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How AI Can Help Depression Treatment

Designing Patient-Specific Adaptive Interventions

Shan Liu and Shuai Huang

Summary of the Problem

Major depressive disorder, one of the most common mental disorders in the
United States, if left untreated in time can lead to disability, reduced quality of
life and productivity, and increased risk of death due to comorbid conditions
and suicide. Inadequate follow-up care is a major shortcoming in current
depression treatment that can lead to poor quality of care and high cost.

Summary of the Solution

Designing artificial intelligence (AI)-assisted technology to better under-
stand the disease trajectory and further develop appropriate strategies for
monitoring and treatment of major depression under resource constraints is
an important and challenging task. In this chapter, we present seven studies
that developed methods for AI-assisted, data-driven decision support
systems to aid healthcare professionals. These methods focus on modeling
chronic depression’s complex disease trajectories, identifying patients at
high risk of progression, and recommending adaptive and cost-effective
follow-up care. Long-term goals of this research include improving patient
health outcomes and facilitating efficient allocation of healthcare providers’
limited resources through the use of novel technology.

Summary of Relevance in a Post-COVID World

The economic losses and isolation resulting from non-pharmaceutical inter-
ventions deployed to slow the spread of COVID-19 have exacerbated the
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challenges of mental health and suicide. They have simultaneously increased
the risk of in-person counseling and the availability of such appointments. This
increased demand and reduced supply for depression treatment make more
important than ever the use of technology driven methods to optimize the
deployment of counselling resources.

2.1 Chronic Depression as a Significant Public
Health Problem

Depression is a complex, dynamic mental disorder characterized by sad mood,
loss of interest in activities, weight gain or loss, psychomotor agitation or
retardation, fatigue, inappropriate guilt, difficulties concentrating, and recur-
rent thoughts of death [1]. Depression is diagnosed by five or more of the
foregoing symptoms presenting for a continuous period of at least two weeks.
It is one of the most common mental disorders in the United States, affecting
more than 10% of the population [2]. Undiagnosed depression can lead to
disability, reduced quality of life, reduced productivity, and increased risk of
death due to comorbid chronic conditions and suicide [3, 4]. Though remark-
able progress has been made in reducing the mortality and morbidity burdens
for many diseases, including stroke, heart disease, and HIV/AIDS, depression-
related morbidity and mortality has been rising in recent decades [5]. Suicide
has recently become the number 1 cause of violent death and the 10th leading
cause of death in the United States [6, 7]. National and state governments as
well as guideline-setting bodies are making efforts to address this urgent
problem. The U.S. Preventive Services Task Force (USPSTF) updated depres-
sion screening guidelines in 2016 that recommend “screening for depression in
the general adult population,” and “screening should be implemented with
adequate systems in place to ensure accurate diagnosis, effective treatment,
and appropriate follow-up” [8, 9]. In addition, the concurrence of depression
with other chronic conditions and substance addiction is an understudied area
where patient outcomes are known to be poor [10]. An open challenge is to
design effective monitoring and treatment strategies for depression and its
associated comorbid conditions.

Treatment for depression includes psychotherapy, antidepressants, or a com-
bination of the two with supportive care. Due to potential side effects of the
medications, the Food and Drug Administration (FDA) emphasizes that patients
taking antidepressants should be closely monitored [3]. Finding appropriate
strategies for routine monitoring is important and can be controversial [11].
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Current recommendations for follow-up care of chronic depression are based
almost entirely on expert opinion, which could suggest semiannual or annual
monitoring intervals [12]. These recommendations do not account for significant
heterogeneity in the course of depression between individuals and within indi-
viduals over time. Given that as many as 30 million Americans use antidepres-
sants [2, 13], even minor changes in recommendations for follow-up frequency
have major implications for healthcare utilization and cost.

In recent years, there has been an explosion of healthcare technology
development including mobile health apps and telehealth that aim to merge
big data analytics and AI to support healthcare services. Foreseeable benefits
of AI-assisted decision support systems include faster, safer, cheaper, more
convenient, and higher quality of care tailored to individual patients. There is
strong interest from the private sector to commercialize remote monitoring and
treatment platforms for chronic depression. In this chapter, we first briefly
discuss the methodological challenges and relevant literature in Section 2.2,
and then show highlights our recent work in developing AI-based methods for
chronic depression in Section 2.3.

2.2 Methodological Challenges to Optimize Care
for Chronic Depression

The ultimate goal for AI-assisted technology in the care of chronic depression
is to help mental healthcare providers create patient-specific monitoring and
treatment strategies that lower the risk of future recurrence of depression
symptoms. This technology aims to enable healthcare systems to efficiently
identify patients who would benefit from proactive management of their
symptoms as well as support targeted performance metrics to evaluate the
success of clinical interventions. Development of such technology requires a
systems perspective and an associated computational platform, and a seamless
integration with decision-analytic methods to assess their cost-effectiveness.

There are three major methodological challenges: (i) effectively analyze
heterogeneous depression trajectories of a patient population and proactively
probe new trajectories, (ii) adequately characterize the disease progression
processes that govern these trajectories and design adaptive interventions,
and (iii) design rigorous cost-effectiveness analyses to evaluate the cost and
benefit of the proposed technology across subgroups of patients. To address
these challenges, we conducted a literature search and identified the following
research gaps.
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2.2.1 Research Gaps

2.2.1.1 Gap 1: Discovering Depression Progression Patterns
Disease progression is often modeled mathematically using data that can
help quantify the dynamic and temporal relationships of outcome measure-
ments. Statistical-based learning methods have a long history. Common tech-
niques include regression, Bayesian updating, discrete-time Markov models,
hidden Markov models, semi-Markov models, hidden semi-Markov models,
continuous-time Markov models, Markov random fields, neural networks, and
other supervised/unsupervised machine learning approaches. Applications of
these methods can be seen in modeling CD4 count decline in HIV patients [14],
liver deterioration in patients on the transplant waiting list [15–17], depression
progression [18, 19], and chronic obstructive pulmonary disease progression
[20]. However, the majority of these studies ignore individual heterogeneity and
subgroup progression patterns in the disease process and instead only consider a
single stochastic process meant to reflect average, population-level outcomes.

2.2.1.2 Gap 2: Designing Adaptive Healthcare Interventions
The literature on using stochastic and dynamic models to optimize disease
screening and treatment decisions over time is extensive. For example, Markov
Decision Processes (MDPs), dynamic programming, and reinforcement learn-
ing have been used to decide how to optimally monitor and control disease
progression [21]. Despite the successful application of these methods in a
number of health applications [14–17], they are often population-based,
require extensive data to estimate the transition probabilities and rewards for
each possible action, and often do not incorporate real-time updating of the
disease process and model parameters using all available information.

2.2.1.3 Gap 3: Linking Adaptive Technology to Cost-Effective
Clinical Management

Cost-effectiveness analysis (CEA) is a crucial methodological component
when designing and evaluating new technologies to enable their adoption into
routine clinical practice [22, 23]. Two of the most important questions
regarding depression are whether routine monitoring is justified and how to
switch treatment. These questions are complicated by the heterogeneity in
disease progression and treatment response within the population. With recent
advancements in mobile phone apps, remote sensing, telehealth platforms, and
big data, there is a considerable interest in developing commercial applications
of digital therapeutics and automated remote monitoring of depression. The
cost-effectiveness of this technology is uncertain and should be carefully
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modeled, accounting for population heterogeneity and differential treatment
outcomes. A CEA of AI-assisted chronic depression management must link
the data-driven design of adaptive interventions with evaluation of long-term
patient health outcomes and costs in real-world implementation scenarios.

2.2.2 A New AI-Assisted Technology Framework

To remove these methodological barriers, the state-of-the-art statistical model-
ing, optimization, and decision-analytic modeling can help to create an AI-
assisted technology framework for development and evaluation of adaptive
chronic depression interventions. We proposed the following three steps to
accomplish such a framework in our recent work:

Step 1: Discover patterns in chronic depression and suicide ideation trajec-
tories using longitudinal person-level symptom severity measurements from
electronic health record (EHR) data, and build models for depression progres-
sion dynamics using statistical learning methods.

Step 2: Create machine learning and optimizationmodels to predict future risk
of depression progression and treatment response. We discuss several online
algorithms to conduct adaptivemonitoring and treatment selection in Section 2.3.

Step 3: Evaluate the cost-effectiveness of adaptive depression interventions
compared with current clinical practice and national guidelines on the popula-
tion level. Outcome measures include monitoring accuracies (i.e., sensitivity
and specificity of the monitoring technology), cost, life-years gained, quality-
adjusted life years (QALYs) gained, and incremental cost-effectiveness ratios
between strategies of interest.

Table 2.1 provides a comparison of the current depression care practice
guidelines at a representative healthcare system and the proposed framework.

2.2.2.1 Guide to the Literature
For disease-trajectory modeling and depression trajectories in particular, we
refer the readers to the following papers: Twisk and Hoekstra 2012 compared
methods to classify developmental trajectories over time [24]; Craig and Sendi
2002 presented a tutorial on the estimation of transition matrix of a discrete-
time Markov chain with healthcare examples [25]; and Musliner et al. 2015
conduced a systematic review of long-term trajectories of depressive symp-
toms [26]. For readers looking for technical materials on pattern recognition,
classification, sequential data, neural network, and Markov models, we refer
them to Bishop’s textbook on pattern recognition and machine learning [27].
For readers interested in an introduction to the theory and practice in AI, we
refer them to Russell and Norvig’s textbook on AI [28]. For more information
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on how to conduct a cost-effectiveness analysis, we refer the readers to
Drummond’s textbook on economic evaluation in healthcare [29].

2.3 Highlights from Seven Research Studies

In this section, we present highlights from our recent work. In these studies, we
are developing methods to enable the AI-assisted technology framework
introduced in Section 2.2. With expanded use of EHR, many health systems
can administer and store longitudinal depression measurements for a large
number of patients. The majority of studies described in this section used data
from the Mental Health Research Network (MHRN) – a consortium of
research centers affiliated with 11 large health systems. The dataset contains
depression screening and outcomes data with approximately 2 million obser-
vations from a diverse and representative sample of outpatients in 5 states
(California, Colorado, Minnesota, Washington, and Idaho).

Our MHRN EHR dataset includes de-identified person-level Patient Health
Questionnaire (PHQ)-9 depression measures (total scores and individual item
scores) between year 2007 and 2012. PHQ-9 is a self-administrated question-
naire that includes 9 multiple-choice questions with a total score ranging from
0 to 27 [30]. PHQ-9 stratifies depression into 5 severity levels including no
depression (0–4), mild depression (5–9), moderate depression (10–14), mod-
erate severe depression (15–19), and severe depression (20–27). The data
set also contains relative time between measurements; type of provider (pri-
mary care, specialist, and mental health); individuals’ age, sex, race/ethnicity,
diagnosis, and treatment status; and the Charlson Comorbidity Index score.

Table 2.1. Comparison of current practice and proposed framework

Current practice Proposed framework

Objective Passive information
collection

Proactively prevent and treat a
patient’s chronic depression symptoms

Method Routine clinic visits
with fixed frequency

Enable AI-assisted interventions that are
adaptive to individual disease trajectory

Capability Assessment of
depression severity
and suicide risk

1) Quantify and predict individual
patient’s depression and suicide
ideation trajectory and risk
2) Determine adaptive monitoring
schedule, treatment selection, and
proactively collect information

Cost-effectiveness Not evaluated Evaluated by decision-analytic models
using simulation and scenario analyses
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The Charlson Comorbidity Index score is a summary score of medical disease
burden including a total of 22 conditions (each condition is assigned a score of
1, 2, 3, or 6, depending on the associated mortality risk) that aims to predict the
1-year mortality [31]. The majority of patients are older than age 45 (age
18–29, 13%; 30–44, 27%; 45–64, 43%; 65+, 17%) and female (70%).

2.3.1 Modeling Chronic Depression Trajectories

Depression trajectories are often estimated from noisy, sparse, and irregular
person-level data. Since these time series do not follow any known functional
forms, several alternative methods can be used to model them: (i) Smoothing B-
spline (Figure 2.1a) can be used to characterize nonlinear patterns. An irregular
observational time interval is first transformed to the B-splines bases, then the
trajectory signals are represented as linear combinations of these bases and can
be computed recursively for any desired degree of the polynomial using the
algorithms in Boor [32]. (ii)Gaussian process regression (GPR) (Figure 2.1b)
is a Bayesian nonparametric method that transforms observations to a longitu-
dinal probability distribution [33]. The rational quadratic kernel can be used,

Figure 2.1 Three alternative representations of chronic depression disease pro-
gression (panel b is from [35]).
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and an optimal set of hyperparameters can be found that maximizes the marginal
likelihood. (iii) Discrete-time Markov model is used with a state transition
matrix that predicts the distribution of disease states over time (Figure 2.1c). The
Expectation-Maximization (EM) algorithm can be applied to impute the miss-
ing data and obtain maximum likelihood estimators [25]. Alternatively, irregu-
lar individual observations can be first fitted with a smoothing spline and then
partitioned into regular time intervals. Next, a transition matrix of movements
between states is created by counting the number of transitions from each
disease state to other states at each time interval [34]. The three alternative
representations of the disease process may bring different advantages in the
subsequent pattern discovery tasks shown in studies one, two, and four.

2.3.1.1 Pattern Discovery
We describe several studies that applied statistical learning and artificial neural
networks to discover patterns in chronic depression progression. Two assump-
tions are made based on domain knowledge in chronic depression: (i) There
are latent disease-trajectory patterns in the population (e.g., subgroups defined
by stable mild, increasing severity, fluctuating severity). Patients in different
subgroups may follow significantly different progression trajectories, but
patients within the same subgroup may follow similar progression trajectories.
(ii) Similarity information between patients can be quantified by comparing
patients’ demographic and clinical profiles from which features can be drawn
to predict similarities in patients’ future disease progressions.

Study One: Collaborative Modeling In Lin et al. 2016 [36], we analyzed
patterns in the collected depression trajectories of a treatment population and
compared several methods to predict individual trajectories for monitoring
treatment outcomes. The data include longitudinal PHQ-9 scores over 4 years
for assessing depression severity from the MHRN. We analyzed >3,000
patients with at least six PHQ-9 observations who received treatment longer
than 6 months. We used smoothing splines to model individual depression
trajectories. We then used K-means clustering and collaborative modeling
(CM) to identify subgroup patterns. We found five broad trajectory patterns
in the ongoing treatment population: stable high, stable low, fluctuating mod-
erate, an increasing and a decreasing group (Figure 2.2a).

The CM approach assumes that the heterogeneous progression dynamics are
represented by a number of canonical models in the population, where each
patient’s progression model is captured as variants of these canonical models
[36–38]. CM considers the underlying cluster structure embedded in the
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population and the resemblance of the individuals to these clusters. We assign
a membership vector, denoted as ci ¼ ci1, . . . , ciK½ �T , to each patient i, while K
is the number of canonical pattern groups. Thus, cik denotes the probability of
patient i belonging to a group k. For each patient i, we assume that there are
longitudinal measurements (i.e., PHQ-9 scores) at ni time points, denoted as

yi ¼ yi1, . . . , yini
� �T 2 ℝni�1, and the longitudinal measurements of the risk

factors, denoted as Xi ¼ xi1, . . . , xini½ �T 2 Rni�p. CM employs a canonical
model gk Xð Þ for characterizing the trajectory of group k. The canonical model
is flexible and can take the form of a B-spline model, a GPR, or a Markov
model. Then, the progression model of patient i can be characterized by a
weighted combination of the canonical models of the K latent subgroups,

f i Xð Þ¼P
k cikg

k Xð Þ. Furthermore, the similarity between two patients can be
quantified by comparing their risk factors and past trajectory information. The
similarity can be represented as a similarity matrix, W, with each element, wjl,
representing the similarity between a pair of patients, j, l, and reflecting how
likely the patients’ progressions would be similar. To guide the learning of
model parameters, we can minimize the least square loss function
(Figure 2.2b) or maximize the log likelihood to measure the goodness-of-fit
of the individual progression models.

Study Two: Artificial Neural Network Depression is often accompanied by
thoughts of self-harm, which are a strong predictor of subsequent suicide
attempt and suicide death. Few empirical data are available regarding the
temporal correlation between depression symptoms and suicidal ideation. In
Gong et al. 2019 [35], we investigated the traditional concern that suicidal
ideation may increase during a period of depression improvement using
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depression trajectory data. We analyzed a chronic depression treatment popu-
lation’s EHR, which contained 610 patients’ longitudinal PHQ-9 scores within
20 two-week periods. We discovered patterns in trajectories of depressive
symptoms using GPR and artificial neural networks. We also estimated correl-
ations between symptomatology (PHQ-8) and suicide ideation (Item 9). We
found five patterns in the PHQ-8 trajectories. PHQ-8 and Item 9 scores displayed
strong temporal correlations. See Figure 2.3. We also found 8% to 13% of the
patients have experienced an increase in suicidal ideation during improvement of
their PHQ-8. We showed some evidence that subgroups of depressive patients
are at increased risk of suicide ideation during PHQ-8 improvement.

2.3.2 Designing Adaptive Interventions

2.3.2.1 Adaptive Monitoring
Study Three: Rule-Based model In Lin et al. 2018 [39], we established a
rule-based method to identify a set of risk predictive patterns from person-level
longitudinal depression measurements by integrating three steps: data trans-
formation, rule discovery, and rule evaluation. We further used the identified
rules to create rule-based monitoring strategies to adaptively monitor patients.
To evaluate the effectiveness of rule-based monitoring, we compared several
monitoring strategies by estimating the number of depressive patients (PHQ-9
� 10) in the next 6 months that are correctly monitored (true positives). We
assumed under the status quo that all patients are monitored every 6 months,
which may lead to unnecessary monitoring of low-risk patients. We also
considered a PHQ-9-based strategy, which monitors the patient if his/her
last-period PHQ-9 score is 10 or greater. Under rule-based monitoring, we
considered both using individual rules and combining all top predictive rules.

We applied the rule-based method on the EHR data of a depression treat-
ment population containing PHQ-9 scores. Twelve risk predictive rules were
identified (Table 2.2). We found the rule-based prognostic model based on the
identified rules enabled more accurate prediction of disease severity than other
prognostic models, including RuleFit, logistic regression, and Support Vector
Machine. Two rule-based monitoring strategies outperformed the latest PHQ-
9-based monitoring strategy by providing higher sensitivity and specificity.
We concluded that the rule-based method can lead to a better understanding of
disease dynamics and achieve more accurate prognostics of disease progres-
sions (Figure 2.4).

Study Four: Selective Sensing In Lin et al. 2018b [38], the study’s objective
was to build personalized trajectory models to proactively probe new
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Figure 2.3 Clustering analysis for PHQ-8 (PHQ-9 total score minus the 9th question) found five subgroups in the learned features. Graphs
show the mean scores of each subgroup for PHQ-8 and Item 9 (9th question on suicide ideation) scores over 20 biweeks [35].

25

https://doi.org/10.1017/9781108872188.005 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/9781108872188.005


Table 2.2. Top rules identified by the Rulefit Model [39]

Decreasing risk rules Increasing risk rules

Rule 1 Deepest increase between
consecutive PHQ9 scores
<7.50 & 75 percentile of
PHQ9 score <14.62

Rule 7 Observing density >0.03 &
Minimal PHQ9 score >8.50

Rule 2 25 percentile of PHQ9 score
<6.13 & Volatility of PHQ9
score <9.64

Rule 8 Minimal PHQ9 score >9.50 &
Volatility of difference
between nearby PHQ9 scores
<4.75

Rule 3 75 percentile of PHQ9 score
<15.88 & Percentage of
moderate depression <0.39

Rule 9 Latest PHQ9 score >17.50 &
Volatility of PHQ9 score
<7.33

Rule 4 Deepest decrease between
consecutive PHQ9 scores
>2.50 & 75 percentile of
PHQ9 score <14.12

Rule 10 Minimal PHQ9 score >6.50 &
75 percentile of PHQ9 score
> 14.88

Rule 5 Sex is male & Mean of 9th

question scores <0.71 &
Percentage of moderately
severe <0.38

Rule 11 Age <65 & Percentage of
severe depression >0.23

Rule 6 Latest PHQ9 score <8.50 &
Maximal PHQ9 score <16.50

Rule 12 Deepest decrease between
consecutive PHQ9 scores
<13.50 & Mean of PHQ9
scores >14.73

Figure 2.4 Comparison of monitoring accuracy for all strategies [39]
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trajectories during online adaptive assessment and schedule the next visit
under a capacity constraint. To do so, we integrated prognosis and sensing
methodologies. For prognosis, a CM approach was used to predict the future
progression risk of individuals. For adaptive monitoring, a selective sensing
(SS) approach was developed to allocate limited sensing resources to monitor
the high-risk individuals. See Figure 2.5.

We briefly describe the selective sensing method here. SS is formulated as
an integer programming problem: the goal is to optimally allocate the sensing
(monitoring) resources to detect a subgroup of high-risk individuals at each
monitoring period. A patient’s disease progression is modeled using the
Markov model. Using a CM approach, we first estimated a transition matrix
Pit to predict the progression risk of each individual patient i at each monitor-
ing/sensing period t. Healthcare systems are often constrained by providers’
capacity for mental health follow-up visits. For example, we learned that the
demand for psychotherapy visit is much greater than supply at several health
systems. We would prefer an algorithm that can optimally allocate the limited
monitoring resources to detect high-risk individuals that are most likely to
benefit from further interventions.

Suppose that there are N individuals and we denote the measurements of
these individuals at each monitoring period as xt ¼ x1t; . . . , xNt½ �, where each
measurement is a PHQ-9 score of the patient. We were interested in detecting
the high-risk patients. Due to the limited sensing resources, we can only
observe M out of N individuals at each period M < Nð Þ. We introduced the

Figure 2.5 Overview: the CM-based prognosis and selective sensing for monitor-
ing a heterogeneous patient population [38]
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binary decision variable δit for each measurement xit such that δit ¼ 1 if and
only if xit is observed at period t. Thus, the problem is how to choose δit at
each period such that the sensing constraint is satisfied and highest-risk
individuals are detected. Detailed technical formulation can be found in
Lin et al. 2018 [38].

New observations collected by the sensing strategy at the next period were
further incorporated in the CM-based prognostic method to update the prog-
nosis of all individuals, guiding the monitoring decision in the next period,
i.e., the CM uses these observations to update the canonical models and
membership vector ci for all individual models. Adaptively monitoring the
predicted high-risk individuals may lead to an increased number of missing
values on predicted low-risk individuals. To guarantee an accurate estimation
of the next-period major depression risk, we imputed the missing value before
running risk prediction.

We applied the CM and SS methods on an EHR dataset of 610 patients that
have at least 6 observations within 40 weeks under ongoing treatment [38]. We
characterized patients’ depression progressions using Markov models and pre-
dicted the risk to severe depression using CM. We ran the selective sensing
algorithm to adaptively monitor all patients over 15 time periods (each consists
of two weeks) under a sensing capability of 100 patients in each period. Prediction
performance is evaluated by the correlation between predicted risks of severe
depression and ground truth risks (derived from observed depression onset of the
patients). Detection performance is measured by the percentage of severe patients
being detected and the average true risk among detected patients. For instance,
when only 10% of the patients could be monitored each time, our results showed
that the selective sensing algorithm outperformed the rank and selection method.

2.3.2.2 Adaptive Treatment Selection
Adaptive treatment design aims to optimally select a series of treatments to
improve the health outcomes of depression patients. Adaptive treatments are
personalized based on patient characteristics, behaviors, disease history, and
response to treatment [40]. Decisions on treatment may include medications,
drug doses, administering schedules, behavioral interventions, or no further
treatment [40]. MDPs [41], reinforcement learning [42], and multi-armed
bandits [43] are among the most widely used tools. Many challenges still
remain, including insufficient knowledge of personal progression dynamics
and learning individual response to treatments.

Study Five: Partially Observable CM and POMDP The aforementioned
studies assumed fully observable disease state and no treatment feedback. In
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Gong and Liu 2019 [44], we proposed a partially observable collaborative
modeling (POCM) method. Depression is modeled using a Hidden Markov
Model (HMM). In an HMM, disease progression is represented using transi-
tion probabilities between true disease states, and emission probabilities are
probabilities of observing some measurements of the true disease states.
Similar to the CM, each patient’s transition matrix and emission matrix in
the HMM are assumed to be a linear combination of several canonical pro-
gression groups in the population. The weight of each patient belonging to
each group is called the membership. We developed a POCM solution algo-
rithm to estimate the parameters of the transition and emission matrices.

Next, we used a partially observable MDP (POMDP) to make a sequence of
adaptive treatment decisions based on the estimated dynamics. The hidden
states of the POMDP are depression severities, observations are depression
assessment scores (i.e., PHQ-9), and decisions are treatment options. The
objective is to optimally select between two types of treatments in each time
period and maximize health outcome over time. For example, Treatment I is
usual care under antidepressant medications, and Treatment II is an intensive
depression management program with telephone-based treatment coordin-
ation. The objective is to maximize discounted total rewards measured using
Net Monetary Benefit (defined as total health benefits � willingness-to-pay –

total cost). Health benefits can be measured by quality-adjusted life
years gained.

The process of creating the adaptive treatment framework includes three
steps. See Figure 2.6. (i) In the learning step, the canonical transition and

Figure 2.6 Overview of adaptive treatment design [44].
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emission matrices for each progression pattern and patients’ memberships are
learned from an existing data set of patients under Treatment I using POCM.
The population average treatment effect for Treatment II is assumed to be
known from clinical trials, and such knowledge is used to estimate the
canonical groups’ parameters for Treatment II. (ii) In the experiment step,
the personal dynamic for a new patient is initialized using model parameters
estimated from the learning step and updated under both treatment options by
running separate short trial periods; this is again accomplished by the POCM
algorithm. The membership is then solved for each new patient belonging to
each canonical group under either Treatment I or II. (iii) In the decision step,
the optimal treatment strategy is obtained by solving a POMDP with the
dynamic programming method (e.g., modified Monahan’s algorithm [45]).

We compared the performance of the POMDP-based policies and several
heuristic rule-based policies using a simulated depression treatment popula-
tion. Results showed that the POCM can provide a better estimation of
personal disease progression than the traditional method of solving an HMM
when there are subgroup structures in the disease progression. We also dem-
onstrated that the POCM-POMDP policies give the highest benefit for patients
over the course of treatment. In addition, the POCM-based policies switch
treatment less frequently than other policies. This research helps to advance the
development of AI decision support tools for chronic disease care [44].

2.3.3 Cost-Effectiveness Analysis

A key missing link is how to estimate the long-term outcomes of these data-
driven AI-assisted interventions in real-world clinical settings. Cost-
effectiveness analyses are economic studies that use decision-analytic models
to compare the costs and benefits of alternative interventions [46]. CEA
models are useful for exploring alternative scenarios, extrapolating from inter-
mediate endpoints to downstream outcomes, and informing decisions in the
absence of data [47].

Study Six: Prognostic-Based CEA Prognostic-based monitoring that strati-
fies the individual’s disease progression risk into different levels and adap-
tively allocates monitoring resource to high-risk individuals has the potential
to improve patient health outcome and cost-effectiveness of the monitoring
service. However, challenges include how to best apply prognostic models to
inform the design of monitoring strategies and identify the cost-
effective strategies.
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In Lin et al. 2019 [48], we developed a decision support framework that
integrated individual prognostics, monitoring strategy design and cost-
effectiveness analysis (Figure 2.7). We applied the proposed framework to
simulate the adaptive monitoring of a depression treatment population from
EHR data. Several prediction algorithms with increasing complexity, including
natural history matching, logistic regression, rule-based method, and Markov-
based CM, were simulated to monitor the high-risk individuals for severe
depression over time. We found six cost-effective monitoring strategies and
demonstrated that the two routine monitoring strategies were dominated by the
prognostic-based monitoring strategies (Figure 2.8). Methods from this

Figure 2.7 The framework of prognostic-based monitoring. Here, rit denotes the
risk score of individual i in tth monitoring period, and θ represents the threshold
for monitoring [48].

Figure 2.8 Cost-effectiveness frontier. The cost-effective strategies are repre-
sented by blue dots and the dominated strategies are denoted by red dots. SQ:
status quo of routine monitoring under various frequencies [48].
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research showed promise to implement prognostic-based monitoring of
chronic conditions in clinical practice.

Study Seven: Cohort-Based CEA In Sun and Liu 2020 [49], we evaluated
the cost-effectiveness of an adaptive remote monitoring technology for opti-
mally switching between nine depression treatment lines. We used Markov-
cohort models to simulate chronic depression patients’ disease progression
under monitoring and treatment over two years. Cohorts are defined by age
(base case, 45 years), and sex (base case, 69% female). In addition, we
considered heterogeneous disease progression patterns and clustered patients
into three groups including a high-risk, a medium-risk, and a low-risk group of
major depression. We considered five strategies: an adaptive technology that
schedules follow-up appointment for treatment switch based on remotely
monitoring patients’ response to treatment with inaccuracy (i.e., imperfect
sensitivity and specificity); a rule-based follow-up strategy that assigns the
next follow-up time based on the patient’s health state observed at the current
follow-up (similar to current practice); and fixed frequency follow-up at every
two-month, four-month, and six-month period. In the base case, since the
monitoring accuracy and usage cost are uncertain, we simulated more than
1,000 scenarios and investigated how sensitivity, specificity, and cost of the
remote monitoring technology would affect its cost-effectiveness.

Results showed for an adaptive remote monitoring technology with 0.75
sensitivity and specificity, it is cost effective with an incremental cost-
effectiveness ratio ranging from $52,600/QALYs to $63,800/QALYs (2019
USD) gained compared to the rule-based follow-up strategy. Sensitivity ana-
lyses indicated that the imperfect technology is 63–78% cost effective
depending on the risk group. In summary, a combination of methods including
clustering, Markov-cohort model, and treatment simulation can be generalized
to evaluate the cost-effectiveness of adaptive monitoring technology in other
disease applications.

2.4 Summary

In this chapter, we presented several methodological challenges in advancing
technology development for chronic depression and proposed three steps to
achieve an AI-assisted technology framework. We showed highlights from
seven research studies to aid in the design of adaptive monitoring and treat-
ment strategies for chronic depression. This body of work include modeling
complex disease trajectories, identifying patients at high risk of progression
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through predictive analytics, and recommending adaptive and cost-effective
follow-up care. These methods complement and build on each other to achieve
the final goal of maximizing patient health outcomes. We believe AI-assisted
technology in mental health holds the promise of transforming the current
reactive practice to proactive and personalized monitoring and treatment,
providing value to healthcare providers, patients, and healthcare systems.
Given the surge in interest in telemedicine during and post the COVID19
pandemic, and the opportunity of telemedicine to treat depression, AI-assisted
technology has an increasingly important role to play in patient care.

Methods presented in this chapter are advanced and not yet implemented in
clinical practice. We hope that they may serve as fundamental building blocks
for future AI-assisted technology to be translated into clinical practice. Though
there is growing interest from academia, large healthcare systems, and private
entrepreneurs to develop applications in remote monitoring and digital thera-
peutics, and some efforts have shown early success [50], the effectiveness and
cost-effectiveness of these novel technologies still need to be proven and
evaluated in long-term observational studies and comparative effectiveness
trials. Ultimately, implementation success will depend on user acceptance,
ease of use, system maintenance, and integration with EHR and the workflow
of routine mental health services.
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