ ∈ G, C ∈ C. δ : ⊥,Γ `̀M : C

In the first step, we use the generation lemma. In the second step, only

the reverse direction requires some justification. For it, observe that (1) the

permutation lemma holds, so the context may be reorganized in such a way

that constructor variables are shifted to the left and object variables are

shifted to the right (2) some weak form of strengthening holds in presence

of the assumption δ : ⊥. More precisely, we have from the substitution

lemma that if δ : ⊥,Γ1, x : A,Γ2 `̀M : C with x 6∈ FV(M) then

x ∈ V ∗ ⇒ δ : ⊥,Γ1,Γ2 `̀M : C

x ∈ V2 ⇒ δ : ⊥,Γ1,Γ2{x := ⊥} `̀M : C{x := ⊥}
where in the first case one applies the substitution {x := δ A}. The last

formula is undecidable so the first formula must also be undecidable. Thus

TS is undecidable.

• TC is undecidable for λ2. Let Γ ∈ G and M ∈ O. By generation

∃A ∈ C. Γ `̀M : A ⇔ Γ `̀ (λu . triv)M : Πβ: ∗. β → β

The left formula is undecidable so the right formula must also be undecid-

able. Thus TC is undecidable.

3. TC, TS, and TY for M ∈ C are decidable; it is not hard to see that these

problems are variants of TC, TS, and TY for M ∈ O in λ→, which are

decidable. Hence, we only need to treat the case where M ∈ O. For brevity, we

only consider TY. Assume we are given a pseudo-context Γ0. First, note that
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M is not typable unless FV(M) ⊆ V ∗ since legal objects of λω do not contain

constructors as subterms. Secondly, assume that FV(M) \ Γ0 = {x1, . . . , xn} ⊆
V ∗. Then

∃C ∈ C. Γ0, γ : ∗ `̀ λ~x .M : C (&)

is decidable by the same algorithm as in Barendregt (1992). By generation, the

formula (&) is equivalent to

∃~B,C ∈ C. Γ0, γ : ∗, x1 : B1, . . . , xn : Bn `̀M : C (&&)

which is thus also decidable. Now we claim (&&) is equivalent to

∃Γ ∈ G. ∃C ∈ C. Γ0,Γ `̀M : C

and this equivalence implies decidability of TY. To justify the last equivalence,

we only need to consider the reverse implication. We proceed almost exactly

as in 2. So assume Γ0,Γ `̀ M : C . By Thinning, Γ0, γ : ∗,Γ `̀ M : C for

γ fresh. Now one can define for every kind K an element canK such that

Γ0, γ : ∗ `̀ canK : K . By repeated applications of the substitution lemma,

Γ0, γ : ∗,Γ′ `̀M : C

where all the variables in Γ′ are object variables. We conclude, by applying

strengthening on object variables, that

Γ0, γ : ∗, x1 : B1, . . . , xn : Bn `̀M : C

for suitable Bis.

4. See Dowek (1993) – the results are proved in a somewhat disguised form.

This concludes the proof. q

Note that Theorem 32 does not solve the problem of decidability of typability for

λ2.

Theorem 32 shows that type-checking may be undecidable in even rather weak

DFPTSs. Still, one can establish a weak decidability result, which fortunately is

sufficient in practice for DFPTSs to be used as the basis of proof-assistants (e.g. see

Betarte and Tasistro (1998) and Magnusson (1994)).

Proposition 33

Let S be a specification such that:

1. S is finite;

2. A and R are decidable;

3. Type ⊆ WNβ;

Assume Γ `̀ A : s for some s with A ∈ NFβ and B ∈ NFβ for every y : B ∈ Γ. Given

M ∈ NFβ , it is decidable whether Γ `̀M : A.

Proof

By induction on the structure of the term M. We treat two cases:
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1. M ≡ λx . P
First, if A does not have form Πx : D′. E ′ then Γ 6`̀ M : A. Indeed, if

Γ `̀M : A then by generation Γ, x : D `̀ P : E for some Πx: D. E =β A. Since

A ∈ NFβ , A ≡ Πx: D′. E ′ for some D′, E ′, a contradiction. Secondly, suppose

A ≡ Πx: D′. E ′. Then, by generation and subject reduction, Γ `̀ M : A iff

Γ, x : D′ `̀ P : E ′, which is decidable by induction hypothesis.

2. M ≡ x P1 . . . Pn
First, if x 6∈ dom(Γ), then Γ 6`̀ M : A by the free variables lemma. Secondly,

suppose x : B ∈ Γ. If B does not have the form Πz1: C1.D1 then by generation,

Γ6`̀M : A. Thirdly, suppose x : B ∈ Γ with B ≡ Πz1: C1.D1. Then by generation

and subject reduction, Γ `̀M : A iff
Γ `̀ P1 : C1

Γ `̀ P2 : C2

...

Γ `̀ Pn : Cn

with (we use nf(T ) to denote the β-normal form of T )

nf(D1{z1 := P1}) = Πz2: C2. D2

...
...

nf(Dn−1{zn−1 := Pn−1}) = Πzn: Cn. Dn

nf(Dn{zn := Pn}) = A

Each of the Ci and Di is totally determined by the Cj ’s and Dj ’s such that

j < i (in particular, they are defined otherwise the judgement would not be

derivable).7 Hence the conjuncts above are completely determined. Each of

the conjunct is decidable by induction hypothesis so we are done.

The decidability of A is used in the case where M is a sort. The finiteness of S and

the decidability of R are used in the case where M is a product. q

For domain-free pure type systems with a cumulative hierarchy of universes, such

as a domain-free variant of ECC (Luo, 1994), one may define in a similar way an

algorithm that computes a principal type of a term in β-normal form in a context

in β-normal form.

4 Domain-free pure type systems versus pure type systems

In this section we compare domain-free pure type systems with conventional pure

type systems. The terminology for the latter is that of Barendregt (1992), to which

the reader is referred for further details.

In the first subsection we introduce pure type systems. In the second subsection

we show that every derivation in a pure type system can be projected to a derivation

7 By a theorem due to Curry and Feys (1958), the normal form nf(Q) of Q can be computed from Q by
repeatedly contracting the left-most redex.
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in the corresponding domain-free pure type system. In the third subsection we show

that the converse also holds for a large class of specifications; this is the main result

of the section.

4.1 Pure type systems

A specification S induces a pure type system λS as follows.

Definition 34

Let S = (S,A,R) be a specification.

1. The set E of (domain-full) expressions (overS) is given by the abstract syntax:

E = V | S | EE | λV : E.E |ΠV : E.E
We use the same naming conventions as for domain-free pure type systems

and assume, again, that the reader is familiar with the notions of free and

bound variables, and related conventions; FV(M) denotes the set of variables

occurring free in M, and ≡ denotes syntactic equality.

2. A (domain-full) context is a finite sequence of form x1 : A1, . . . , xn : An; the

empty sequence is written 〈〉. The set of all contexts is called G. We write

dom(x1: A1, . . . , xn: An) = {x1, . . . , xnm} and use the same naming conventions

as for domain-free contexts.

3. β-reduction →β on E is defined as the compatible closure of the contraction

(λx : A.M) N →β M[x := N]

where •[• := •] is the obvious substitution operator. Multi-step β-reduction →→β

and β-equality =β are the reflexive, transitive closure and reflexive, transitive,

symmetric closure, respectively, of →β . The relation →β is extended to G by:

A→β B ⇒ Γ, x: A,∆→β Γ, x: B,∆

The relations →→β and =β on G are the obvious closures of →β on G.

4. The derivability relation ` is given by the rules of Figure 5. We occasionally

write `S to explicate the dependence of the derivability relation on S. If

Γ ` A : B then Γ, A, and B are legal. We write Γ ` A : B : C if Γ ` A : B

and Γ ` B : C .

5. The tuple λS = (E,G,=β,`) is the pure type system (PTS) induced by S.

The following notions are analogous to those for DFPTSs.

Definition 35

Let S be a specification and s ∈ S.

Types = {M ∈ E | Γ ` M : s for some Γ}
Terms = {M ∈ E | Γ ` M : A : s for some Γ and A}

Also, Type = ∪s∈STypes and Term = ∪s∈STerms.
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(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s

Γ, x: A ` x : A
if x 6∈ dom(Γ)

(weakening)
Γ ` A : B Γ ` C : s

Γ, x: C ` A : B
if x 6∈ dom(Γ)

(product)
Γ ` A : s1 Γ, x: A ` B : s2

Γ ` (Πx: A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ` F : (Πx: A. B) Γ ` a : A

Γ ` F a : B[x := a]

(abstraction)
Γ, x: A ` b : B Γ ` (Πx: A. B) : s

Γ ` λx : A . b : Πx: A. B

(conversion)
Γ ` A : B Γ ` B′ : s

Γ ` A : B′
if B =β B

′

Fig. 5. Pure type systems.

The notion of a β-reduction path and the associated sets NFβ , WNβ , and SNβ

of β-normal forms, β(-weakly) normalizing expressions, and β-strongly normalizing

expressions, respectively, are defined analogously to Definitions 6 and 7.

Finally, we present a classification lemma for the λ-cube, which is used in section

6 and in section 3.3.

Definition 36
Let E′ = O∪C∪K∪{2} be the subset of E where the sets O, C,K of domain-full

expressions are given by the abstract syntax:

O = V ∗ | λV ∗ :C . O | O O | λV2 :K . O | O C
C = V2 |ΠV ∗:C. C |ΠV2:K. C | λV ∗ :C . C | λV2 :K . C | C C | C O
K = ∗ |ΠV ∗:C.K |ΠV2:K.K

The following result is similar to Lemma 28.

Lemma 37
Let S = C and M ∈ E be legal. Then

1. M ∈ O; or
2. M ∈ C; or
3. M ∈ K; or
4. M ≡ 2.

Moreover, the sets O,C,K, {2} are pairwise disjoint.

4.2 Erasing

Every domain-full expression induces a domain-free expression by erasing the do-

mains of abstractions. This erasing function is used by Geuvers (1993) to study PTSs

https://doi.org/10.1017/S0956796800003750 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003750


Domain-free pure type systems 437

with βη-conversion; it also appears in the context of various specifications in the

literature.

Definition 38

The erasure map | • | : E → E is defined as follows:

|x| = x

|s| = s

|t u| = |t| |u|
|λx: A.t| = λx.|t|
|Πx: A.B| = Πx : |A|.|B|

Erasure preserves reduction, equality and typing:

Proposition 39 (Erasing)

1. If M →β N then |M| →→β |N|;
2. If M =β N then |M| =β |N|;
3. If Γ `M : A then |Γ| `̀ |M| : |A|.

Proof

First prove by induction on M that

|M[x := N]| ≡ |M|{x := |N|} (∗)
Then prove (1), using (∗), by induction on the derivation of M →β N. Then prove (2)

by induction on the derivation of M =β N using (1). Finally, prove (3) by induction

on the derivation of Γ ` M : A, using (∗) and (2). q

4.3 Lifting

The main result of this section is that, under suitable conditions, derivations may

be lifted along | • |. This generalizes (Barendregt, 1992) Proposition 3.2.15 where

a similar result is proved for simply typed λ-calculus (see also section 6). Unless

explicitly stated, properties such as Church-Rosser, subject reduction, and context

conversion, used below, refer to PTSs.

Lemma 40 (Context conversion)

Let S be a specification. Assume that Γ ∈ G is legal, ∆ ` M : A and Γ =β ∆. Then

Γ `M : A.

Proof

By Church–Rosser, there exists Ξ s.t. Γ →→β Ξ and ∆ →→β Ξ. By subject reduction

Ξ `M : A and Γ ` x: A for each x: A in Ξ. By transitivity, Γ `M : A. q

Before proving the main result we prove three preliminary lemmas. The first

lemma gives some useful information on the relation between →β and →β .

Lemma 41 (Geuvers (1993))

1. If |A| →β F then there is B such that A→β B and |B| ≡ F;

2. If |A| =β s then A =β s.
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Proof

1. The redex contracted in |A| →β F corresponds to a unique redex in A;

contracting this redex in A leads to a B with |B| ≡ F .

2. By Church-Rosser of →β on E, |A| →→β s. Now use (1).

This concludes the proof. q

The second lemma establishes a fundamental property of erasure.

Lemma 42

Assume M,M ′ ∈ NFβ , |M| ≡ |M ′|, Γ ` M : A, and Γ ` M ′ : A′.

1. If A ≡ A′ then M ≡M ′.
2. If A ≡ s and A′ ≡ s′ then M ≡M ′.

Proof

We prove (1)–(2) simultaneously by induction on M.

1. M ≡ s′′. Then |M ′| ≡ |M| ≡ |s′′| ≡ s′′, so M ′ ≡ s′′ ≡M.

2. M ≡ x. Similar to Case 1.

3. M ≡ λx : D . b. Then M ′ ≡ λx : D′ . b′, where |b| ≡ |b′|. By generation we have

A =β Πx:D.B where Γ ` Πx:D.B : s and Γ, x:D ` b : B and A′ =β Πx:D′.B′
where Γ ` Πx:D′. B′ : s′ and Γ, x:D′ ` b′ : B′.
(1) By Church–Rosser, D =β D

′ and B =β B
′. Since D,D′ are normal forms,

D ≡ D′. By Church-Rosser and subject reduction there is B′′ such that

Γ, x : D ` b : B′′ and Γ, x : D ` b′ : B′′. By part (1) of the induction

hypothesis b ≡ b′, so M ≡M ′.
(2) Impossible since s ≡ A =β Πx:D. B contradicts Church–Rosser.

4. M ≡ Πx: B. C . Then M ′ ≡ Πx: B′. C ′, where |B| ≡ |B′| and |C| ≡ |C ′|. By

generation, Γ ` B : s1, Γ, x: B ` C : s2, and A =β s3, and Γ ` B′ : s′1,

Γ, x: B′ ` C ′ : s′2, and A′ =β s
′
3. By part (2) of the induction hypothesis B ≡ B′

and then C ≡ C ′. Hence M ≡M ′.
5. M ≡ N P . Since M is normal and legal, in fact M ≡ x M1 . . .Mn and

M ′ ≡ xM ′1 . . .M ′n, where |M1| ≡ |M ′1|, . . . , |Mn| ≡ |M ′n|.
We now show by induction on n that

(a) xM1 . . .Mn ≡ xM ′1 . . .M ′n;
(b) A =β A

′.
where (a) implies (1)–(2). If n = 0 then (a) is trivial. Moreover, by generation

we have x: E ∈ Γ where A =β E =β A
′, proving (b). If n = m + 1, then by

generation Γ ` x M1 . . .Mm : Πy: B. C , Γ ` Mm+1 : B, A =β C[y := Mm+1]

and Γ ` x M ′1 . . .M ′m : Πy: B′. C ′, Γ ` M ′m+1 : B′, A′ =β C
′[y := M ′m+1] By

part (b) of the induction hypothesis Πy: B.C =β Πy: B′.C ′. Hence by Church–

Rosser B =β B
′ and C =β C

′. By Church–Rosser and subject reduction there

is a B′′ such that Γ ` Mm+1 : B′′ and Γ ` M ′m+1 : B′′. Hence by part

(1) of the induction hypothesis Mm+1 ≡ M ′m+1. By induction hypothesis (a)

x M1 . . .Mm ≡ x M ′1 . . .M ′m. Hence x M1 . . .Mm+1 ≡ x M ′1 . . .M ′m+1, and also

A =β C[y := Mm+1] =β C
′[y := M ′m+1] =β A

′.

This concludes the proof. q
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Remark 43

Lemma 42 (1) is not true if we drop the assumption M,M ′ ∈ NFβ . Take

Γ ≡ A : ∗, A′ : ∗, B : ∗, b : B

M ≡ (λx: A→ A. b) (λy : A. y)

M ′ ≡ (λx: A′ → A′. b) (λy : A′. y)

Lemma 44

Let S be a specification with Type ⊆ WNβ .

1. If Γ ` M : s, Γ ` N : s′, |M| =β |N|, then M =β N.

2. If Γ1,Γ2 are legal and |Γ1| =β |Γ2| then Γ1 =β Γ2.

3. If Γ ` P : M, Γ ` N : s′, |M| =β |N|, then M =β N.

Proof

1. Let M ′ and N ′ be normal forms of M and N, respectively. By subject reduction

Γ ` M ′ : s, Γ ` N ′ : s′. By projection |M ′| =β |M| =β |N| =β |N ′|. By

Church–Rosser on E, |M ′| ≡ |N ′|. Hence by Lemma 42(2) M ′ ≡ N ′. Hence

M =β M
′ ≡ N ′ =β N.

2. By induction on the length of Γ1. If Γ1 ≡ 〈〉, then Γ1 ≡ 〈〉 ≡ Γ2.

If Γ1 ≡ ∆1, x: A1 then Γ2 ≡ ∆2, x: A2 where |∆1| =|β| |∆2| and |A1| =|β| |A2|.
By induction hypothesis ∆1 =β ∆2. By the start lemma ∆1 ` A1 : s1 and

∆2 ` A2 : s2. By Church–Rosser and subject reduction there is ∆ such that

∆ ` A1 : s1 and ∆ ` A2 : s2. Hence by (1), A1 =β A2.

3. By correctness of types, either M is a top-sort or Γ ` M : s for some s ∈ S.

If M is a top-sort, then N →→β M by Lemma 41 and Γ ` M : s′ by subject

reduction, a contradiction. Hence Γ ` M : s for some s ∈ S. Apply (1).

This concludes the proof. q

We can now proceed with the proof of the main result.

Theorem 45 (Lifting)

Let S be a functional specification with Type ⊆ WNβ . If ∆ `̀ E : F then Γ ` A : B

for some Γ, A, B with |Γ| ≡ ∆, |A| ≡ E, and |B| ≡ F .

Proof

By induction on the derivation of ∆ `̀ E : F .

1. The derivation ends in

〈〉 `̀ s1 : s2

Choose Γ ≡ 〈〉, A ≡ s1, B ≡ s2.

2. The derivation ends in

∆ `̀ E : s

∆, x: E `̀ x : E
x 6∈ dom(Γ)

By induction hypothesis Γ ` A : s with |Γ| ≡ ∆ and |A| ≡ E. Therefore

Γ, x: A ` x : A with |Γ, x: A| ≡ ∆, x: E, |x| ≡ x and |A| ≡ E.
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3. The derivation ends in

∆ `̀ E : F ∆ `̀ G : s

∆, x:G `̀ E : F
x 6∈ dom(Γ)

By induction hypothesis Γ1 ` A : B and Γ2 ` C : s, where |Γ1| ≡ ∆ ≡ |Γ2|,
|A| ≡ E, |B| ≡ F , and C ≡ G. By Lemma 44 (2), Γ1 =β Γ2. By Context

Conversion, Γ1 ` C : s. Hence by weakening Γ1, x: C ` A : B.

4. The derivation ends in

∆ `̀ E : s1 ∆, x: E `̀ F : s2

∆ `̀ (Πx: E. F) : s3

By induction hypothesis Γ1 ` A1 : s1 and Γ2, x: A2 ` B : s2 where |Γ1| ≡
∆ ≡ |Γ2|, |A1| ≡ E ≡ |A2|, and |B| ≡ F . By Lemma 44 (1-2), Γ1 =β Γ2 and

A1 =β A2. By context conversion, Γ2 ` A1 : s1. By the start lemma Γ2 ` A2 : s′.
By uniqueness of types, s1 ≡ s′. Hence by product Γ ` Πx: A2. B2 : s3.

5. The derivation ends in

∆ `̀ E : (Πx: F. G) Γ `̀ f : F

Γ `̀ E f : G{x := f}
By induction hypothesis Γ1 ` A : Πx : B1. C and Γ2 ` b : B2 where

|Γ1| ≡ ∆ ≡ |Γ2|, |A| ≡ E, |B1| ≡ F ≡ |B2|, |C| ≡ G, and |b| ≡ f. By Lemma

44 (2), Γ1 =β Γ2. By context conversion, Γ2 ` A : Πx: B1. C . By generation,

Γ2 ` B1 : s1. By Lemma 44 (3), B1 =β B2. By conversion, Γ2 ` b : B1. Hence

by application Γ2 ` A b : C[x := b].

6. The derivation ends in

∆, x: E `̀ f : F ∆ `̀ (Πx: E. F) : s

∆ `̀ λx . f : Πx: E. F

By induction hypothesis Γ1, x: A1 ` b : B1 and Γ2 ` Πx: A2. B2 : s where

|Γ1| ≡ ∆ ≡ |Γ2|, |A1| ≡ E ≡ |A2|, |B1| ≡ F ≡ |B2|, |b| ≡ f. By generation,

Γ2, x: A2 is a legal context. By Lemma 44 (2), Γ1, x: A1 =β Γ2, x: A2. By context

conversion, Γ2, x: A2 ` b : B1. By generation, Γ2, x: A2 ` B2 : s′. By Lemma

44 (3), B1 =β B2. By conversion, Γ2, x: A2 ` b : B2. Hence by abstraction

Γ2 ` λx : A2 . b : Πx: A2. B2.

7. The derivation ends in

∆ `̀ E : F ∆ `̀ F ′ : s′ F =β F
′

∆ `̀ E : F ′

By induction hypothesis Γ1 ` A : B and Γ2 ` B′ : s′ where |Γ1| ≡ ∆ ≡ |Γ2|,
|A| ≡ E, |B| ≡ F , and |B′| ≡ F ′. By Lemma 44 (2), Γ1 =β Γ2. By context

conversion, Γ2 ` A : B. By Lemma 44(3), B =β B
′. Hence by conversion

Γ2 ` A : B′.

This concludes the proof. q
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Note that functionality is used only in Case 4 of the proof. Other properties (e.g.

fullness) may be assumed instead of functionality. It is also possible to prove a

similar result for non-functional PTSs by replacing ≡ by =β in the statement of the

theorem.

We conclude this section by noting that the equational theory of functional,

normalizing PTSs is not affected by erasure.

Proposition 46

Let S be functional with Type ⊆ WNβ . Assume M,N ∈ WNβ , Γ ` M : A, and

Γ ` N : A. Then

M =β N ⇔ |M| =β |N|
Proof

The left-to-right implication follows by erasing.

As for the right-to-left implication, assume that |M| =β |N|. Since M,N ∈ WNβ ,

|M|, |N| ∈ WNβ (see the proof of Proposition 49(2)), so let P ∈ NFβ be such that

|M| →→β and |N| →→β P . By Lemma 41, there exists Q and R such that |Q| ≡ |R| ≡ P ,

M →→β Q and N →→β R. By assumption Q→→β Q
′ and R →→β R

′ for some Q′, R′ ∈ NFβ .

Then |Q′| ≡ |Q| ≡ |R| ≡ |R′|. By subject reduction Γ ` Q′ : A and Γ ` R′ : A. By

Lemma 42(1), Q ≡ R. Hence M =β N. q

The result does not hold for non-normalizing systems.

Proposition 47

Let S = ∗. There exists M,N ∈ E such that Γ ` M : A, and Γ ` N : A, and

|M| =β |N| but not M =β N.

Proof

See Hurkens (1995). q

5 Applications

Proposition 39 and Theorem 45 accommodate transfer of results from PTSs to

DFPTSs and back. In this section, we study three applications of this idea. In the

first subsection we investigate the relationship between normalization in DFPTSs

and PTSs. In the second subsection we study the relationship between conservative

extensions of DFPTSs and PTSs. In the last subsection we are concerned with looping

combinators.

5.1 Normalization

Recall that an expression is weakly normalizing if it has a reduction sequence

ending in a normal form, whereas an expression is strongly normalizing if all

reduction sequences from the expression eventually end in normal forms; that

is, if the expression has no infinite reductions. A (domain-free) Pure Type Sys-

tem is weakly normalizing (resp. strongly normalizing) if all its legal expressions

are.
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The Barendregt–Geuvers–Klop conjecture states that every β-weakly normalizing

PTS is also β-strongly normalizing. In order to solve the conjecture, it is natural

to develop techniques to infer the latter from the former. Indeed, a variety of

such techniques have been invented, most recently by Sørensen and Xi. The main

ingredient in Sørensen’s (1997) technique is a so-called Continuation-Passing Style

(CPS) translation. The technique involves certain technical difficulties which render

domain-free expressions easier to work with than domain-full ones (see Sørensen

(1997) and Barthe et al. (1999)). It is therefore natural to investigate under which

conditions the implication from weak normalization to strong normalization of a

DFPTS can be lifted to the corresponding PTS. This is the purpose of the present

subsection.

Definition 48

Let S be a specification and let (φ,T ) be (λ,E) or (λ,E). Assume X ⊆ T . We write

φS |= X if every legal φS-expression belongs to X.

Proposition 49

Let S be a functional specification.

1. λS |= SNβ implies λS |= SNβ;

2. λS |= WNβ implies λS |= WNβ;

3. If Type ⊆ SNβ , then λS |= SNβ implies λS |= SNβ;

4. If Type ⊆ WNβ , then λS |= WNβ implies λS |= WNβ .

Proof

1. Assume λS |= SNβ (in particular λS |= WNβ and hence Type ⊆ WNβ), and let

M ∈ E be legal. By Theorem 45 there is a legal E ∈ E such that |E| ≡ M. If

M had an infinite reduction

M ≡M0 →β M1 →β . . .

then by Lemma 41(1) there would also be an infinite reduction from E:

E ≡ E0 →β E1 →β . . .

where |Ei| ≡Mi. This contradicts the assumptions.

2. Assume λS |= WNβ (again, in particular, Type ⊆ WNβ), and let M ∈ E be

legal. By Theorem 45 there is a legal E ∈ E such that |E| ≡M. By assumption

there is a reduction

E ≡ E0 →β E1 →β . . .→β En ∈ NFβ

Then, by Proposition 39(1),

M ≡ |E0| →→β |E1| →→β . . .→→β |En|
Finally, erasure preserves normal forms, hence En ∈ NFβ implies |En| ∈ NFβ .

Thus, M ∈ WNβ .

3. Assume λS |= SNβ and that Type ⊆ SNβ , and let E ∈ E be legal. If E had an

infinite reduction

E ≡ E0 →β E1 →β . . .
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then by Proposition 39(1) we would also have

M ≡M0 →→β M1 →→β . . .

with |E| ≡M and |Ei| ≡Mi. More specifically, for every reduction Ei →β Ei+1

we have Mi ≡Mi+1 if the former reduction is inside a domain, and Mi →β Mi+1

otherwise. By the assumptions there cannot be infinitely many consecutive

domain-reductions.8 Thus, we also have an infinite reduction from M.

4. Assume λS |= WNβ and that Type ⊆ WNβ , and let E ∈ E be legal. By

Proposition 39(3) |E| ∈ E is legal, so |E| →→β N ∈ NFβ for some N. By

Lemma 41(1), there is an F ∈ E such that |F | ≡ N. By assumption, F →→β G ∈
NFβ by domain-reductions alone. Thus, E ∈ WNβ .

This completes the proof. q

Corollary 50

Let S be a functional specification with Type ⊆ SNβ . If

λS |= WNβ ⇒ λS |= SNβ

then

λS |= WNβ ⇒ λS |= SNβ

Remark 51

This shows that if weak normalization implies strong normalization of all legal

expressions in λ2 then the same holds for λ2. This is also true for the specification

C . However, in the latter case the assumption Type ⊆ SNβ is rather strong since the

types in λC may contain terms.

The strong assumption comes from Proposition 49(3) which may be strengthened

by considering an extension of DFPTSs with a K-combinator (Barthe, 1995) and

reducing strong normalisation of a PTS to that of its corresponding DFPTS with the

K-combinator. However the Proposition is already useful as stated, for example, in

work on the Barendregt–Geuvers–Klop conjecture (Sørensen, 1997).

Proposition 49 implies strong normalization for the λ-cube:

Proposition 52

λS |= SNβ for every cube-specification S.

Proof

By Proposition 49(1) and strong normalization of the λ-cube. q

5.2 Consistency and conservativity

Next we examine how consistency and conservativity results are reflected. Through-

out this subsection S denotes a functional specification with Type ⊆ WNβ .

8 Strictly speaking, this conclusion requires an argument. Although Type ⊆WNβ it might be that there
were an infinite reduction path of domain-reductions inside different domains. However, it is easy to
prove by induction on M that if Type ⊆WNβ then M has no infinite reduction in which all steps are
inside domains.
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Definition 53

Let s ∈ S. λS is s-consistent if there is no M ∈ E such that α : s `̀M : α.

The definition for PTSs is analogous.

The following shows that consistency of a PTS and the corresponding DFPTS are

equivalent if the specification is functional and Type ⊆ WNβ .

Proposition 54 (Consistency)

Let s ∈ S. λS is s-consistent iff λS is.

Proof

By Theorem 45 and Proposition 39

∃M ∈ E. α : s ` M : α ⇔ ∃N ∈ E. α : s `̀ N : α

as required. q

Definition 55

Let S′ = (S′,A′,R′) ⊆ (S,A,R) = S (component-wise inclusion) and let s ∈ S′.
λS′ is s-conservative over λS if

Γ `̀SM : A & Γ `̀S′ A : s ⇒ ∃N ∈ E. Γ `̀S′ N : A

Informally, the definition states that if some proposition A has a proof M in a

DFPTS λS, and the proposition is also meaningful (but not necessarily provable) in

the smaller DFPTS λS′, then in fact, A has a proof N in λS′.
The definition for PTSs is analogous.

Proposition 56 (Conservativity)

Let s ∈ S′. Then λS′ is s-conservative over λS iff λS′ is s-conservative over λS.

Proof

For the left-to-right implication, assume Γ`S′ A : s and Γ`SM : A. By Proposition

39, |Γ| `̀S′ |A| : s and |Γ| `̀S |M| : |A|. By hypothesis, there exists N such that

|Γ| `̀S′ N : |A|. By Theorem 45, there exists ∆, P , B with ∆ `S′ P : B, |∆| ≡ |Γ|,
and |B| ≡ |A|. By Lemma 44, ∆ =β Γ and B =β A. By Conversion and context

conversion, Γ`S′ P : A.

To prove the reverse implication, assume Γ `̀S′ A : s and Γ `̀SM : A. By Theorem

45, ∆ `S′ B : s and Ξ `S N : C where |∆| ≡ |Ξ| ≡ Γ and |B| ≡ |C| ≡ A. Then also

∆ `S B : s, so by Lemma 44, ∆ =β Ξ and B =β C . By subject reduction, Φ `S′ D : s

and Φ `S N : D for some D such that B,C →→β D and Φ such that ∆,Ξ →→β Φ. By

hypothesis, there exists P such that Φ`S′ P : D. By Proposition 39, |Φ| `̀S′ |P | : |D|.
By Conversion and context conversion, Γ `̀S′ |P | : A. q

The latter result allows us to derive (non-)conservativity results for the λ-cube

from Geuvers (1993). For example, one has:

Corollary 57

Let S′ ⊆ S be cube-specifications. Then λS′ is ∗-conservative over λS iff S′ 6= P2

and S 6= Pω.
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5.3 Looping combinators and fixpoints

Finally, we consider fixpoints and looping combinators. Throughout this section, S

denotes a fixed specification.

Definition 58

1. A fixpoint combinator of sort s is an expression Y such that

`̀ Y : (ΠA: s. (A→ A)→ A)

satisfying for every A and f,

Y A f =β f (Y A f)

2. A looping combinator of sort s is an expression Y for which there exists

Y0 ≡ Y , Y1, . . . such that for every i

`̀ Yi : (ΠA: s. (A→ A)→ A)

and for every A and f,

Yi A f =β f (Yi+1 A f)

The definition for PTSs is analogous.

Proposition 59

1. If λS has a looping combinator, then so has λS.

2. If λS has a fixpoint combinator, then so has λS.

Proof

By Proposition 39. q

Coquand and Herbelin (1994) study looping combinators for pure type systems

(see also Geuvers and Werner (1994) for some results about fixpoints in Pure Type

Systems with βη-conversion). They show that every so-called inconsistent logical

non-dependent pure type systems has a looping combinator.

Corollary 60

λU−, λU and λ∗ have a looping combinator of sort ∗ where

1. U− = (S,A,R) and

• S = {∗,2,4};
• A = {(∗,2), (2,4)};
• R = {(∗, ∗), (2,2), (2, ∗), (4,2)}.

2. U arises from U− by addition of the rule (4, ∗);
3. ∗ = ({∗}, {(∗, ∗)}, {(∗, ∗, ∗)}).

Proof

In Coquand and Herbelin (1994), it is shown that λU−, λU and λ∗ have a looping

combinator. We apply Proposition 59. q

It would be interesting to investigate whether the above result can be strengthened

for λU− and λ∗.
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Open problem 61

Do λU− and λ∗ have a fixpoint combinator?

One possible approach to solve this problem is to construct with the techniques

(Coquand and Herbelin, 1994) a domain-full looping combinator Yn from the

domain-full term proving inconsistency of λU− in Hurkens (1995) and to check

whether the erasure of the looping combinator is indeed a fixpoint combinator

for λU−.

Note that a positive answer to the above question would leave open the related

question of a fixpoint combinator in λ∗.

6 Domain-free pure type systems vs type assignment systems

In recent work, van Bakel, Liquori, Ronchi della Roncha and Urzyczyn (1994) define

for each cube-specification S a type assignment system λS. These systems, which form

what we call the λ-cube, include simple types λ→ introduced by Curry (1934), second-

order types λ2 introduced by Leivant (1983) and higher-order types λω introduced

by Giannini and Ronchi della Rocca (1988). In this section, we study the relationship

between between the λ-cube, the λ-cube, and the λ-cube.

The first subsection introduces the λ-cube and the second subsection investigates

its relationship with the two other cubes. To ease the comparison between cubes,

we use sorted variables and the syntaxes of the classification lemmas (Definitions 27

and 36).

6.1 The λ-cube

An important aspect of the λ-cube is the distinction between three different syn-

tactic categories: objects, constructors and kinds. Each category uses its own form

of λ-abstraction: objects use domain-free λ-abstractions, whereas constructors use

domain-full λ-abstractions (there is no notion of λ-abstraction for kinds).

Definition 62

Let S = (S,A,R) be a cube specification.

1. Let V ∗ and V2 be denumerable, disjoint sets of variables. Define the set E
of (type assignment) expressions by E = O ∪ C ∪K ∪ {2}, where objects O,

constructors C, and kinds K are defined by:

O = V ∗ | λV ∗ .O | O O
C = V2 |ΠV ∗:C. C |ΠV2:K. C | λV ∗ :C . C | λV2 :K . C | C C | C O
K = ∗ |ΠV ∗:C.K |ΠV2:K.K

We use M,N to denote elements of E; φ, ψ to denote elements of C; K,K ′
to denote elements of K; x, y to denote elements of V ∗; and α, β to denote

elements of V2 . We use A,B, C to range over arbitrary elements of E and

u, v, w to range over V = V ∗ ∪ V2 . As usual, s, s′ denote elements of S. We

assume the reader is familiar with the notions of free and bound variables and
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Γ `̀̀ A : s

Γ, v: A `̀̀ v : A
if v 6∈ dom(Γ)

Γ `̀̀ A : B Γ `̀̀ C : s

Γ, v: C `̀̀ A : B
if v 6∈ dom(Γ)

Γ `̀̀ A : B Γ `̀̀ B′ : s

Γ `̀̀ A : B′
if B =β B

′ 〈〉 `̀̀ ∗ : 2

Γ, x: φ `̀̀ M : ψ

Γ `̀̀ λx .M : Πx: φ. ψ
if (∗, ∗)∈R Γ `̀̀ M : (Πx: φ. ψ) Γ `̀̀ N : φ

Γ `̀̀ M N : ψ〈x := N〉 if (∗, ∗)∈R

Γ, α:K `̀̀ M : ψ

Γ `̀̀ M : Πα:K. ψ
if (2, ∗)∈R Γ `̀̀ M : (Πα:K. ψ) Γ `̀̀ φ : K

Γ `̀̀ M : ψ〈α := φ〉 if (2, ∗)∈R

Γ, x: φ `̀̀ ψ : K

Γ `̀̀ λx : φ . ψ : Πx: φ. K
if (∗,2)∈R Γ `̀̀ ψ : (Πx: φ. K) Γ `̀̀ N : φ

Γ `̀̀ ψ N : K〈x := N〉 if (∗,2)∈R

Γ, α:K `̀̀ ψ : K ′

Γ `̀̀ λα :K . ψ : Πα:K. K ′
if (2,2)∈R Γ `̀̀ φ : (Πα:K. K ′) Γ `̀̀ ψ : K

Γ `̀̀ φ ψ : K ′〈α := ψ〉 if (2,2)∈R

Γ, x: φ `̀̀ ψ : ∗
Γ `̀̀ (Πx: φ. ψ) : ∗ if (∗, ∗)∈R Γ, α:K `̀̀ ψ : ∗

Γ `̀̀ (Πα:K. ψ) : ∗ if (2, ∗)∈R

Γ, x: φ `̀̀ K : 2

Γ `̀̀ (Πx: φ. K) : 2
if (∗,2)∈R Γ, α:K `̀̀ K ′ : 2

Γ `̀̀ (Πα:K. K ′) : 2
if (2,2)∈R

Fig. 6. Type assignment systems.

related conventions; FV(M) denotes the set of variables occurring free in M,

and ≡ denotes syntactic equality (see Barendregt, 1992).

2. A (type assignment) context is a finite sequence of form v1: A1, . . . , vn: An; the

empty sequence is written 〈〉. The set of all contexts is called G. We write

dom(v1: A1, . . . , vn: An) = {v1, . . . , vn} and use the same naming conventions as

for domain-free contexts.

3. β-reduction →β on E is defined as the compatible closure of the contractions

(λx : A.M) N →β M〈x := N〉
(λx.M) N →β M〈x := N〉

where •〈• := •〉 is the obvious substitution operator. β-equality =β is the

reflexive, transitive, symmetric closure of →β .

4. The derivability relation `̀̀ is given by the rules of Figure 6. If Γ `̀̀ A : B then

Γ, A and B are legal.

5. The tuple λS = (E,G,=β, `̀̀ ) is the Type Assignment System (TAS) induced

by S.

6.2 The λ-cube versus the λ-cube and the λ-cube

We have already considered the erasing function | • | from domain-full expressions

to domain-free expressions. Incidentally, | • | maps elements of E′ to elements of E′;
in fact, | • | maps elements of O,C,K, {2} to elements of O,C,K, {2}, respectively.
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Objects G : O → O
G(x) = x

G(λx .M) = λx . G(M)

G(M N) = G(M) G(N)

Constructors G : C → C
G(α) = α

G(λv : A . φ) = λv . G(φ)

G(φ A) = G(φ) G(A)

G(Πv: A. φ) = Πv: G(A). G(φ)

Kinds G :K→K
G(∗) = ∗

G(Πx: A. K) = Πx: G(A). G(K)

Box G : {2} → {2}
G(2) = 2

Fig. 7. Erasure from type-assignment to domain-free expressions.

Objects E : O → O
E(x) = x

E(λx : φ . M) = λx . E(M)

E(λα :K . M) = E(M)

E(M N) = E(M) E(N)

E(M φ) = E(M)

Constructors E : C → C
E(α) = α

E(λv : A . φ) = λv : E(A) . E(φ)

E(φ A) = E(φ) E(A)

E(Πv: A. φ) = Πv: E(A). E(φ)

Kinds E :K→K
E(∗) = ∗

E(Πx: A. K) = Πx: E(A). E(K)

Box E : {2} → {2}
E(2) = 2

Fig. 8. Erasure from domain-full to type-assignment expressions.

In this subsection we introduce two more erasing functions, E from domain-full

expressions to type assignment expressions and G from type assignment expressions

to domain-free expressions.

Definition 63

1. The erasure map G : E → E′ is defined in Figure 7.

2. The erasure map E : E′ → E is defined in Figure 8.
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The first erasure map preserves derivability for specifications S without polymor-

phism, i.e. for →, P , ω, and Pω.

Theorem 64

Let S be a specification without polymorphism.

1. If Γ `̀̀ M : A, then G(Γ) `̀ G(M) : G(A).

2. If Γ `̀M : A, then ∆ `̀̀ N : B for some ∆, N, B with G(∆) ≡ Γ, G(N) ≡M and

G(B) ≡ A.

Proof

1. By induction on the structure of derivations.

2. Using the classification lemma, prove by induction on expressions that |Q| ≡
G(E(Q)) for every Q ∈ O∪C∪K∪{2}. By Theorem 45, there exists a derivable

PTS-judgment ∆0 ` N0 : B0 such that |∆0| ≡ Γ, |N0| ≡ M and |B0| ≡ A.

Let ∆ ≡ E(∆0), N ≡ E(N0) and B ≡ E(B0). It follows from (van Bakel et al.,

1994) that ∆ `̀̀ N : B. Moreover, G(∆) ≡ Γ, G(N) ≡ M and G(B) ≡ A since

|Q| ≡ G(E(Q)).

This concludes the proof. q

Corollary 65

TC, TS and TY are decidable for λω.

Proof

We only treat TC since TS and TY are treated in a similar way. The interesting case

is when the judgment is of the form Γ `̀̀ M : A with M ∈ O (if M ∈ C, then the

judgment is trivially decidable). We have Γ`̀̀M : A iff Γ`̀̀ A : ∗ and G(Γ)`̀M : G(A).

Each conjunct is decidable (the first one trivially, the second one by Theorem 32(3)),

so TC is decidable. q

For specifications with polymorphism, G does not preserve typing. Indeed, the

judgment `̀̀ λx . x : Πα: ∗. α→ α, which is derivable in λ2, is not derivable in λ2. On

the other hand, one can define for the systems of the domain-free λ-cube an erasure

map from domain-free objects to type assignment objects.

Definition 66

The erasure map F : O → O is defined as follows:

F(x) = x

F(λx .M) = λx . F(M)

F(λα .M) = F(M)

F(M N) = F(M) F(N)

F(M φ) = F(M)

The erasure map F preserves and reflects typing for the specification 2.

Theorem 67

Let S = 2 and let M ∈ O.

1. If Γ `̀M : A, then Γ `̀̀ F(M) : A.
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2. If Γ `̀̀ M : A, then there exists a derivable judgment Γ `̀ N : A such that

F(N) ≡M.

Proof

Note that legal constructors in λ2 are legal constructors in λ2, and vice versa, and

that the only legal kind in λ2 and λ2 is ∗.
1. By induction on the structure of derivations.

2. Prove by induction on the definition of O that E(Q) ≡ F(|Q|) for every Q ∈ O.

Then assume that Γ`̀̀M : A. By van Bakel et al. (1994), there exists a derivable

PTS-judgment Γ ` N : A such that E(N) ≡ M. Let |N| ≡ P . It follows that

Γ `̀ P : A with F(P ) ≡M.

This concludes the proof. q

It is not clear how to define an erasure map between λω and λω or between λC

and λC .

7 Conclusion

We have introduced the notion of a domain-free pure type system, developed its

basic properties, established its exact relationship with the notion of pure type system

and with the notion of type assignment system, and used the former correspondence

to study a number of applications. Despite failing to have decidable type-checking,

domain-free pure type systems provide an attractive alternative to pure type systems

and have been used in several theoretical studies (Barthe et al., 1999; Barthe et al.,

1997; Sørensen, 1997) and implementations (Magnusson, 1994; Pfenning, 1994).
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