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1. Introduction

Let k be a field andR = ⊕∞i=0Ri a homogeneousk-algebra. Denote by H(R, d) the
Hilbert function ofR, i.e., H(R, d) = dimkRd for d > 0. In this paper we study
how the Hilbert function changes when we factor out generic homogeneous forms
of an arbitrary degree.

In [11], Green gives an upper bound for H(R/hR, d) for all d > 1, whereh is a
generic linear form inR. He applies this to obtain a new short proof of Macaulay’s
Theorem [17] and Gotzmann’s Persistence Theorem [10], which are fundamental
theorems on Hilbert functions. The main result in [12] by Herzog and Popescu
is the Theorem in the Introduction, which generalizes Green’s Theorem to generic
formsh of arbitrary degrees in the case when chark = 0. In Section 2, we present a
new short proof of this theorem and generalize it to an arbitrary characteristic (see
Theorem 2.4). In particular, it follows that all applications of Herzog–Popescu’s
Theorem given in [12, Sect. 4] also hold for an arbitrary characteristic.

Strongly stable ideals play a special role in the study of Hilbert functions (see
Section 3 for the definition of a strongly stable ideal). The reason is that one can
often apply Gröbner’s basis techniques to reduce the general case to the study of
Hilbert functions of strongly stable ideals (see e.g. [1–3, 7, 8, 12, 14, 18]). In the
case of strongly stable ideals, we generalize in [9] Green’s bound to polynomial
ringsQ with restricted powers of the variables (see Section 3 for a definition).
This provides an upper bound for H(R/hR, d) whenR = Q/I , I is a strongly
stable ideal andh is a generic linear form. In Section 3, we generalize this result to
generic homogeneous forms of an arbitrary degree (see Theorem 3.2).
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Results on Hilbert functions have applications in combinatorics for describing
f -vectors andh-vectors (cf. [5, 13, 19]), and in algebraic geometry (cf. [4]).

2. Homogeneous Generic Forms in Arbitrary Characteristic

In order to state the results precisely, we need some notation. Leta and d be
positive integers. There exist unique integersmd,md−1, . . . , mδ such thatmd >
md−1 > · · · > mδ > δ and

a =
(
md

d

)
+
(
md−1

d − 1

)
+ · · · +

(
mδ

δ

)
. (1)

We call (1) thedth Macaulay expansionof a. Define an operatora〈d〉 on nonnegat-
ive integersa as follows. Ifa = 0, thena〈d〉 = 0. If a > 0 and thedth Macaulay
expansion ofa is given by (1), then set

a〈d〉 =
(
md − 1

d

)
+
(
md−1− 1

d − 1

)
+ · · · +

(
mδ − 1

δ

)
. (2)

The right-hand side of (2) is not necessarily thedth Macaulay expansion ofa〈d〉.
Green [11] shows that ifh is a generic linear form inR, then for alld > 1

we have the inequality H(R/hR, d) 6 H(R, d)〈d〉. In the case when chark = 0,
Herzog and Popescu [12] generalize Green’s Theorem to generic formsh of arbit-
rary degrees. In order to state their theorem, we need to introduce more operators
on nonnegative integers. Letd > i > 0. Definea〈d,i〉 = 0 if a = 0 and

a〈d,i〉 =
(
md − i − 1

d − i
)
+
(
md−1− i − 1

d − i − 1

)
+ · · · +

(
mt − i − 1

t − i
)

if a is positive withdth Macaulay expansion given by (1), wheret = j if j > i

andt = i + 1 if j 6 i. We also define

a〈〈d,i〉〉 = a〈d,i〉 +
(
mi − i

0

)
,

where
(
mi−i

0

) = 1 if mi > i and 0 otherwise.
Herzog and Popescu prove for alld > s the upper bound H(R/hR, d) 6∑s−1
i=0 H(R, d)〈〈d,i〉〉.
If R is isomorphic to a quotient of a polynomial ringS = k[x1, . . . , xn]modulo

a lexicographic ideal, then on the one hand we have that the inequalities in Green’s
and Herzog–Popescu’s theorems become equalities, and on the other handxsn is
generic forR by [12, Prop. 1.4]. Also, it follows from Macaulay’s Theorem [5,
13, 17, 19] that for any homogeneous ideal there exists a lexicographic ideal with
the same Hilbert function. Therefore we can restate Green’s Theorem and the main
result of Herzog and Popescu in [12] as in Theorem 2.2 below.
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Remark2.1. The numerical inequalities in the original Green’s and Herzog–
Popescu’s theorems are ford > s and, in general, they are not true for 06 d 6
s − 1. However, the inequalities in Theorem 2.2 hold for 06 d 6 s − 1 because
(in the hypothesis of the theorem) we have

H(S/(I, h), d) = H(S/I, d) = H(S/L, d) = H(S/(L, xsn), d).

THEOREM 2.2. Let I, L ⊆ S be homogeneous ideals with the same Hilbert
function, such thatL is lexicographic. Leth be a generic homogeneous form of
degrees > 1.

(1) [11, Thm. 1]If s = 1, thenH(S/(I, h), d) 6 H(S/(L, xn), d) for all d > 0.
(2) [12, Thm. in Introduction]If s is arbitrary andchark = 0, then for alld > 0

we haveH(S/(I, h), d) 6 H(S/(L, xsn), d).

We present a new short proof of Theorem 2.2(2) and generalize it to arbitrary
characteristic. We first prove the following simple lemma:

LEMMA 2.3. Let T be a graded commutative finitely generated algebra over a
field. For any homogeneous idealJ ⊆ T and homogeneous formg ∈ Ts, s > 1,
we have

H((J : g)/(0 : g), d)
= H(T /(0 : g), d)− H(T /J, d + s)+ H(T /(J, g), d + s) for d > 0.

Proof.The exact sequence

0→ (J : g)/(0 : g)→ T /(0 : g) g−→ T /J → T /(J, g)→ 0

and the additivity property of the Hilbert function imply the desired result. 2
THEOREM 2.4. Letk be a field of any characteristic andI, L ⊆ S homogeneous
ideals with the same Hilbert function, such thatL is lexicographic. Ifh is a generic
homogeneous form forI of degrees, then for alld > 0 we haveH(S/(I, h), d) 6
H(S/(L, xsn), d).

Proof.Letf1 be a generic linear form forI . Then for alld > 0 Green’s Theorem
provides the upper bound

H(S/(I, f1), d) 6 H(S/(L, xn), d). (3)

By Lemma 2.3 it follows that (3) is equivalent to the inequality

H((I : f1), d) 6 H((L: xn), d) (4)

for d > 0. Note that(L: xn) is again a lexicographic ideal. By Macaulay’s Theorem
[17] and (4) we can choose a lexicographic idealK such thatK ⊆ (L: xn) and
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H((I : f1), d) = H(K, d) for all d. Let f2 be a generic linear form for(I : f1).
Applying Green’s Theorem to the ideal(I : f1) we get the inequality

H(((I : f1): f2), d) 6 H((K: xn), d) (5)

for d > 0. Note that for any idealJ ⊆ S and elementsg1, g2 ∈ S we have
the equality((J : g1): g2) = (J : g1g2). Also, sinceK ⊆ (L: xn), it follows that
(K: xn) ⊆ ((L: xn): xn). Therefore we obtain from (5) that

H((I : f1f2), d) = H(((I : f1): f2), d) 6 H((K: xn), d)
6 H(((L: xn): xn), d) 6 H((L: x2

n), d)

for d > 0. Proceeding in this way we can find linear formsf1, . . . , fs, such that

H((I : f1 . . . fs), d) 6 H((L: xsn), d)
for d > 0. (Here for 26 i 6 s we choosefi to be a generic linear form for the
ideal(I : f1 . . . fi−1).) Again by Lemma 2.3 this is equivalent to

H(S/(I, f1 . . . fs), d) 6 H(S/(L, xsn), d)

for d > 0. Sinceh is generic forI , it follows that

H(S/(I, h), d) 6 H(S/(I, f1 . . . fs), d) 6 H(S/(L, xsn), d)

for d > 0, which completes the proof of Theorem 2.4. 2

3. Polynomial Rings with Restricted Powers of the Variables

Let 2 6 a1 6 · · · 6 an 6 ∞ and setQ = k[x1, . . . , xn]/(xa1
1 , . . . , x

an
n ), where

x∞i = 0 for 16 i 6 n. We say thatQ is apolynomial ring with restricted powers
of the variables. As in the case of polynomial rings, it is well known that for any
homogeneous ideal inQ, there exists a lexicographic ideal with the same Hilbert
function [6, 15, 16].

For a monomialm ∈ Q, denote byφ(m) the largest index of a variable appear-
ing in m. An idealI in Q is calledstableif I is generated by monomials and for
any monomialm ∈ I we havexim/xφ(m) ∈ I for 1 6 i 6 φ(m). The idealI is
calledstrongly stableif it is monomial andxim/xj ∈ I wheneverm is a monomial
in I , xj |m, andi 6 j . In the case whenI is strongly stable, Theorem 2.2(1) was
generalized in [9] to the ringsQ. More precisely, we have

THEOREM 3.1 ([9, Thm. 2.1(1)]).Let I, L ⊆ Q be homogeneous ideals with the
same Hilbert function, such thatI is strongly stable andL is lexicographic. Then

H(Q/(I, xn), d) 6 H(Q/(L, xn), d) for all d > 0.
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We generalize Theorem 3.1 to generic homogeneous forms of arbitrary degree:

THEOREM 3.2.Let I, L ⊆ Q be homogeneous ideals with the same Hilbert func-
tion, such thatI is strongly stable andL is lexicographic. Ifh is a homogeneous
form of degrees which is generic forI , then

H(Q/(I, h), d) 6 H(Q/(L, xsn), d) for all d > 0.

Proof. It suffices to prove the theorem when we replaceh by xsn. The proof is
by induction ons. If s = 1, then Theorem 3.2 follows from Theorem 3.1. Now
assume that we have already proved that H(Q/(I, xs−1

n ), d) 6 H(Q/(L, xs−1
n ), d)

for d > 0, which by Lemma 2.3 is equivalent to

H((I : xs−1
n )/xan−s+1

n , d) 6 H((L : xs−1
n )/xan−s+1

n , d) (6)

for d > 0. Let K ⊆ (L : xs−1
n )/xan−s+1

n be a lexicographic ideal such that
H(K, d) = H((I : xs−1

n )/xan−s+1
n , d) for d > 0; the existence of such an ideal

follows from (6) and the Clements–Lindström Theorem [6]. The ideal(I : xs−1
n )/

xan−s+1
n ⊆ Q/xan−s+1

n is strongly stable, so applying Theorem 3.1 to it we obtain

H(((I : xs−1
n ) : xn)/xan−sn , d) 6 H((K : xn)/xan−sn , d). (7)

Now we proceed as in the proof of Theorem 2.4. Namely, sinceK ⊆ (L : xs−1
n )/

xan−s+1
n , it follows that(K : xn)/xan−sn ⊆ ((L : xs−1

n ) : xn)/xan−sn . Also, since for
any idealJ ⊆ Q the equality(J : xsn) = ((J : xs−1

n ) : xn) holds, we obtain from
(7) that ford > 0

H((I : xsn)/xan−sn , d)

= H(((I : xs−1
n ) : xn)/xan−sn , d) 6 H((K : xn)/xan−sn , d)

6 H(((L : xs−1
n ) : xn)/xan−sn , d) = H((L : xsn)/xan−sn , d). (8)

Lemma 2.3 and (8) imply that the desired inequality

H(Q/(I, xsn), d) 6 H(Q/(L, xsn), d)

holds ford > 0. 2
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