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Fractional Sobolev Spaces

3.1 Definitions

Let � be a non-empty open subset of Rn, suppose that p ∈ [1,∞) and let
s > 0, s /∈ N. The so-called fractional Sobolev space Ws

p(�) arose in an attempt
to fill the gaps between Lp(�),W1

p (�) ,W2
p (�), ...; it was introduced indepen-

dently and more or less simultaneously by Aronszajn [13], Gagliardo [86] and
Slobodeckij [161]. We begin by dealing with the case in which s ∈ (0, 1). Then

Ws
p(�) :=

{

u ∈ Lp(�) : (x, y) �−→ |u(x)− u(y)|
|x − y| n

p +s
∈ Lp (�×�)

}

;

endowed with the norm

∥
∥u|Ws

p(�)
∥
∥

s,p,�
:=
(∫

�

|u(x)|p dx +
∫

�

∫

�

|u(x) − u(y)|p
|x − y|n+sp dx dy

)1/p

,

it is a Banach space. Associated with this norm is the Gagliardo seminorm

[u]s,p,� :=
(∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+sp dx dy

)1/p

.

If 1 < p < ∞, the space Ws
p(�) is reflexive. To establish this, define

T : Ws
p(�) → Lp(�)× Lp(�×�) := E

by Tu = (u,U), where

U(x, y) = u(x)− u(y)

|x − y| n
p +s

.

When E is furnished with the norm

‖(u, v)‖E :=
(

‖u‖p
p,� + ‖v‖p

p,�×�
)1/p

,
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3.2 Basic Properties 25

it is reflexive; since T is a linear isometry, T
(

Ws
p (�)

)

is a closed subspace of
E and is therefore also reflexive. The reflexivity of Ws

p(�) follows; in fact, the
same argument establishes uniform convexity and uniform smoothness of this
space.

Higher-order fractional spaces are introduced in a natural way: suppose that
s = k + σ , where k ∈ N0 and σ ∈ (0, 1). Then

Ws
p(�) := {

u ∈ Wk
p (�) : Dαu ∈ Wσ

p (�) for all α ∈ Nn
0 with |α| = k

} ;
equipped with the norm

∥
∥u|Ws

p(�)
∥
∥ :=

⎛

⎝
∥
∥u|Wk

p(�)
∥
∥

p +
∑

|α|=k

∥
∥Dαu|Wσ

p (�)
∥
∥

p

⎞

⎠

1/p

,

it becomes a Banach space; it is reflexive if 1 < p < ∞.
Another attempt to fill the gaps between the classical spaces is provided,

when � = R
n, by the spaces Hs

p (R
n) defined via the Fourier transform by

(2.1.6) above. As we have seen,

Hk
p (R

n) = Wk
p (R

n) if 1 < p < ∞ and k ∈ N0,

but (see [95], p. 82) if s > 0, s /∈ N and 1 < p < ∞, then

Hs
p (R

n) = Ws
p (R

n) if and only if p = 2.

Moreover, Hs
p (R

n) and Ws
p (R

n) are isomorphic if and only if p = 2: see [95],
pp. 84–85. These facts suggest that the most natural extension of the classical
Sobolev spaces involving an arbitrary smoothness parameter s is not Ws

p (R
n)

but Hs
p (R

n). However, the more explicit definition of the norm on Ws
p (R

n)

has advantages, notably in connection with the description of trace spaces as-
sociated with the restrictions to hyperplanes in Rn of functions belonging to
Sobolev spaces, and also in the determination of optimal constants in various
inequalities.

3.2 Basic Properties

We begin with an illustration of the effect of change of the smoothness param-
eter s.

Proposition 3.1 Let � be an open subset of Rn and suppose that p ∈ [1,∞).

(i) If 0 < s1 ≤ s2 < 1, then Ws2
p (�) ↪→ Ws1

p (�).
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26 Fractional Sobolev Spaces

(ii) If� has a bounded Lipschitz boundary or� = R
n, then W1

p (�) ↪→ Ws
p(�)

for all s ∈ (0, 1).

Proof To deal with (i), let u ∈ Ws2
p (�). Then

∫

�

∫

�∩{|x−y|≥1}
|u(x)|p

|x − y|n+s1p dx dy ≤
∫

�

(∫

|z|≥1

dz
|z|n+s1p

)

|u(x)|p dx

= ‖u‖p
p,� ωn−1/(s1p).

Hence

∫

�

∫

�∩{|x−y|≥1}
|u(x)− u(y)|p
|x − y|n+s1p dx dy

≤ 2p−1
∫

�

∫

�∩{|x−y|≥1}
|u(x)|p + |u(y)|p

|x − y|n+s1p dx dy

≤ 2p ‖u‖p
p,� ωn−1/(s1p). (3.2.1)

Moreover,

∫

�

∫

�∩{|x−y|<1}
|u(x)− u(y)|p
|x − y|n+s1p dx dy ≤

∫

�

∫

�∩{|x−y|<1}
|u(x)− u(y)|p
|x − y|n+s2p dx dy,

and so

∫

�

∫

�

|u(x)−u(y)|p
|x−y|n+s1p dx dy ≤ 2p ‖u‖p

p,� ωn−1/(s1p)+
∫

�

∫

�

|u(x) − u(y)|p
|x − y|n+s2p dx dy,

from which (i) follows.
As for (ii), given u ∈ W1

p (�), in view of the assumptions on ∂� there is an
extension ũ ∈ W1

p (R
n) of u such that ‖̃u‖1,p,Rn ≤ C ‖u‖1,p,� for some constant

C independent of u (see [64], V.4). This extension is, of course, not needed if
� = R

n). With z = y − x and B representing the unit ball centred at 0 we have
(see (2.2.3))
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3.2 Basic Properties 27
∫

�

∫

�∩{|x−y|<1}
|u(x)− u(y)|p
|x − y|n+sp dx dy

≤
∫

�

∫

B

|u(x)− u(z + x)|p
|z|n+sp dz dx

=
∫

�

∫

B

|u(x)− u(z + x)|p
|z|p · 1

|z|n+(s−1)p dz dx

≤
∫

�

∫

B

(
∫ 1

0

|∇u(x + tz)|
|z| n

p +s−1
dt

)p

dz dx

≤
∫

Rn

∫

B

∫ 1

0

|∇ũ(x + tz)|p
|z|n+p(s−1) dt dz dx

≤
∫

B

∫ 1

0

‖∇ũ‖p
p,Rn

|z|n+p(s−1) dt dz,

which is bounded above by a constant multiple of ‖u‖p
1,p,�. Together with

(3.2.1) this gives the result.

Remark 3.2 The necessity of some condition on ∂� for (ii) to hold is illus-
trated by an example in Section 9 of [142], where it is shown that given any
s ∈ (0, 1), there exist p ∈ (1/s,∞) and an open set � ⊂ R2, with boundary of
cusp type, such that W1

p (�) � Ws
p(�). More precisely, let

� = (R2 \ C) ∩ B(0, 1), where C = {(x1, x2) : x1 ≤ 0, |x2| ≤ |x1|κ},
where κ > (p + 1)/(p − 1); describe points x = (x1, x2) ∈ R2 \ C by polar
co-ordinates ρ(x) ∈ (0,∞) and θ(x) ∈ (−π, π), and define u(x) = ρ(x)θ(x).
Computations then show that u ∈ W1

p (�) \ Ws
p(�).

Corollary 3.3 Let � be an open subset of Rn with bounded Lipschitz
boundary, suppose that p ∈ [1,∞) and let s1, s2 > 1, with s2 ≥ s1. Then
Ws2

p (�) ↪→ Ws1
p (�).

Proof The result is clear if s1, s2 ∈ N. Suppose that si = ki + σi, with ki ∈ N
and σi ∈ (0, 1) (i = 1, 2). If k1 = k2, then the claim follows from Proposition
3.1 (i). If k2 ≥ k1 + 1, then use of (i) and (ii) of Proposition 3.1 gives

Ws2
p (�) ↪→ Wk2

p (�) ↪→ Wk1+1
p (�) ↪→ Wk1+σ1

p (�).

The remaining case, in which exactly one of k1,k2 is an integer, is handled in a
similar fashion.

Another example of an embedding of a Sobolev space with no condition
imposed on the boundary can be obtained by using the following fractional
version of Theorem 2.7.
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28 Fractional Sobolev Spaces

Theorem 3.4 Let � be an open subset of Rn, suppose that s ∈ (0, 1) and
let p ∈ (1,∞); assume that Y,Z are Banach function spaces over � (en-
dowed with Lebesgue n-measure) such that Ws

p (�) ↪→ Y and Y
∗
↪→ Z. Then

Ws
p (�) ↪→↪→ Z.

Proof This is essentially the same as that given by Slavíková in the non-
fractional case, but for the reader’s convenience we give some details. Let {Bk}
be a sequence of balls contained in � that covers � and let {gk} be a bounded
sequence in Ws

p (�). We claim that for each m ∈ N, there is a subsequence
{

gm
k

}∞
k=1 of

{

gm−1
k

}∞
k=1 (with g0

k = gk) that converges a.e. on Bm. To establish
this, suppose that the sequence

{

gm−1
k

}∞
k=1 is known for some fixed m. Then

{

gm−1
k

}∞
k=1 is bounded in Ws

p (Bm), and so, since Ws
p (Bm) is compactly embed-

ded in Lp (Bm) (because Bm is bounded and has smooth boundary and so the
fractional space can be identified with a Besov space for which this compact
embedding is known), there is a subsequence of

{

gm−1
k

}∞
k=1 that converges in

Lp (Bm). There is therefore another subsequence, which we denote by
{

gm
k

}∞
k=1,

that converges a.e. on Bm, and the inductive step is complete. The diagonal
sequence

{

gm
m

}∞
m=1 converges a.e. on � to some function, g say: since Ws

p (�)

↪→ Y it follows that
{

gm
m

}∞
m=1 is bounded in Y: by the Fatou lemma for Banach

function spaces (see, for example, [146], Lemma 6.1.12),

‖g‖Y ≤ lim inf
m→∞

∥
∥gm

m

∥
∥

Y < ∞.

Hence g ∈ Y; by property (iii) of Section 1.3.3 (characterising almost compact-
ness) we have

∥
∥gm

m − g
∥
∥

Z → 0. Hence Ws
p (�) ↪→↪→ Z.

The example we have in mind arises when we take � to be bounded, Y =
Lp(�) and Z = Lq(�), where q ∈ [1, p). Since Lp(�)

∗
↪→ Lq(�) (see Sec-

tion 1.3.3), the theorem implies that Ws
p (�) ↪→↪→ Lq(�). This is a fractional

extension of [64], Theorem V. 4.16, for bounded � and k = 1. Note that no
condition on ∂� is required.

Let
0

Ws
p(�) denote the closure of C∞

0 (�) in Ws
p(�). In general this is a proper

closed subspace of Ws
p (�), but

0
Ws

p (R
n) = Ws

p (R
n) for all s > 0. (3.2.2)

For a proof we refer to [2], Theorem 7.38.

It is often convenient to work, not with
0

Ws
p (�) as defined above, but with

the space
0
Xs

p(�), where

0
Xs

p(�) := completion of C∞
0 (�) with respect to the norm [·]s,p,Rn + ‖·‖p,� .
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3.2 Basic Properties 29

Plainly
0
Xs

p(�) ⊂ 0
Ws

p(�). Note that if u ∈ C∞
0 (�), then

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy =

∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+sp dx dy

+ 2
∫

�

∫

Rn\�
|u(x)|p

|x − y|n+sp dx dy,

that is,

[u]p
s,p,Rn = [u]p

s,p,� + 2
∫

�

∫

Rn\�
|u(x)|p

|x − y|n+sp dx dy;

the last term need not be zero, and might even be infinite even though supp
u ⊂ �; below we show that this cannot happen if the boundary of � is smooth
enough. First we give an inequality of Friedrichs type: we say that, given s ∈
(0, 1) and p ∈ [1,∞), the open set � ⊂ R

n supports the (s, p)-Friedrichs
inequality if there is a positive constant c such that for all u ∈ C∞

0 (�),

‖u‖p
p,� ≤ c [u]p

s,p,Rn .

The next Proposition (given in [28]) shows that every bounded open set � has
this property.

Proposition 3.5 Let p ∈ [1,∞), s ∈ (0, 1) and suppose that � is a bounded
open subset of Rn. Then for every u ∈ C∞

0 (�),

‖u‖p
p,� ≤ C [u]p

s,p,Rn ,

where

C = C (n, s, p,�) = min
{

diam (� ∪ B)n+sp

|B| : B ⊂ R
n\� is a ball

}

.

Proof Let u ∈ C∞
0 (�) and let BR be a ball of radius R contained in Rn\�.

For all x ∈ � and y ∈ BR,

|u(x)|p = |u(x)− u(y)|p
|x − y|n+sp |x − y|n+sp ,

which gives

|BR| |u(x)|p ≤
(

sup
z∈�,y∈BR

|z − y|n+sp

)
∫

BR

|u(x)− u(y)|p
|x − y|n+sp dy.

The result follows.

From this it is clear that when � is bounded the space
0
Xs

p(�) can be equiv-
alently defined as the completion of C∞

0 (�) with respect to the norm [·]s,p,Rn .
The case in which � is contained between parallel hyperplanes, and may be
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30 Fractional Sobolev Spaces

unbounded, is discussed in [25], Remark 1.6; see also [42] and the references
contained in that paper.

The following Proposition (see, for example, [28], Proposition B.1) implies

that for
0
Xs

p(�) to coincide with
0

Ws
p(�) it is sufficient that ps �= 1 and that �

should be bounded and have a Lipschitz boundary.

Proposition 3.6 Let s ∈ (0, 1) and p ∈ (1,∞) be such that ps �= 1; suppose
� is a bounded open subset of Rn with Lipschitz boundary. Then there is a
positive constant C = C(n, p, s,�) such that for all u ∈ C∞

0 (�),

[u]s,p,Rn + ‖u‖p,� ≤ C
(

[u]s,p,� + ‖u‖p,�
)

.

Proof Let u ∈ C∞
0 (�) and put δ(x) = infy∈Rn\� |x − y| (x ∈ �). Then

R
n\� ⊂ R

n\B (x, δ(x)) ,

and so
∫

�

∫

Rn\�
|u(x)|p

|x − y|n+sp dx dy ≤
∫

�

∫

Rn\B(x,δ(x))

|u(x)|p
|x − y|n+sp dy dx

=
∫

�

|u(x)|p
(

nωn

∫ ∞

δ(x)
r−1−spdr

)

dx

= nωn

sp

∫

�

|u(x)|p
δ(x)sp

dx.

Suppose ps > 1. Then the fractional Hardy inequality (see [55], Theorem 1)
∫

�

|u(x)|p
δ(x)sp

dx ≤ c [u]p
s,p,�

gives the result. When ps < 1 we use the inequality (see [55] and [44])
∫

�

|u(x)|p
δ(x)sp

dx ≤ c
(

[u]p
s,p,� + ‖u‖p

p,�

)

.

In the borderline case ps = 1 it turns out that
0
Xs

p(�) �= 0
Ws

p (�): for details

see [29], Remark 2.1, where it is shown that χ� ∈ 0
Ws

p(�) \ 0
Xs

p(�).
Consideration of nonlocal Dirichlet boundary conditions outside an open set

� ⊂ R
n makes it convenient to consider the homogeneous Sobolev–Slobodeckij

space
0
Ds

p(�) defined by

0
Ds

p(�) = completion of C∞
0 (�) with respect to the norm [·]s,p,Rn .
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3.2 Basic Properties 31

The embedding i : 0
Ds

p(�) → 0
Ds

p(R
n) which associates to each u ∈ 0

Ds
p(�)

its extension by 0 to all of Rn is well defined and continuous. If � supports the

(s, p)-Friedrichs inequality,
0
Ds

p(�) is a space of functions continuously embed-
ded in Lp(�); it then coincides with the closure in Ws

p (R
n) of C∞

0 (�), namely
0
Xs

p(�); and in view of the density of C∞
0 (�) in

0
Ds

p(�) and Theorem 1.4.2.2
of [90] we see that if � supports the (s, p)-Friedrichs inequality, then

0
Ds

p(�) = {

u ∈ Ws
p (R

n) : u = 0 a.e. in Rn\�} .

For the reader’s convenience we now summarise in the next proposition the
definitions and relationships between the various fractional spaces that have
been introduced.

Proposition 3.7 Let � be an open subset of Rn, let s ∈ (0, 1), suppose that
p ∈ (1,∞) and let

(i)
0

Ws
p(�) := the closure of C∞

0 (�) in Ws
p(�); equivalently, it is the comple-

tion of C∞
0 (�) with respect to the norm ‖·‖p,� + [·]s,p,� ;

(ii)
0
Xs

p(�) := completion of C∞
0 (�) with respect to the norm ‖·‖p,�+[·]s,p,Rn ;

(iii)
0
Ds

p(�) := completion of C∞
0 (�) with respect to the norm [·]s,p,Rn .

Then
0
Xs

p(�) ⊂ 0
Ws

p(�); if � supports the (s, p)-Friedrichs inequality (and
so, in particular, if � is bounded),

0
Xs

p(�) = 0
Ds

p(�) = {

u ∈ Ws
p (R

n) : u = 0 a.e. in Rn\�} .

If � is bounded and has Lipschitz boundary, then if sp �= 1,

0
Xs

p(�) = 0
Ws

p(�);

while if sp = 1,

0
Xs

p(�) �= 0
Ws

p(�).

The uniform convexity and uniform smoothness of these spaces when 1 <

p < ∞ may be established much as in the case of Ws
p(�).

We next establish Hölder-continuity of the functions in fractional Sobolev
spaces under certain conditions, just as for the classical spaces. The argument
follows that given in Proposition 2.9 of [28].
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32 Fractional Sobolev Spaces

Proposition 3.8 Let � ⊂ R
n be open and bounded, let p ∈ (1,∞), s ∈ (0, 1)

and suppose that sp > n. Then
0
Xs

p(�) ↪→ Cα (Rn) , where α = s − n/p : for

all u ∈ 0
Xs

p(�),

|u(x)− u(y)| ≤ C(n, s, p)
∥
∥
∥
∥

u| 0
Xs

p(�)

∥
∥
∥
∥

|x − y|α (x, y ∈ Rn) (3.2.3)

and

‖u‖∞,Rn ≤ C(n, s, p)
∥
∥
∥
∥

u| 0
Xs

p(�)

∥
∥
∥
∥
(diam �)α . (3.2.4)

Proof Let u ∈ 0
Xs

p(�); by Proposition 3.7 we may regard u as an element of
0
Ds

p(�). Let x0 ∈ Rn and δ > 0; denote the mean value of u in B (x0, δ) by ux0,δ .
Then
∫

B(x0,δ)

∣
∣u(x)− ux0,δ

∣
∣
p dx ≤ 1

|B (x0, δ)|
∫

B(x0,δ)

∫

B(x0,δ)

|u(x)− u(y)|p dx dy.

Since |x − y| ≤ 2δ for all x, y ∈ B (x0, δ),
∫

B(x0,δ)

∣
∣u(x)− ux0,δ

∣
∣
p dx ≤ Cδsp [u]p

s,p,Rn ,

and so

|B (x0, δ)|−sp/n
∫

B(x0,δ)

∣
∣u(x)− ux0,δ

∣
∣
p dx ≤ C′ [u]p

s,p,Rn .

Hence u belongs to the Campanato space Lp,sp (Rn), which is isomorphic to
Cα (Rn) with α = s − n/p: see Section 1.3.2. From this, (3.2.3) follows. To
obtain (3.2.4) take y ∈ Rn\supp u.

A counterpart of the (s, p)-Friedrichs inequality, valid for all elements of
Ws

p(�), is the (s, p)-Poincaré inequality. If |�| < ∞, we say that � supports
this inequality if there exists K > 0 such that for all u ∈ Ws

p (�),

inf
c∈


‖u − c‖p,� ≤ K [u]s,p,� ,

where 
 denotes the underlying field of scalars. Put

u� = |�|−1
∫

�

u(x) dx

and observe that for all c ∈ 
,

‖u − u�‖p,� = ‖u − c − (u − c)�‖p,� ≤ 2 ‖u − c‖p,� ,
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from which it follows that the Poincaré inequality may be equivalently written
as

‖u − u�‖p,� ≤ K1 [u]s,p,� .

When � is bounded the following result holds.

Theorem 3.9 Let p ∈ [1,∞), s ∈ (0, 1) and suppose that � is bounded. Then
for all u ∈ Ws

p(�),

‖u − u�‖p
p,� ≤ (diam �)n+sp

|�|
∫

�

∫

�

|u(y)− u(x)|p
|y − x|n+sp dy dx,

where u� = |�|−1 ∫

�
u(x) dx.

Proof By Jensen’s inequality (see, for example, [97], p. 202),

‖u − u�‖p
p,� =

∫

�

∣
∣
∣
∣
|�|−1

∫

�

(u(y)− u(x)) dx
∣
∣
∣
∣

p

dy

≤ |�|−1
∫

�

∫

�

|u(y)− u(x)|p dx dy

≤ (diam �)n+sp

|�| .

∫

�

∫

�

|u(y)− u(x)|p
|y − x|n+sp dy dx.

Remark 3.10

(i) This result underlines the difference between fractional Sobolev spaces
and their classical counterparts: the (s, p)-Poincaré inequality in Ws

p(�) holds
for all (bounded) �, while the classical Poincaré inequality in W1

p (�) does not
hold in all bounded sets � : see [64], Theorem V.4.21(iii). The validity of the
fractional case does exhibit some domain dependence if the stronger inequality

inf
c∈R

‖u − c‖p
p,� ≤ C

∫

�

∫

�∩B(x,τdist(x,∂�))

|u(y)− u(x)|p
|y − x|n+sp dy dx

(with τ ∈ (0, 1)) is considered. In [52] it is shown that this may fail in cer-
tain β−John domains (see [52] and [99] for the definition of these domains),
while in [99] the inequality is established for 1−John domains. The paper [52]
also discusses the influence of weights. Moreover, the double integral on the
right-hand side of the displayed formula is comparable to the full Gagliardo
seminorm under suitable conditions on �, such as being Lipschitz [55] or
uniform [149].

Definitions of plumpness different from that given above and used by Zhou
may be found in the literature. Sets that are plump in his sense are often called
lower Ahlfors regular.
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34 Fractional Sobolev Spaces

(ii) Note that when � is a cube Q, the theorem gives
∥
∥u − uQ

∥
∥

p,Q ≤ n(n+sp)/(2p) |Q|s/n [u]s,p,� .

The constant in this inequality is not sharp: see Theorem 1 of [23].
When s ∈ N and p ∈ [1,∞), elements of Ws

p(�) may be extended to be
functions in Ws

p (R
n) if the domain � has some regularity properties: we have

already used such a result in proving Proposition 3.1 (ii). Here we describe work
by Zhou [173] that characterises those � for which corresponding extension
results hold for arbitrary s ∈ (0, 1).

Definition 3.11 Let � be a domain inRn (n ≥ 2) and suppose that p ∈ [1,∞)

and s > 0. The set � is called a Ws
p extension domain if given any u ∈ Ws

p(�)

there exists ũ ∈ Ws
p (R

n) such that ũ|� = u and
∥
∥̃u|Ws

p (R
n)
∥
∥ ≤ C

∥
∥u|Ws

p(�)
∥
∥ ,

where C is a constant that depends on n, p, s,� but not on u. It is said to be
plump if there is a constant c > 0 such that for all x ∈ � and all r ∈ (0, 1],

|B(x, r) ∩�| ≥ crn.

When s ∈ N every � with minimally smooth boundary (see [64], V.4) is a
Ws

p extension domain; in particular, every bounded � with boundary of class
C0,1 is an extension domain. Zhou’s result implies the following.

Theorem 3.12 Let � be a domain in Rn (n ≥ 2). Then � is a Ws
p extension

domain for all s ∈ (0, 1) and all p ∈ [1,∞) if and only if it is plump.

Remark 3.13

1. When s > 0, s /∈ N and p ∈ [1,∞), the space Ws
p (R

n) defined above coin-
cides with the Besov space Bs

p,p (R
n), which itself coincides with the Lizorkin–

Triebel space Fs
p,p (R

n) : see [169], 2.3–2.5 and [95], 3.6. This means that all
the embedding theorems known for Bs

p,p (R
n) (see, for example, [70], 2.3.3) are

also available for Ws
p (R

n). When � is an open subset of Rn the spaces Bs
p,p(�)

(see, for example, the Proposition in [169], 3.28) may be defined intrinsically or
by restriction of elements of Bs

p,p (R
n) : if ∂� is smooth enough the resulting

space is the same whichever procedure is adopted, and so Ws
p (�) may be iden-

tified with Bs
p,p(�) (see, for example, [169]). Thus embedding results known

for Bs
p,p(�) (see, for example, [70], 2.5) hold for Ws

p(�). Hence Proposition 3.1
(ii) could have been deduced from the known embeddings for Besov spaces:
we chose to give an independent proof so as to acclimatise the reader to the
techniques to be used later on. To illustrate what may be obtained from results
known for Besov spaces, we give the following:
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1. Let � be a bounded open subset of Rn with C∞ boundary, let s1, s2 ∈
(0,∞)\N and p1, p2 ∈ (1,∞). Then if s1−s2−n max (1/p1 − 1/p2, 0) ≥ 0,

Ws1
p1
(�) ↪→ Ws2

p2
(�);

the embedding is compact if s1 − s2 − n max (1/p1 − 1/p2, 0) > 0. Simi-

lar statements hold for the spaces
0

Wsi
pi(�); and if sipi �= 1 (i = 1, 2), each

0
Wsi

pi (�) can be replaced by
0
Xsi

pi (�) (see Proposition 3.7).
2. Given u ∈ S (Rn), its restriction to the hyperplane

� := {

x = (

x′, xn
) ∈ Rn : xn = 0

}

,

that is, the function v ∈ S (Rn−1
)

given by v
(

x′) = u
(

x′, 0
) (

x′ ∈ Rn−1
)

,
is called the trace of u on �. It turns out that, given any s > 1/2, the map
u �−→ v can be extended to a continuous, surjective map tr� : Ws

2 (R
n) →

Ws−1/2
2

(

R
n−1
)

, the trace map. For a proof of this assertion, its extension to
traces on the boundary of bounded, smoothly bounded subsets of Rn and
in the context of more general function spaces, we refer to [95], Chapter 4
and [142], Section 3.

3. If p ∈ [1,∞) and s ∈ (0, 1), then the real space Ws
p (R

n) has the truncation
property: if u belongs to Ws

p (R
n) then so does u+ := max(u, 0) and

∥
∥u+|Ws

p (R
n)
∥
∥ ≤ c

∥
∥u|Ws

p (R
n)
∥
∥ ,

where c is a constant independent of u. For this, and many more general
results, we refer to [171], Section 25. �

We have seen earlier that when � is bounded and 1 ≤ q < p < ∞, the
space Ws

p (�) is compactly embedded in Lq (�), no conditions on ∂� being
necessary. When q = p this embedding is not always compact. On the positive
side, when � has smooth enough boundary, Ws

p (�) can be identified with a
Besov space and the compactness of I : Ws

p (�) → Lp (�) follows from known
properties of these spaces. The same holds when � is an extension domain:
see Theorem 7.1 of [142], which also contains an example showing that some
condition on ∂� is needed for I to be compact. To investigate the position a little
more closely we introduce the notions of entropy and approximation numbers,
and the measure of noncompactness of a map, following the line of argument
for the non-fractional case given in [64], V.5. where background material may
be found.

Given a bounded linear map T between Banach spaces X and Y , for each
k ∈ N the kth entropy number ek(T) of T is defined by

ek(T) = inf
{

ε > 0 : T (BX) can be covered by 2k−1 balls in Y with radius ε
}

,
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36 Fractional Sobolev Spaces

where BX is the closed unit ball in X. Since T is compact if and only if limk→∞
ek(T) = 0, this limit is called the measure of noncompactness of T; we denote it
by β(T). Evidently 0 ≤ β(T) ≤ ‖T‖; if β(T) = ‖T‖ we say that T is maximally
noncompact: for examples of such maps and further details see [69] and the
references given in that paper. In fact, [69] shows that when p ∈ (1,∞) and �
is an infinite strip, the natural embedding Ip : W1

p (�) → Lp(�) is maximally
noncompact in the sense that β

(

Ip
) = ∥

∥Ip
∥
∥; from [68] it turns out that Ip is not

strictly singular. For each k ∈ N the kth approximation number ak(T) of T is
defined by

ak(T) = inf {‖T − F‖ : F ∈ B(X,Y), rank F < k} ;
limk→∞ ak(T) is denoted by α(T). If α(T) = 0 the map T is compact; the
converse is true if Y has the approximation property. By Proposition II.2.7 of
[64],

β(T) ≤ α(T).

We now consider the embedding map I : Ws
p (�) → Lp (�), where |�| < ∞,

s ∈ (0, 1) and p ∈ (1,∞). First suppose that � is bounded. Given ε > 0, write
�ε = {x ∈ � : d(x, ∂�) < ε}; by Theorem V.4.20 of [64] there is a domain Uε

with analytic boundary such that �\�ε ⊂ Uε ⊂ Uε ⊂ �; put U = ∪ε>0 Uε.

For each ε > 0, the natural embedding Iε : Ws
p (�) → Lp (Uε) is compact since

it can be represented as the composition of the maps

Ws
p (�) ↪→ Ws

p (Uε) ↪→↪→ Lp(Uε).

Let F(�) (resp. F(Uε)) stand for the family of all bounded linear maps from
Ws

p (�) to Lp (�) (resp. Lp (Uε)) that have finite rank. As Lp (Uε) has the ap-
proximation property, it follows from Theorem 1.2.25 of [61] that there exists
P ∈ F(Uε) such that for all f ∈ Ws

p (�),

‖f − Pf ‖p,Uε
≤ ε ‖f ‖s,p,� .

Since Lp (�) has the approximation property,

α(I) = dist
(

I,K
(

Ws
p (�) ,Lp (�)

))

= inf
{‖I − K‖ : K ∈ K

(

Ws
p (�) ,Lp (�)

)}

.

In fact, β(I) = α(I). To prove this we first establish a lemma.

Lemma 3.14 Let P ∈ F(�). Then given ε > 0, there exists R ∈ F(�) and a
domain �′ ⊂⊂ � such that ‖P − R‖ < ε and R

(

Ws
p (�)

) ⊂ C∞
0

(

�′). If �0

(⊂ �) is open, ε > 0 and P ∈ F(�) are given, then there exists R ∈ F(�)
such that ‖(P − R) f ‖p,�0

≤ ε ‖f ‖s,p,� for all f ∈ Ws
p (�) and R

(

Ws
p (�)

) ⊂
C∞

0 (�0).
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Proof There are linearly independent functions u1, ..., uN , with each
‖ui‖p,� = 1, such that for each f ∈ Ws

p (�), Pf = ∑N
i=1 ci(f )ui. Since all

norms on the finite-dimensional range of P are equivalent, there exists K such
that

N
∑

i=1

|ci(f )| ≤ K ‖Pf ‖p,� ≤ K ‖P‖ ‖f ‖s,p,� .

For each i let φi ∈ C∞
0 (�) be such that ‖ui − φi‖p,� < ε/ (K ‖P‖) and set

Rf =∑N
i=1 ci(f )φi. Then R ∈ F (�) and

‖Pf − Rf ‖p,� ≤
N
∑

i=1

|ci(f )| ‖ui − φi‖p,� ≤ ε ‖f ‖s,p,� ;

since supp Rf ⊂ ∪N
i=1 supp φi ⊂⊂ �, the first part of the lemma follows. The

proof of the second part is similar, noting that f �−→ χ�0 Pf ∈ F (�0) and
choosing φi ∈ C∞

0 (�0) .

Given any ε > 0, let

�(ε) := sup
{

‖u‖p
p,�ε

: ‖u‖s,p,� = 1
}

,

and

�(0) := lim
ε→0

�(ε).

Theorem 3.15 When � is bounded, �(0) = β(I)p = α(I)p.

Proof This is exactly the same as that of Theorem V.5.7 of [64]. It is in this
proof that the material involving U = ∪ε>0 Uε is used.

The next theorem shows how the universal validity of the fractional Poincaré
inequality (in bounded sets �) affects the measure of noncompactness β(I).

Theorem 3.16 Suppose that � is bounded. Then β(I) = α(I) < 1.

Proof The map f �−→ f� belongs to F(�), and so, by Lemma 3.14, given
ε > 0, there exist R ∈ F(�) and δ > 0 such that for all f ∈ Ws

p (�),

‖f� − Rf ‖p
p,� ≤ 21−pε ‖f ‖p

s,p,�

and supp Rf ⊂ � \ �δ := {x ∈ � : d(x, ∂�) > δ}. Hence by the Poincaré
inequality,

‖f − Rf ‖p
p,� ≤ 2p−1Kp [f

]p
s,p,� + ε ‖f ‖p

s,p,�

≤ (K1 + ε)
[

f
]p

s,p,� + ε ‖f ‖p
p,� ,
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38 Fractional Sobolev Spaces

where K1 = 2p−1K. Thus

‖f ‖p
p,�\�δ ≤ (K1 + ε)

[

f
]p

s,p,� + ε ‖f ‖p
p,�

= (K1 + ε)
(

‖f ‖p
s,p,� − ‖f ‖p

p,�

)

+ ε ‖f ‖p
p,�

≤ (K1 + ε) ‖f ‖p
s,p,� − K1 ‖f ‖p

p,�δ ,

and so

‖f ‖p
p,�\�δ ≤ [

(K1 + ε) / (K1 + 1)
] ‖f ‖p

s,p,� .

Thus by Theorem 3.15, α(I) < 1. �
This result shows that β(I)p ≤ 1 − 1/ (K1 + 1), where

K1 = 2p (diam �)n+sp / |�| = 2pL(�) (diam �)sp ,

where

L(�) = (diam �)n / |�| ≥ 1.

Some idea of the dependence of β(I) on s may be obtained from this. For
example, it can be shown that

β(I)p ≤ 1 − 1
2 max {1, 2pL(�) (diam �)sp} .

In particular, if (diam �)sp > 2−p/L(�), then

β(I)p ≤ 1 − (diam �)−sp

2p+1L(�)
.

Thus if � is the unit cube (0, 1)n, so that |�| = 1 and diam � = √
n,

β(I)p ≤ 1 − 2−p−1n−(sp+n)/2.

Now suppose that the open set � is merely required to have finite measure.
We aim to obtain results analogous to those given in [64], V.5.3 for the classical
Sobolev case that involve the map f �→ ∇f of W1

p (�) to
[

Lp (�)
]n. Define

T : Ws
p(�) → Lp (�×�) by

(Tf ) (x, y) = f (x)− f (y)

|x − y| n
p +s

((x, y) ∈ �×�).

The reduced minimum modulus γ (T) of T is defined by

γ (T) = inf
{‖Tf ‖p,�×� /dist (f , ker T) : f ∈ Ws

p(�)\{0}} .
Note that ker T can be identified with 
, the underlying field of scalars, and

dist (f , ker T) = inf



‖f − c‖s,p,� .
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We recall that the (s, p)-Poincaré inequality asserts that there exists K > 0 such
that for all f ∈ Ws

p(�),

inf
c∈C

‖f − c‖p,� ≤ K
[

f
]

s,p,� ,

and that if � is bounded, this form of the Poincaré inequality holds with no
additional assumption on �.

Assume that the (s, p)-Poincaré inequality holds. Then for all f ∈Ws
p(�)\{0}

and all c ∈ 
,

‖Tf ‖p,�×� /dist (f , ker T) ≥ [

f
]

s,p,� / ‖f − c‖s,p,�

=
[

f
]

s,p,�
[

‖f − c‖p
p,� + [f ]ps,p,�

]1/p

≥
[

f
]

s,p,�
[

Kp
[

f
]p

s,p,� + [f ]ps,p,�
]1/p

= (1 + Kp)
−1/p

.

Thus γ (T) > 0 and so T has closed range, by Theorem 1.3.4 of [64].
Conversely, if γ (T) > 0, then for all f ∈ Ws

p(�),

inf
c∈C

‖f − c‖s,p,� ≤ γ (T)−1 ‖Tf ‖p,�×� ,

so that the Poincaré inequality holds and T has closed range.
To summarise the position:

(i) if |�| < ∞, then the Poincaré inequality holds if and only if T has closed
range;
and

(ii) if � is bounded, then the Poincaré inequality holds, T has closed range
and for the embedding I : Ws

p(�) → Lp(�) we have

α(I) = β(I) < 1;
more precisely (see Theorem 3.16),

αp(I) = βp(I) ≤ 1 − 1/(C + 1),

where

C = 2p (diam �)n+sp / |�| .
A similar analysis may be carried out for the Friedrichs inequality and its

connection with the embedding of
0
Xs

p (�) in Lp(�).
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Next we give a fractional analogue of Proposition 2.6 in the form given by
Lemma A.1 of [28], dealing with the behaviour of functions under translation.

Proposition 3.17 Let p ∈ [1,∞) and s ∈ (0, 1). Then there is a constant
C = C(n, p) such that for every u ∈ C∞

0 (Rn),

sup
|h|>0

∫

Rn

|u(x + h)− u(x)|p
|h|sp dx ≤ C (1 − s) [u]p

s,p,Rn .

Proof Let ρ ∈ C∞
0 (Rn) be non-negative, with supp ρ ⊂ B(0, 1)\B(0, 1/2)

and
∫

Rn ρdx = 1. Given h ∈ Rn\{0}, put

ρε(x) = ε−nρ(x/ε) (x ∈ Rn, 0 < ε < |h|).
Using suitable changes of variable we see that for all x ∈ Rn,

|u(x + h)− u(x)| =
∣
∣
∣
∣

∫

Rn
(u(x + h)− u(x)) ρε(y) dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn

{[

u(x + h)− u(x + h − y)
] + u(x + h − y)

− [

u(x)− u(x − y)
] − u(x − y)

}

ρε(y) dy
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Rn
u(y)

[

ρε(x + h − y)− ρε(x − y)
]

dy
∣
∣
∣
∣

+
∫

Rn
|u(x + h)− u(x + h − y)| ρε(y) dy

+
∫

Rn
|u(x)− u(x − y)| ρε(y) dy.

Since
∫

Rn ∇ρε dx = 0 it follows that
∣
∣
∣
∣

∫

Rn
u(y)

[

ρε(x + h − y)− ρε(x − y)
]

dy
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

∫

Rn
u(y) 〈∇ρε(x − y + sh), h〉 dy ds

∣
∣
∣
∣

may be written as
∣
∣
∣
∣

∫ 1

0

∫

Rn

[

u(y)− u(x + sh)
] 〈∇ρε(x − y + sh), h〉 dy ds

∣
∣
∣
∣

≤ ‖∇ρ‖∞ |h| ε−n−1
∫ 1

0

∫

B(x+sh,ε)\B(x+sh,ε/2)\
|u(y)− u(x + sh)| dy ds

= ‖∇ρ‖∞ |h| ε−n−1
∫ 1

0

∫

B(0,ε)\B(0,ε/2)
|u(x + z + sh)− u(x + sh)| dz ds.

Use of Jensen’s inequality (see, for example, [126], Theorem 2.2) together with
the translation invariance of the Lp norm now shows that

https://doi.org/10.1017/9781009254625.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.005


3.2 Basic Properties 41
∫

Rn
|u(x + h)− u(x)|p dx

is bounded above by

C |h|p ε−n−p
∫

B(0,ε)\B(0,ε/2)

∫

Rn
|u(x + z)− u(x)|p dx dz

+ C ‖ρ‖∞ ε−n
∫

B(0,ε)\B(0,ε/2)

∫

Rn
|u(x + z)− u(x)|p dx dz.

As ε < |h| we obtain
∫

Rn
|u(x + h)− u(x)|p dx

≤ C1 |h|p ε−n−p
∫

B(0,ε)\B(0,ε/2)

∫

Rn
|u(x + z)− u(x)|p dx dz.

Hence
∫

Rn

|u(x + h)− u(x)|p
|h|sp dx

≤ C1 |h|p(1−s) ε−n−p
∫

B(0,ε)\B(0,ε/2)

∫

Rn
|u(x + z)− u(x)|p dx dz.

Multiply both sides by εp(1−s)−1, integrate with respect to ε from 0 to |h| and
simplify: we find that

1
p(1 − s)

∫

Rn

|u(x + h)− u(x)|p
|h|sp dx

is bounded above by

C1

∫ |h|

0
ε−n−ps−1

∫

B(0,ε)

∫

Rn
|u(x + z)− u(x)|p dx dz dε.

Next put

G(ε) =
∫

B(0,ε)

∫

Rn
|u(x + z)− u(x)|p dx dz, 0 < ε < |h| .

Observe that G(0) = 0 and G is increasing. For small positive τ ,
∫ |h|

0

(G(t)− τ)+
tn+ps+1 dt = −1

n + ps
· (G(|h|)− τ)+

|h|n+ps + 1
n + ps

∫

{G(t)>τ }
G′(t)
tn+ps

dt

≤ 1
n + ps

∫ |h|

0

G′(t)
tn+ps

dt.
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42 Fractional Sobolev Spaces

Letting τ → 0 we see that

(n + ps)
∫ |h|

0
t−n−ps−1G(t) dt ≤

∫ |h|

0
t−n−psG′(t) dt

which equals
∫ |h|

0
t−n−ps

∫

∂B(0,t)

∫

Rn
|u(x + z)− u(x)|p dx dσ(z) dt

=
∫

B(0,|h|)

∫

Rn

|u(x + z)− u(x)|p
|z|n+ps dx dz ≤ [u]p

s,p,Rn ,

from which the result follows.

We now turn to the limiting behaviour of the fractional spaces: more pre-
cisely, to their connection with the classical Sobolev spaces as the parameter
s approaches 1 or 0. To do this we introduce a family (ρε)ε>0 of non-negative
functions, each belonging to L1,loc(0,∞), such that

∫ ∞

0
ρε(r)r n−1dr = 1 (ε > 0), (3.2.5)

and

lim
ε→0

∫ ∞

δ

ρε(r)r n−1dr = 0 for all δ > 0. (3.2.6)

Note that for such a family,

lim
ε→0

∫ R

0
ρε(r)r p+n−1dr = 0 (0 < R < ∞, 1 ≤ p < ∞). (3.2.7)

It is plainly enough to establish this for R ∈ (1,∞). Then for all δ ∈ (0, 1),
∫ R

0
ρε(r)r p+n−1dr =

∫ δ

0
ρε(r)r p+n−1dr +

∫ R

δ

ρε(r)r p+n−1dr

≤ δp + R p
∫ R

δ

ρε(r)r n−1dr,

so that

lim sup
ε→0

∫ R

0
ρε(r)r p+n−1dr ≤ δp.

Since this is true for all δ ∈ (0, 1), the claim follows.

Lemma 3.18 Let p ∈ (1,∞), suppose that f ∈ W1
p (R

n) and let ρ ∈ L1 (R
n) ,

ρ ≥ 0. Then
∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|p ρ (x − y) dx dy ≤ ‖ρ‖1

∫

Rn
|∇f |p dx. (3.2.8)

https://doi.org/10.1017/9781009254625.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.005


3.2 Basic Properties 43

Proof By Proposition 2.6,
(∫

Rn
|f (x + h)− f (x)|p dx

)1/p

≤ |h| ‖|∇f |‖p

for all h ∈ Rn. Hence
∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|p ρ (x − y) dx dy =

∫

Rn

ρ(h)
|h|p

∫

Rn
|f (x + h)− f (x)|p dx dh

≤ ‖ρ‖1

∫

Rn
|∇f |p dx.

Theorem 3.19 Suppose that f ∈ Lp (R
n) (1 < p < ∞). Then, with ρε defined

as above,

lim
ε→0

∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|p ρε (|x − y|) dx dy = K(p, n)

∫

Rn
|∇f |p dx, (3.2.9)

where

K(p, n) =
�
(

p+1
2

)

�
( n

2

)

√
π�

( n+p
2

) ,

with the understanding that
∫

Rn |∇f |p dx = ∞ if f /∈ W1
p (R

n).

Proof Let

Fε(x, y) = |f (x)− f (y)|
|x − y| ρ1/p

ε (|x − y|) (x, y ∈ Rn, x �= y, ε > 0),

and suppose first that f ∈ W1
p (R

n). We have to show that

lim
ε→0

‖Fε‖p
p,Rn×Rn = K ‖|∇f |‖p

p (3.2.10)

with K = K(p, n). By Lemma 3.18, for all ε > 0 and all g ∈ W1
p (R

n),
∣
∣‖Fε‖p − ‖Gε‖p

∣
∣ ≤ ‖Fε − Gε‖p ≤ ωn−1 ‖|∇(f − g)|‖p

where Gε is defined in the same way as Fε. It is therefore enough to prove
(3.2.10) when f belongs to any dense subset of W1

p (R
n). Thus we assume that

f ∈ C2
0 (R

n), with supp f contained in a bounded open set � ⊂ R
n; for each

fixed x ∈ � let R = dist (x, ∂�); note that

|f (x)− f (y)|
|x − y| =

∣
∣
∣
∣
(∇f ) (x) · x − y

|x − y|
∣
∣
∣
∣
+ O(|x − y|).

Then
∫

Rn

|f (x)− f (y)|p
|x − y|p ρε (|x − y|) dy =

∫

B(x,R)
+
∫

Rn\B(x,R)
:= I1(x)+ I2(x).
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In view of (3.2.6),

I2(x) ≤ |f (x)|p
Rp

∫

Rn\B(x,R)
ρε (|x − y|) dy → 0 as ε → 0.

Moreover,

I1(x) =
∫ R

0
ρε(r)

∫

|y−x|=r

(∣
∣
∣
∣
(∇f ) (x) · x − y

|x − y|
∣
∣
∣
∣

p

+ O (|x − y|p)
)

dσdr

=
∫ R

0
ρε(r)

∫

|ω|=r

(∣
∣
∣
∣
(∇f ) (x) · ω

|ω|
∣
∣
∣
∣

p

+ O (rp)

)

dσdr

= |(∇f ) (x)|p
(∫

Sn−1
|ω · e|p dσ

)∫ R

0
rn−1ρε(r) dr

+ O
(∫ R

0
rn+p−1ρε(r) dr

)

where e is a unit vector in Rn: by (3.3.7) of [15],
∫

Sn−1
|ω · e|p dσ = K(p, n).

Hence

lim
ε→0

∫

Rn

|f (x)− f (y)|p
|x − y|p ρε (|x − y|) dy = K(p, n) |(∇f ) (x)|p for all x ∈ �.

(3.2.11)
Since f ∈ C2

0 (R
n), there exists M such that |f (x)− f (y)| ≤ M |x − y| for all

x, y ∈ � : thus
∫

Rn

|f (x)− f (y)|p
|x − y|p ρε (|x − y|) dy ≤ Mpωn−1 (x ∈ �, k ∈ N).

Together with (3.2.11) and the dominated convergence theorem this establishes
(3.2.10) for all f ∈ C2

0 (R
n) and hence for all f ∈ W1

p (R
n).

To complete the proof it will be enough to show that if f ∈ Lp (R
n) and

Ap := lim inf
ε→0

(∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|p ρε (|x − y|) dx dy

)1/p

< ∞,

then f ∈ W1
p (R

n). To do this we use the following result:
Let ρ be a non-negative, radial function belonging to L1 (R

n) , g ∈ L1 (R
n),

φ ∈ C2
0 (R

n) and e ∈ Rn, |e| = 1. Then
∣
∣
∣
∣

∫

Rn
g(x) dx

∫

(y−x)·e≥0

φ(y)− φ(x)
|y − x| ρ (y − x) dy

∣
∣
∣
∣

≤
∫

Rn

∫

Rn

|g(x)− g(y)|
|x − y| |φ(y)| ρ (x − y) dx dy. (3.2.12)
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To prove this, let δ > 0 and define

ρ(δ)(y) =
{

0, |y| < δ,

ρ(y), |y| > δ.

It is enough to prove the result when ρ is replaced by ρ(δ) and then allow δ → 0.
Let

I :=
∫

Rn
g(x) dx

∫

(y−x)·e≥0

φ(y)− φ(x)
|y − x| ρ(δ) (y − x) dy

=
∫ ∫

(y−x)·e≥0
g(x)φ(y)

ρ(δ) (y − x)
|y − x| dx dy

−
∫ ∫

(y−x)·e≥0
g(x)φ(x)

ρ(δ) (y − x)
|y − x| dx dy

: = I1 − I2,

the separation being justified since the integrands in I1 and I2 belong to
L1 (R

n × Rn). Interchange of x and y in I2 and use of the radial property of
ρ(δ) shows that I2 equals
∫ ∫

(x−y)·e≥0
g(y)φ(y)

ρ(δ) (x−y)
|x−y| dx dy =

∫ ∫

(y−x)·e≥0
g(y)φ(y)

ρ(δ) (x−y)
|x−y| dx dy,

and so

I =
∫ ∫

(y−x)·e≥0
φ(y)

g(x)− g(y)
|y − x| ρ(δ) (y − x) dx dy

≤
∫

Rn

∫

Rn

|g(x)− g(y)|
|x − y| |φ(y)| ρ(δ) (x − y) dx dy;

thus (3.2.12) holds, as required. Note that the assumption that g ∈ L1 (R
n) can

be relaxed to g ∈ Lp,loc (R
n) as this weaker requirement is sufficient to ensure

the existence of the various integrals because φ has compact support.
Finally, let φ ∈ C∞

0 (Rn), suppose that e ∈ R
n, |e| = 1, and observe that

arguments similar to those used when proving (3.2.11) show that for all x ∈ Rn,
∫

(y−x)·e≥0

φ(y)− φ(x)
|y − x| ρε(|y − x|) dy → K∇φ(x) · e (3.2.13)

as ε → 0, where

K = 1
2

∫

ω∈Sn−1
|ω · e| dσ := 1

2
K1,n. (3.2.14)
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We may apply (3.2.12) to f ∈ Lp (R
n) (see the comment in the proof of this

result): together with Hölder’s inequality and (3.2.5) this gives

Jε :=
∣
∣
∣
∣

∫

Rn
f (x) dx

∫

(y−x)·e≥0

φ(y)− φ(x)
|y − x| ρε(|y − x|) dy

∣
∣
∣
∣

≤
∫

Rn
dx
∫

supp φ

|f (x)− f (y)|
|x − y| |φ(y)| ρε(|y − x|) dy

≤
∫

Rn
dx
∫

Rn

|f (x)− f (y)|
|x − y| |φ(y)| ρε(|y − x|) dy

≤
(∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|p ρε(|y − x|) dx dy

)1/p

‖φ‖p′ .

Letting ε → 0 we have

K
∣
∣
∣
∣

∫

Rn
f (x) (∇φ(x) · e) dx

∣
∣
∣
∣
≤ Ap ‖φ‖p′ .

The choice of e as the co-ordinate unit vector ei (i = 1, ..., n) shows that
∣
∣
∣
∣

∫

Rn
fDiφ dx

∣
∣
∣
∣
≤ Ap ‖φ‖p′ /K,

so that f ∈ W1
p (R

n).

Corollary 3.20 Let p ∈ (1,∞). Then there is a constant K, depending only
on p and n, such that for all f ∈ Lp (R

n) (and with the same understanding as
in Theorem 3.19),

lim
s→1−

(1 − s)
∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy = K(p, n)

p

∫

Rn
|∇f (x)|p dx. (3.2.15)

Proof We apply the last theorem with the particular choice of ρε given by

ρε(r) =
{

ε
rn−ε , 0 < r < 1,
0, r > 1

}

.

This shows that

lim
ε→0

ε

∫

Rn

∫

|x−y|<1

|f (x)− f (y)|p
|x − y|n+p−ε dx dy = K(p, n)

∫

Rn
|∇f (x)|p dx.

Since
∫

Rn

∫

|x−y|≥1

|f (x)− f (y)|p
|x − y|n+p−ε dx dy ≤ C ‖f ‖p

p

(see, for example, (3.2.1)), it follows that

lim
ε→0

ε

∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+p−ε dx dy = K(p, n)

∫

Rn
|∇f (x)|p dx,

which gives the corollary.
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Remark 3.21 The proof of Theorem 3.19 given here is based on [23], which
also deals with the case in which the functions are defined on a bounded do-
main � in Rn with smooth boundary, rather than on the whole of Rn. Other
approaches are given in [24] and [33]. Note that Corollary 3.20 immediately
implies that if

∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy = o

(
1

1 − s

)

as s → 1−, (3.2.16)

then f is a constant function. The same holds whenRn is replaced by a smoothly
bounded, connected open subset � of Rn. In [33] Brezis shows that for any
connected open subset � of Rn, the condition

∫

�

∫

�

|f (x)− f (y)|p
|x − y|n+p dx dy < ∞ (3.2.17)

is sufficient to ensure that f is constant. An elegant, simple proof of a result of
this type is given in [158], pp. 214–215. A consequence is that the inequality

∥
∥
∥
∥
∥

f (x)− f (y)

|x − y| n
p +1

∥
∥
∥
∥
∥

Lp(�×�)
≤ C(n)1/p‖∇f ‖Lp(�)∀f ∈ C∞

0 (�)

does not hold. In [36] it is shown that there is a valid inequality
∥
∥
∥
∥
∥

f (x)− f (y)

|x − y| n
p +1

∥
∥
∥
∥
∥

Lp,∞(Rn×Rn)

≤ C(n)1/p‖∇f ‖Lp(Rn), (3.2.18)

where Lp,∞ is the Marcinkiewicz (or weak Lp) space. A natural question ad-
dressed in [35] is whether an improvement of (3.2.18) is possible in the Lorentz
scale Lp,q, where 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. For q ∈ (p,∞) the answer is
proved to be negative and there is the generalisation of (3.2.17)
∥
∥
∥
∥
∥

f (x)− f (y)

|x − y| n
p +1

∥
∥
∥
∥
∥

Lp,q(Rn×Rn)

≤ C(n, p, q)‖∇f ‖Lp(Rn) < ∞ ⇒ f is a constant.

(3.2.19)
The case when s → 0+ was settled in [134], where it was shown that for all

f ∈ ∪0<s<1Ws
p (R

n),

lim
s→0+

s
∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy = C′(n, p)

∫

Rn
|f (x)|p dx.

3.3 An Approach via Interpolation Theory

Here we indicate how the limiting behaviour of the Gagliardo seminorm men-
tioned in Corollary 3.20 and Remark 3.21 may be explained as a consequence
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48 Fractional Sobolev Spaces

of interpolation theory. The approach we follow owes much to [107], [109]
and [136]. To begin with, we recall some basic ideas.

A pair (A0,A1) of Banach spaces with norms ‖·|A0‖ , ‖·|A1‖ is said to be
compatible if there is a Hausdorff topological vector space A in which both A0

and A1 are continuously embedded. This implies that the sum A0 + A1 and the
intersection A0 ∩ A1 are well defined; endowed with the norms defined by

‖a|A0 + A1‖ = inf {‖a0|A0‖ + ‖a1|A1‖ : a = a0 + a1, ai ∈ Ai (i = 0, 1)}
and

‖a|A0 ∩ A1‖ = max {‖a|A0‖ , ‖a|A1‖} ,
respectively, they are Banach spaces. Given such a compatible pair, t ∈ (0,∞)

and a ∈ A0 + A1, the K-functional K (t, a; A0,A1) is defined to be

inf {‖a0|A0‖ + t ‖a1|A1‖ : a = a0 + a1, ai ∈ Ai (i = 0, 1)} . (3.3.1)

Note that for all t ∈ (0,∞) and all a ∈ A0 + A1,

K (t, a; A0,A1) = tK(1/t, a; A1,A0.). (3.3.2)

Moreover (see, for example [21], Proposition 5.1.2), on (0,∞) the map t �→
K (t, a; A0,A1) is increasing and t �→ t−1K (t, a; A0,A1) is decreasing. Thus

lim
t→0+

t−1K (t, a; A0,A1) and lim
t→∞ K (t, a; A0,A1)

exist (and may be infinite).
Let (A0,A1) be a compatible pair of Banach spaces; suppose that s ∈ (0, 1)

and q ∈ [1,∞). Then

(A0,A1)s,q := {

a ∈ A0 + A1 : ∥∥a| (A0,A1)s,q

∥
∥ < ∞}

,

where
∥
∥a| (A0,A1)s,q

∥
∥ :=

(∫ ∞

0

(

t−sK (t, a; A0,A1)
)q dt

t

)1/q

.

The space (A0,A1)s,∞ is defined analogously, with
∥
∥a| (A0,A1)s,∞

∥
∥ := sup

0<t<∞
t−sK(t, a; A0,A1).

These are Banach spaces when equipped with the norms
∥
∥·| (A0,A1)s,q

∥
∥ and are

said to be of real interpolation type. If no ambiguity is likely we shall simply
write K (t, a), ‖·‖s,q, etc. We summarise some of the important properties of
these interpolation spaces in the following theorem, giving indications of proofs
for the convenience of the reader.
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Theorem 3.22 Let (A0,A1), (B0,B1) be compatible pairs of Banach spaces,
let s ∈ (0, 1) and suppose that q ∈ [1,∞]. Then:

(i) (A0,A1)s,q = (A1,A0)1−s,q.
(ii) There is a constant c = c(s, q) such that for all a ∈ (A0,A1)s,q and all

t ∈ (0,∞),

K (t, a) ≤ cts ‖a‖s,q .

(iii) If q ≤ p ≤ ∞, then

(A0,A1)s,1 ↪→ (A0,A1)s,q ↪→ (A0,A1)s,p ↪→ (A0,A1)s,∞ .

(iv) A0 = (A0,A0)s,q and for all a ∈ A0,

‖a0|A0‖ = (s(1 − s)q)1/q
∥
∥a| (A0,A0)s,q

∥
∥ .

(v)

A0 ∩ A1 ↪→ (A0,A1)s,q ↪→ A0 + A1.

(vi) Let T : A0 + A1 → B0 + B1 be linear and such that T|A0 ∈ B (A0,B0) and
T|A1 ∈ B (A1,B1). Then
∥
∥T|B ((A0,A1)s,q , (B0,B1)s,q

)∥
∥ ≤ ‖T|B (A0,B0)‖1−s ‖T|B (A1,B1)‖s .

(vii) There exists c = c(s, q) such that for all a ∈ A0 ∩ A1,
∥
∥a| (A0,A1)s,q

∥
∥ ≤ c ‖a|A0‖1−s ‖a|A1‖s .

Proof (i) This follows immediately from (3.3.2).
(ii) If q < ∞, then since t �−→ K (t, a) is obviously monotonic increasing,

t−sK (t, a) = (sq)1/q K (t, a)
(∫ ∞

t
u−sq du

u

)1/q

≤ (sq)1/q ‖a‖s,q .

When q = ∞ the result is trivial.
(iii) It is enough to deal with the case in which q < p < ∞. By (ii), for all

a ∈ (A0,A1)s,q,

‖a‖s,p ≤
(∫ ∞

0

(

t−sK(t, a)
)q dt

t

)1/p (

sup
t

t−sK(t, a)
)1−q/p

≤ c ‖a‖s,q ,

and (iii) follows.
(iv) Let a ∈ A0. It is easy to see that

K(t, a; A0,A0) =
{

t ‖a|A0‖ , 0 ≤ t ≤ 1,
‖a|A0‖ , 1 < t < ∞.

From this (iv) is immediate.

https://doi.org/10.1017/9781009254625.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.005


50 Fractional Sobolev Spaces

(v) This is a direct consequence of (ii) and the fact that

K(t, a) ≤ min {1, t} ‖a|A0 ∩ A1‖ , a ∈ A0 ∩ A1.

(vi) If T|A0 �= 0,

K (t,Ta; B0,B1) ≤ inf
a=a0+a1

(‖Ta0‖B0
+ t ‖Ta1‖B1

)

≤ ‖T|B (A0,B0)‖ K
(‖T|B (A1,B1)‖

‖T|B (A0,B0)‖ t, a; A0,A1

)

.

The transformation τ = t ‖T|B (A1,B1)‖ / ‖T|B (A0,B0)‖ now leads to
the result. If T|A0 = 0, replacement of ‖T|B (A0,B0)‖ in the above argu-
ment by an arbitrarily small ε > 0 followed by passage of ε to 0 completes
the argument.

(vii) See [170], p. 27.

As pointed out in Remark 3.13, when s > 0, s /∈ N, p ∈ [1,∞) and � is
either the whole of Rn or a bounded open subset of Rn with smooth boundary,
the space Ws

p(�) coincides with the Besov space Bs
p,p(�). The behaviour of the

fractional Sobolev spaces under real interpolation can thus be deduced from
that of Besov spaces, namely that if p0, p1 ∈ [1,∞), θ ∈ (0, 1) and s0, s1 ∈
(0,∞), while s = (1 − θ)s0 + θs1, 1/p = (1 − θ)/p0 + θ/p1, then (see [169],
3.3.6)

(

Bs0
p0,p0

(�),Bs1
p1,p1

(�)
)

θ,p
= Bs

p,p(�).

A compatible pair (A0,A1) is said to be normal if

lim
t→0+

t−1K (t, f ; A0,A1) = ‖f |A1‖ for all f ∈ A1, (3.3.3)

and

lim
t→∞K (t, f ; A0,A1) = ‖f |A0‖ for all f ∈ A0. (3.3.4)

It is called quasi-normal if

lim
t→0+

t−1K (t, ·; A0,A1) is equivalent to the norm ‖·|A1‖ on A1,

and

lim
t→∞ K (t, ·; A0,A1) is equivalent to the norm ‖·|A0‖ on A0.

These notions are key in what follows.

Theorem 3.23 Let (A0,A1) be normal. Then:
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(i) If 1 ≤ q < ∞ and f ∈ A0 ∩ A1,

lim
s→1− (

qs(1 − s))1/q ‖f ‖s,q = ‖f |A1‖
and

lim
s→0+ (

qs(1 − s))1/q ‖f ‖s,q = ‖f |A0‖ .
(ii) If 1 ≤ q < ∞ and f ∈ A0 ∩ ∪s∈(0,1) (A0,A1)s,q, then

lim
s→0+ (

qs(1 − s))1/q ‖f ‖s,q = ‖f ‖A0
.

Proof (i) First consider the case when s → 1−. Given ε > 0, by (3.3.3) there
exists δ > 0 such that

∣
∣
∣
∣

(
K (t, f ; A0,A1)

t

)q

− ‖f |A1‖q
∣
∣
∣
∣
< ε if 0 < t < δ. (3.3.5)

Note that
∣
∣qs(1 − s) ‖f ‖q

s,q − ‖f |A1‖q
∣
∣ =

∣
∣
∣
∣
qs(1 − s)

∫ ∞

0

(

t−sK(t, f
)

)q dt
t

− ‖f |A1‖q
∣
∣
∣
∣
;

we write ‖f |A1‖q in the form

‖f |A1‖q q(1 − s)δ−(1−s)q
∫ δ

0
t(1−s)q dt

t
.

With
∫∞

0 = ∫ δ

0 + ∫∞
δ

we thus obtain
∣
∣qs(1 − s) ‖f ‖q

s,q − ‖f |A1‖q
∣
∣ ≤ I1 + I2 + I3,

where

I1 = qs(1 − s)
∫ δ

0

∣
∣
∣
∣
t(1−s)q

((
K(t, f )

t

)q

− ‖f |A1‖q
)∣
∣
∣
∣

dt
t
,

I2 = qs(1 − s)
∫ δ

0

∣
∣
∣
∣
t(1−s)q

(

δ−(1−s)q ‖f |A1‖q

s
− ‖f |A1‖q

)∣
∣
∣
∣

dt
t

and

I3 = qs(1 − s)
∫ ∞

δ

t(1−s)q
(

K(t, f )
t

)q dt
t
.

Use of (3.3.5) shows that

I1 ≤ εδ(1−s)qs, (3.3.6)

while plainly

I2 = s
∣
∣
(

s−1 − δ−(1−s)q) δ(1−s)q
∣
∣ ‖f |A1‖q = ‖f |A1‖q s

∣
∣s−1δ(1−s)q − 1

∣
∣ . (3.3.7)
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Since K(t, f ) ≤ ‖f |A0‖ we see that

I3 ≤ δ−sq(1 − s) ‖f |A0‖q . (3.3.8)

From these estimates it follows that if 1 − s is small enough, then
∣
∣qs(1 − s) ‖f ‖q

s,q − ‖f |A1‖q
∣
∣ < ε,

and the first part of (i) is established.
For the second part, we know from Theorem 3.22 (i) that (A1,A0)1−s,q =

(A0,A1)s,q and
∥
∥f | (A1,A0)1−s,q

∥
∥ = ∥

∥f | (A0,A1)s,q

∥
∥, from which the rest of (i)

follows.
It remains to prove (ii). Let f ∈ A0 ∩ (A0,A1)s,q. Using the hypothesis of

normality we see that, given ε > 0, there exists δ > 0 such that
∣
∣K (t, f ; A0,A1)

q − ‖f |A0‖q
∣
∣ < ε when t > δ. (3.3.9)

Moreover
∣
∣s(1 − s)q ‖f ‖q

s,q − ‖f |A0‖q
∣
∣

=
∣
∣
∣
∣
s(1 − s)q

{∫ ∞

0

(

t−sK
(

t, f ; A0,A1
))q dt

t

}

− ‖f |A0‖q
∣
∣
∣
∣

≤ J1 + J2 + J3,

where

J1 = s(1 − s)q
∫ δ

0

(

t−sK (t, f ; A0,A1)
)q dt

t
,

J2 = s(1 − s)q
∫ ∞

δ

t−sq
∣
∣K (t, f ; A0,A1)

q − ‖f |A0‖q
∣
∣

dt
t

and

J3 = ‖f |A0‖q ((1 − s) δsq − 1).

Suppose that s < s0. Then

J1 = s(1 − s)qδ−sq
∫ δ

0

(

(t/δ)−s K (t, f ; A0,A1)
)q dt

t

≤ s(1 − s)qδ−sq
∫ δ

0

(

(t/δ)−s0 K (t, f ; A0,A1)
)q dt

t

≤ s(1 − s)qδq(s0−s)
∫ δ

0

(

t−s0 K (t, f ; A0,A1)
)q dt

t

≤ s(1 − s)qδq(s0−s) ‖f ‖q
s0,q

,

and so lims→0 J1 = 0. Using (3.3.9) we see that J2 < ε for small enough s; that
lims→0 J3 = 0 is clear.
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Remark 3.24 If the requirement of normality is weakened to quasi-normality,
minor changes to the proof show that a modified form of the theorem still
holds. More precisely, (i) and (ii) hold with ‖f |A0‖ and ‖f |A1‖ replaced by
limt→∞ K (t, f ; A0,A1) and limt→0+ t−1K (t, f ; A0,A1), respectively.

We can now apply this abstract result to fractional Sobolev spaces. Let p ∈
[1,∞) and denote by W1

p,0 (R
n) the completion of C∞

0 (Rn) with respect to the
norm given by

∥
∥f |W1

p,0 (R
n)
∥
∥ := ‖|∇f |‖p,Rn .

With the understanding that functions in W1
p,0 (R

n) that differ by a constant are

identified, the pair
(

Lp (R
n) ,W1

p,0 (R
n)
)

of Banach spaces is compatible. The
K-functional for this pair satisfies

K
(

t, f ; Lp (R
n) ,W1

p,0 (R
n)
) ≈ wp(f , t), t > 0, (3.3.10)

where

wp(f , t) := sup
|h|≤t

‖�hf ‖p,Rn ,�hf (x) := f (x + h)− f (x). (3.3.11)

For this we refer to [21], p. 341; the constants of equivalence are independent
of f and t. Denoting by Xs,p the interpolation space

(

Lp (R
n) ,W1

p,0 (R
n)
)

s,p
, it

follows that

∥
∥f |Xs,p

∥
∥ ≈

(∫ ∞

0

(

t−swp(f , t)
)p dt

t

)1/p

. (3.3.12)

Lemma 3.25 Let s ∈ (0, 1), p ∈ [1,∞) and denote by Ws
p,0 (R

n) the comple-
tion of C∞

0 (Rn) with respect to the norm given by

∥
∥f |Ws

p,0 (R
n)
∥
∥ :=

(∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy

)1/p

= [

f
]

s,p,Rn .

Then

Xs,p = (

Lp (R
n) ,W1

p,0 (R
n)
)

s,p
= Ws

p,0 (R
n) (3.3.13)

and
∥
∥f |Ws

p,0 (R
n)
∥
∥ ≈ (n + sp)1/p

∥
∥f |Xs,p

∥
∥ . (3.3.14)

Proof Of course
∥
∥
∥·|Ws

p,0 (R
n)

∥
∥
∥ is just the Gagliardo seminorm, which is a

norm in this context. Also Ws
p,0 (R

n) coincides with the space
0
Ds

p (R
n) men-
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tioned in Proposition 3.7; the present notation is used here as it is more sugges-
tive in this context. We use the fact that

wp(f , t) ≈
(

t−n
∫

|h|≤t
‖�hf ‖p

p,Rn dh
)1/p

. (3.3.15)

Assuming this for the moment, Fubini’s theorem shows that
∫ ∞

0

(

t−swp(f , t)
)p dt

t
≈ (n + sp)−1

∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy,

from which the result follows.
To establish (3.3.15), observe that the estimate of wp(f , t) from below is ob-

vious. For the upper bound write, for p ∈ (1,∞) and q ∈ (0,∞],

τq(f , t) =
{

t−n
∫

|h|≤t
‖�hf ‖q

p,Rn dh
}1/q

if 0 < q < ∞, τ∞(f , t) = wp(f , t).

Plainly

τq(f , t) ≤ |B(0, 1)|1/q−1/r τr(f , t) if q < r < ∞.

It is thus enough to show that there is a constant c = c(q) such that

τ∞(f , t) ≤ c(q)τq(f , t), 0 < q < 1.

To do this, let |h| , |ξ | ≤ t and note that

‖�hf ‖p ≤ ∥
∥�ξ−hf

∥
∥

p + ∥∥�ξ f
∥
∥

p ≤ 2
∥
∥�(ξ−h)/2f

∥
∥

p + ∥∥�ξ f
∥
∥

p .

Since |(ξ − h)/2| ≤ t,

‖�hf ‖q
p ≤ 2q

∥
∥�(ξ−h)/2f

∥
∥

q
p + ∥∥�ξ f

∥
∥

q
p

and
∫

|ξ |≤t
‖�hf ‖q

p dξ ≤ (2q + 1)
∫

|ξ |≤t

∥
∥�ξ f

∥
∥

q
p dξ.

Hence there is a constant C = C(q) such that

‖�hf ‖p ≤ Cτq(f , t), 0 < q < 1, |h| ≤ t,

and the proof is complete.

Lemma 3.26 The pair
(

Lp (R
n) ,W1

p,0 (R
n)
)

(p ∈ [1,∞)) is quasi-normal.

Proof Let f ∈ W1
p,0 (R

n). Then for each h ∈ Rn and almost every x ∈ Rn,

f (x + h)− f (x) =
∫ 1

0
∇f (x + th) · h dt
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(see Proposition 2.6). Then
(∫

Rn
|f (x + h)− f (x)|p dx

)1/p

≤ |h| ‖∇f ‖p ,

so that (see (3.3.11))

wp(f , δ) ≤ δ ‖∇f ‖p . (3.3.16)

Given ε > 0, there exists fε ∈ C∞
0 (Rn) such that ‖∇ (f − fε)‖p < ε. Moreover,

με (δ) := sup
|h|=δ

‖fε (· + h)− fε (·)− ∇fε (·) · h‖p /δ → 0 as δ → 0,

and hence there exists δε > 0 such that με (δ) < ε if 0 < δ < δε. By (3.3.16),

wp(fε, δ) ≤ wp(f , δ)+ εδ.

Thus for all δ ∈ (0, δε),

‖∇f ‖p ≤ ‖∇fε‖p + ε ≤ με (δ)+ δ−1wp(fε, δ)+ ε

≤ δ−1wp(f , δ)+ 3ε.

Hence

lim
δ→0+

wp(f , δ)
δ

= ‖∇f ‖p . (3.3.17)

Moreover, t �−→ wp(f , t) is monotonic increasing and wp(f , t) ≤ 2 ‖f ‖p;
hence limt→∞ wp(f , t) exists and is bounded above by 2 ‖f ‖p. To obtain a lower
bound, let f ∈ C∞

0 (Rn), and suppose supp f ⊂ {x ∈ Rn : |x| < M}, so that
f (x + h) = 0 if |h| ≥ 2M and |x| < M. Hence

wp(f , t) ≥ ‖f ‖p if t ≥ 2M,

and so

‖f ‖p ≤ lim
t→∞ wp(f , t) ≤ 2 ‖f ‖p .

If f ∈ Lp (R
n), then let (fk)k∈N ⊂ C∞

0 (Rn) be such that limk→∞ ‖f − fk‖p = 0
and observe that

‖fk‖p ≤ lim
t→∞ wp(fk, t) ≤ lim

t→∞ wp(fk − f , t)+ lim
t→∞ wp(f , t)

≤ 2 ‖f − fk‖p + lim
t→∞ wp(f , t),

which shows that

‖f ‖p ≤ lim
t→∞ wp(f , t),

and completes the proof.
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Application of this result to the pair
(

Lp (R
n) ,W1

p,0 (R
n)
)

is thus possible.

Let f ∈ W1
p,0 (R

n). Then

lim
s→1−

s−1/pp−1/p(1 − s)1/p
{∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy

}1/p

coincides with

lim
s→1−

s−1/pp−1/p(1 − s)1/p
∥
∥f |Ws

p,0 (R
n)
∥
∥

≈ lim
s→1−

(n + sp)1/ps−1/pp−1/p
∥
∥
∥f | (Lp (R

n) ,W1
p,0 (R

n)
)

s,p

∥
∥
∥

≈ (n + p)1/pp−1/p
∥
∥f |W1

p,0 (R
n)
∥
∥

= (n + p)1/pp−1/p ‖∇f ‖p ,

in line with the Bourgain, Brezis, Mironescu result of [24] insofar as the rate of
blow up is concerned, but without the exact constant that they obtain.

In the direction of the Maz’ya–Shaposhnikova theorem of [134] we observe
that if f ∈ ∪s∈(0,1)Ws

p,0 (R
n), then

lim
s→0+

s
{∫

Rn

∫

Rn

|f (x)− f (y)|p
|x − y|n+sp dx dy

}

= lim
s→0+

s
∥
∥f |Ws

p,0 (R
n)
∥
∥

p

≈ p−1n lim
s→0+

∥
∥
∥f | (Lp (R

n) ,W1
p,0 (R

n)
)

s,p

∥
∥
∥

p

= p−1n ‖f ‖p
p .

The paper [31] contains much interesting information about the interpolation
approach to the fractional spaces.

3.4 Connections with the Laplacian

Definition 3.27 Given any s ∈ (0, 1), the corresponding fractional power of
the Laplacian is the map (−�)s : S → L2 (R

n) given by

(−�)s u = F−1 (|ξ |2s F(u)
)

. (3.4.1)

Since the Fourier transform F maps the Schwartz space S onto itself, it is
easy to see, using the dominated convergence theorem, that

lim
s→0+ (

−�)s u(x) = u(x) and lim
s→1− (

−�)s u(x) = −�u(x) (u ∈ S, x ∈ Rn).

Note that since S is dense in every space Ht (Rn) with t > 0, we may and
shall suppose that this definition holds for all u ∈ Ht (Rn). We first establish
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a connection between this fractional power and the corresponding Gagliardo
seminorm [u|Hs (Rn)] = [

u|Ws
2 (R

n)
] := [u]s,2,Rn (see Section 3.1).

Proposition 3.28 Let s ∈ (0, 1). Then for all u ∈ Hs (Rn),

[

u|Hs (Rn)
]2 = 2C(n, s)−1

∥
∥(−�)s/2 u

∥
∥

2
2 , (3.4.2)

where

C(n, s) =
(∫

Rn

1 − cos ζ1

|ζ |n+2s dζ
)−1

= 22sπ−n/2�
( n

2 + s
)

|� (−s)| . (3.4.3)

Proof Using a change of variable and the Plancherel formula we see that

[

u|Hs (Rn)
]2 =

∫

Rn

(
∫

Rn

|u(x)− u(y)|2
|x − y|n+2s dx

)

dy (3.4.4)

=
∫

Rn

∫

Rn

(

|u(z + y)− u(y)|2
|z|n+2s dy

)

dz

=
∫

Rn

∥
∥
∥
∥

u(z + ·)− u(·)
|z|n/2+s

∥
∥
∥
∥

2

2,Rn
dz

=
∫

Rn

∥
∥
∥
∥
∥

F

(

u(z + ·)− u(·)
∣
∣zn/2+s

∣
∣

)∥
∥
∥
∥
∥

2

2,Rn

dz

=
∫

Rn

∫

Rn

∣
∣eiξ ·z − 1

∣
∣
2

|z|n+2s |Fu(ξ)|2 dz dξ

= 2
∫

Rn

∫

Rn

(1 − cos(ξ · z))
|z|n+2s |Fu(ξ)|2 dz dξ. (3.4.5)

We claim that the function G : Rn → R defined by

G(ξ) =
∫

Rn

(1 − cos(ξ · z))
|z|n+2s dz

is given by

G(ξ) = C(n, s)−1 |ξ |2s .

To see this, observe that G is rotationally invariant: G(ξ) = G (|ξ | e1), where
e1(1, 0, ..., 0) ∈ Rn. This is obvious when n = 1. When n ≥ 2, let R be the
rotation for which R (|ξ | e1) = ξ , denote its transpose by RT , put y = RTz and
note that
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G(ξ) =
∫

Rn

1 − cos ((R (|ξ | e1)) · z)
|z|n+2s dz

=
∫

Rn

1 − cos
(

(|ξ | e1) · (RTz
)

|z|n+2s dz

=
∫

Rn

1 − cos(|ξ | e1 · y)
|y|n+2s dy = G (|ξ | e1) ,

as claimed. Hence, with ζ = |ξ | y, we have

G(ξ) = G (|ξ | e1) =
∫

Rn

1 − cos (|ξ | y1)

|y|n+2s dy

= 1
|ξ |n

∫

Rn

1 − cos ζ1

|ζ/|ξ ||n+2s dζ = C(n, s)−1 |ξ |2s ,

as desired. Together with (3.4.5) this shows that
[

u|Hs (Rn)
]2 = 2C(n, s)−1 ‖|ξ |s Fu‖2

2,Rn = 2C(n, s)−1
∥
∥(−�)s/2 u

∥
∥

2
2 .

The formula for C(n, s) given in (3.4.3) follows from the fact that

C(n, s)−1 =
∫ ∞

0

(∣
∣Sn−1

∣
∣− (2π)n/2 r−(n−2)/2J(n−2)/2(r)

)

r−2s−1dr,

where J(n−2)/2 is the Bessel function of the first kind of order (n − 2) /2, and
the identity
∫ ∞

0
r−z (J(n−2)/2(r)− 2−(n−2)/2�(n/2−1r(n−2)/2) dr = 2−z� ((n − 2z) /4)

� ((n + 2z) /4)

for n/2 < z < (n + 4)/2 given in (2.20) of [172]; see also [78], proof of
Lemma 1.

Remark 3.29 From (3.4.3) it is plain that the constant C(n, s) has the follow-
ing behaviour:

lim
s→0+

s−1C(n, s) = 2/ωn, lim
s→1−

(1 − s)−1C(n, s) = 4n/ωn.

Proposition 3.30 Let s ∈ (0, 1). Then for all u ∈ S,

(−�)s u(x) = −1
2

C(n, s)
∫

Rn

u(x + y)+ u(x − y)− 2u(x)
|y|n+2s dy (x ∈ Rn).

(3.4.6)

Proof Denote the right-hand side of (3.4.6) by Lu(x). Use of Taylor’s theorem
shows that for each fixed x ∈ Rn and y ∈ Rn \ {0},
|u(x+y)+u(x−y)−2u(x)|

|y|n+2s ≤ C |y|2−n−2s sup{|Dαu(z)| : |α| = 2, z ∈ B(x, 1)},
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so that as u ∈ S , Lu(x) exists. Moreover, the condition u ∈ S also implies that
for each fixed y ∈ Rn\{0} the map x �−→ |u(x + y)+ u(x − y)− 2u(x)| |y|−n−2s

belongs to L1 (R
n). Since

− 1
2

C(n, s)
∫

Rn

F (u(· + y)+ u(· − y)− 2u(·)) (ξ)
|y|n+2s dy

= −1
2

C(n, s)
∫

Rn

eiξ ·y + e−iξ ·y − 2
|y|n+2s (Fu) (ξ) dy

= C(n, s) (Fu) (ξ)
∫

Rn

1 − cos (ξ · y)
|y|n+2s dy = |ξ |2s (Fu) (ξ),

the final step following from (3.4.3), we conclude from the Fubini–Tonelli the-
orem that Lu(x) = F−1

(|ξ |2s (Fu) (ξ)
)

(x) = (−�)s (x), as required.

Using this result we can now give yet another form of the fractional Lapla-
cian. Let u ∈ S and note that

lim
ε→0+

∫

Rn\B(x,ε)

u(y)− u(x)
|x − y|n+2s dy := pv

∫

Rn

u(y)− u(x)
|x − y|n+2s dy

= pv
∫

Rn

u(x + z)− u(x)
|z|n+2s dz = pv

∫

Rn

u(x − z)− u(x)
|z|n+2s dz,

so that

2pv
∫

Rn

u(x+z)−u(x)
|z|n+2s dz = pv

∫

Rn

u(x+z)−u(x)
|z|n+2s dz + pv

∫

Rn

u(x − z)−u(x)
|z|n+2s dz

= pv
∫

Rn

u(x + z)+ u (x−z)−2u(x)
|z|n+2s dz.

As observed above,
∣
∣
∣
∣

u(x + z)+ u (x − z)− 2u(x)
|z|n+2s

∣
∣
∣
∣
≤ |z|2−n−2s sup

|α|=2,y∈Rn
|Dαu(y)|

and since the right-hand side is integrable near 0, the pv can be removed and
we have

pv
∫

Rn

u(y)− u(x)
|x − y|n+2s dy = 1

2

∫

Rn

u(x + z)+ u (x − z)− 2u(x)
|z|n+2s dz

= −C(n, s)−1Lu(x),

giving

(−�)s (x) = C(n, s)pv
∫

Rn

u(y)− u(x)
|x − y|n+2s dy. (3.4.7)

Companion to the developments just outlined involving fractional powers of
the Laplacian there is the rapidly evolving theory of the fractional p-Laplacian.
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To introduce this, suppose that � is a bounded open subset of Rn with smooth
boundary and let p ∈ (1,∞). The p-Laplacian �p can be defined by its action
on smooth enough functions u :

�pu :=
n
∑

j=1

Dj
(|∇u|p−2 Dju

)

.

It arises naturally on seeking to minimise the Rayleigh quotient

R(u) :=
∫

�

|∇u|p dx/
∫

�

|u|p dx

among all functions u ∈ C∞
0 (�)\{0}. We refer to [65], Chapter 9 for some

details of the basic theory.
To obtain a fractional version of this suppose s ∈ (0, 1) and let

X(�) := {

u ∈ Ws
p (R

n) : u = 0 a.e. in Rn\�} ;
this is endowed with the norm [·]s,p,Rn and then becomes a uniformly convex,

uniformly smooth Banach space that coincides with the space
0
Ds

p (�) defined
earlier. The nonlinear map A : X(�) → X(�)∗ defined by

〈Au, v〉 =
∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y)) (v(x)− v(y))
|x − y|n+sp dx dy

for all u, v ∈ X(�) is a duality map (see Section 1.2):

〈Au, u〉 = ‖u|X(�)‖p , |〈Au, v〉| ≤ ‖u|X(�)‖p−1 ‖v|X(�)‖ .
This map A is called the s fractional p-Laplacian and is denoted by (−�)s

p; it is
the gradient of the functional J defined by

J(u) = 1
p

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy = 1

p
[u]p

s,p,Rn . (3.4.8)

To see how this operator is connected with a boundary-value problem, let

S = {u ∈ X(�) : I(u) = 1} , where I(u) : = ‖u‖p
p,� .

Then I, J ∈ C1 (X(�)) and
〈

J′(u), v
〉 = 〈Au, v〉 for all u, v ∈ X(�). Let J̃ be the

restriction of J to S. We claim that λ > 0 is a critical value of J̃ if and only if it
is an eigenvalue of the (weak) problem

(−�)s
p u = λ |u|p−2 u in �,

u = 0 in Rn\�.
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Here by a weak solution of this problem is meant a function u ∈ X(�) such
that for all v ∈ X(�),

∫

Rn

∫

Rn

|u(x)− u(y)|p−2 (u(x)− u(y)) (v(x)− v(y))
|x − y|n+sp dx dy =λ

∫

�

|u|p−2 uv dx.

For suppose that u ∈ S andμ ∈ R are such that J(u) = λ and J′(u)−μI′(u) = 0
in X(�)∗.Then for all v ∈ X(�),

∫

Rn

∫

Rn

|u(x)−u(y)|p−2 (u(x)−u(y)) (v(x)−v(y))
|x−y|n+sp dx dy = μ

∫

�

|u|p−2 uv dx;

taking v = u, we see that λ = μ and u �= 0 is a weak solution of the problem.
Conversely, if λ is an eigenvalue of the weak problem, then there is a corre-
sponding weak eigenfunction u ∈ X(�) with I(u) = 1. By Proposition 3.54
of [144], u ∈ S is a critical point of J̃ at level λ.

We next show that A has a property (introduced by Browder [37]) that will
prove to be useful in our discussion of the spectrum. Given a Banach space Y ,
a map T : Y → Y∗ is said to be of type (S)+ if, whenever (uk) is a sequence in
Y such that uk ⇀ u ∈ Y and

lim sup
k→∞

〈Tuk − Tu, uk − u〉 ≤ 0,

then uk → u in Y . Following [151] we show that the map A discussed above
has this property.

Lemma 3.31 The map A : X(�) → X(�)∗ is of type (S)+.

Proof Suppose that uk ⇀ u in X(�) and

lim sup
k→∞

〈Auk − Au, uk − u〉 ≤ 0.

Since

〈Auk − Au, uk − u〉 ≥ ‖uk|X(�)‖p−1 (‖uk|X(�)‖ − ‖u|X(�)‖)−〈Au, uk − u〉 ,

we see that

lim
k→∞

〈Auk − Au, uk − u〉 = 0.

Now we use Lemma 1.11. If p ≥ 2, this shows that

‖uk − u|X(�)‖p ≤ Cp 〈Auk − Au, uk − u〉 → 0 as k → ∞,
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while when 1 < p < 2, ‖uk − u|X(�)‖p is bounded above by

Cp/2
p |〈Auk − Au, uk − u〉|p/2 (‖uk|X(�)‖p + ‖u|X(�)‖p)

(2−p)/2

≤ Cp/2
p |〈Auk − Au, uk − u〉|p/2 (‖uk|X(�)‖p(2−p)/2 + ‖u|X(�)‖p(2−p)/2)

≤ C |〈Auk − Au, uk − u〉|p/2 → 0 as k → ∞.

The lemma follows.

For much information about the s fractional p-Laplacian and associated
boundary-value problems we refer to [28], [29], [102] and [127].
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