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For a measurable function / on the unit ball B in C" we define (M,/)(w), \w\< U to be tne mean modulus of
/ over a hyperbolic ball with center at w and of a fixed radius. The space L\,Q<p<ca, is defined by the
requirement that Myf belongs to the Lebesgue space If. It is shown that the subspace of V spanned by
holomorphic functions coincides with the corresponding subspace of L\. It is proved that if s>(n+ l)(p~' — 1),
0<p<l , then this subspace is complemented in L\ by the projection whose reproducing kernel is
(1— |H»|2)*(1 — <Z, W » " ( S + " + 1 ) . AS corollaries we get an extension of the Forelli-Rudin projection theorem and
we show that a holomorphic function / is Lp-integrable, 0<p<oo, over the unit ball B iff u = Ref is
L'-integrable over B. Finally, we sketch an alternative proof of the main result of this paper in the case

1991 Mathematics subject classification: Primary 32A35 and 3OD55, Secondary 32H1O.

0. Introduction

Throughout this paper n will denote a fixed positive integer. Let B be the unit ball in
C" and dv the normalized Lebesgue measure on B. Following Forelli and Rudin [4] we
let

(CD

where s is a real number > — 1, and / is any complex-valued measurable function on B
satisfying

|(l-|w|2)sdv(w)<oo. (0.2)

The set of all / satisfying (0.2) will be denoted by D(TS). It is clear that (0.1) defines a
linear operator which maps D(TS) into H(B), the set of all functions holomorphic in B.
The most important property of Ts is that

TJ=f and TJ=JW) for / e H(B) n D{TS). (0.3)

See [4].
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In [4], Forelli and Rudin gave a necessary and sufficient condition for Ts to be a
bounded operator on Z/(v):

Forelli-Rudin Theorem. For 1 ;gp<oo, Ts is a bounded operator on L"(v) if and only if

s > p " 1 - l . (0.4)

/ / (0.4) holds, then Ts projects L"(v) onto L"(v) n H(B).

In this paper we extend the Forelli-Rudin theorem to a class of non-locally convex
spaces. We are motivated by the fact that if 0<p< 1, then there is no bounded operator
which maps L"(v) onto L"(v) n H(B). (The dual of LP(y) is trivial. On the other hand, for
each zeB, the functional f-*f(z) is continuous on lf(v) n H(B); see [10, Theorem
7.2.5].) Our main result is that there is a scale of spaces, denoted by Lp

t(v), satisfying the
following:

(i) L"(v) n H(B) = L?(v) n H(B) for 0 < p < oo;
(ii) L?(v) c L"(v) for p ̂  1, and Lp(v) c L?(v) for 1 ^ p < oo;
(iii) for 0 < p < l (resp. l^p<oo), TS is a bounded operator on L{(v) if and only if

The definition of L?(v) and of some related spaces is in Section 2. In Section 1 we list
some properties of the automorphisms of the unit ball and give a short proof of (0.3).

The proof of the assertion (iii) is in Section 3. We also extend a result of Forelli and
Rudin by proving that feH(B) and RefeL"(v), p<l, imply feLp(v).

In Section 4, we consider a discrete version of L\ obtained by decomposing the disk
into hyperbolically "equal"-sized pieces as in [2] and use it to sketch a proof of the part
"if" of property (iii) (see above) in the case 0<p< 1.

1. Preliminaries

The definitions and notation are for the most part those given in Rudin [10]. By C"
we denote the vector space of n-tuples z=(zl,...,zn) of complex numbers, with inner
product and norm given by

<z, w> =zl w1 + • •• + znwn, \z\ = <z,z>1/2.

Let Aut(B) be the group of all (biholomorphic) automorphisms of the unit ball
B = {zeC: | z |< l} . Each \l/eAut(B) can be written as if/ = Uo<pa (aeB), where U is a
unitary transformation on C , and 4>aeAut(B) satisfies

The main property of <j>a is given by
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for all, a,z,weB (see [10, Theorem 2.2.2]). In particular

1 - |0.(w)|2=(1 Ti _ J a ^ l ? (L2>

and

" " 1 —<a, w>

Combining (1.2) and (1.3) yields

For a,weB let d(w,a) = 10a(w) | = | $w(a) |. It is well-known that d is an invariant metric
on B satisfying

,a)d(a,

for all a,z,weB. (Note that the Bergman metric on B is equal to cnlog((l +d)/(l— d))
and that d is called the pseudo-hyperbolic metric.)

The measure dx defined by

dT(w)=(l-|w|2)-(n+1)dv(w), weB,

(dv is the normalized Lebesgue measure on B) is invariant with respect to the group
Aut(B) [10, Theorem 2.2.6]. In particular, if we put

E(a, s) = {zeB:d(a,z)<e} =

then we have i(£(a, e)) = r(eB). By integration in polar coordinates we find that

e2 n(l-e2)-n = :T(e), aeB;0<e<l . (1.6)

We also note that the invariance property of d and the mean value property of
M-harmonic functions imply the formula
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g(a)z(e) = J gdz, aeB,0<e<l, (1.7)

which is valid for every Af-harmonic function g on B. (In particular, (1.7) holds for
holomorphic and antiholomorphic functions.)

A proof of (0.3). That T j = / ( 0 ) for /eH(B) n D(TS) is easily deduced from the
mean value property of antiholomorphic functions [10, Proposition 7.1.2]. Then the first
equality in (0.3) is obtained by use of the formula

(TJ)(a)=(Ts(fo(t>a))(a)), feD(Ts),aeB. (1.8)

To prove (1.8) we write Ts as

(TJ) (a) = J f(w)Qs(a, w) dx(w), (1.9)
B

where

/ « - L c \ / 1_ lu , | 2 V + n+1
(1.10)

By using the invariance of dz we get

(TJ) (a) = J A<t>aW)Qs(a,<f>a( w)) dz(w).
B

Combining this with the identity Qs(a, (j>a(w)) = Q,(a, w) (which follows from (1.4)) yields
(1.8). (The proof shows that if/ belongs to D(TS), then so does f°4>a)

We finish this section with two useful lemmas.

Lemma 1.1. // d(a, w) ^ e < 1, then

<<

C=l-\w\2-

where C = 4/(l-£2)<oo.
Proof. Clearly we have to prove one of the required inequalities; the other will

follow by symmetry. If d(a, w)^e, then, by (1.2),

) ( l | ) ^
(l-|w|2)2 = 4 •
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Lemma 1.2. / / d(a, w) g e < 1 and zeB, then

379

where C

Proof.

= 2/(1

By

I<
C~

1 - <z, w>

l-<z,fl> =

— 2)<OO.

(1-1),

11 <«(z)*(w)>| | l <aw>

(l-|«w)D(l-|-D
1-lal

The result follows.

2. LJ-spaces

Unless specified otherwise, we shall assume that p, q, e and S are positive and satisfy
p<oo, q^oo, £<1 and 5<l. For a complex-valued measurable function / on B we
define

= (M00,£/)(w)=esssup{|/(a)|:ae£(w,e)},

,q<oo,

where x(s) = T(£(W, e)), weB. (See (1.6).)
The simplest properties of Mq are collected in the following proposition.

Proposition 2.1. Let f be a measurable function on B. Then

^Mpf for q^p,

qJ for 0<d<e,

^J, where 25/(1 +52) =

for q<oo.

(2.1)

(2.2)

(2.3)

(2.4)
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Remark. Throughout this paper the letter "C" denotes a positive real constant
which may vary from line to line. In (2.2) and (2.3), C is independent of/.

Proof. The proofs of (2.1) and (2.2) are simple. To prove (2.3) observe that, by (1.5),

E(a,8)<=E(w,28/(l+82)) if d(a,w)<8. (2.5)

Hence, if a e E(w, 8), then

^)(M,> a/)«(a)= j \f\qdx

E(a,5)

E(w.e)

which gives (2.3) with C = (T(e)/T(<5))1/q.
To prove (2.4) write Mqf as

(M,/)«(w) = - / - j \f(a)\"ke(w,a)dx(a),

where

Then, by Fubini's theorem,

= 4 r J|/(a)|«dT(a) jkB(w,a)dz(w)
T1£J B B

and this concludes the proof because z(E(a, s)) = r(e).

Definition. Let fi be one of the measures v or T. We define Uq e(n) = Lp
q(n) to be the

space of all measurable functions f on B for which

Proposition 2.2. (i) The operator Sp defined by (Sp/)(w) = (l-|w|2)(n+1)/p/(w) acts as
an isomorphism of LJ(v) onto L^(x).

(ii) LJ(/z) = L'Oi); Lf(AI) C L"(AI) (« ^ p); £-*(/*) => L'(/i) (q ̂  p).

(iii) T/ie spaces LPq are complete.
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Proof. The assertion (i) is an immediate consequence of Lemma 1.1. If n = x, then
Lp(n) = L"(n) because of (2.4). Combining this with (i) gives the first relation in (ii). On
the other hand, it follows from (2.1) that LP(n)cLp(n) for q^p, and LP(n) =>Lp

p(n) for
q ̂  p, and this completes the proof of the assertion (ii).

The completeness of LP{x) reduces to the completeness of LP(v), by (i). The
completeness of LP(v) is deduced from the completeness of Lr(v), r = min (p, q), by using
Fatou's lemma and the (continuous) inclusion LJ(v) c Lr(v). The proof is standard and is
omitted here.

The main difference between LP and L{ is given by the following proposition.

Proposition 2.3. / / 0<p< 1, then LJt tJcL'f t ) , and the inclusion map is continuous.

Remark. This shows that, in contrast to the case of U, the dual of L\ separates
points.

Proof of the proposition. Let / be a norm-one element of L?(T) = L? E (T) , p<\. Let
g=Mx,,/, where 2<5/( 1 + <52) = e, S < s. We have, by (2.4) and (2.2),

where C is independent of / . On the other hand,

because Mx ag-^CMx J (by (2.3)). Hence, by using the equality

(see (2.6)) we obtain

which yields

= ess sup g(a)pks{w, a)
aeB

ess sup | g(a)p/cj(w, a) dz(w) ̂  C,
aeB B
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Combining the above inequalities concludes the proof.

As a consequence of Propositions 2.3 and 2.2 (i) we have

Proposition 2.3'. / / / e L?(v), 0 < p < 1, then

" 1 ) (2.7)

For p > l , the above arguments show that L'(T)CL{(T). In other words, if/ satisfies
(2.7), p> 1, then /eLJ(v). By using this remark we prove the following.

Proposition 2.4. The inclusions L?(v)cL?(v) (p<l) and Lp(v)<=L?(v) (p>l), which
occur in Proposition 2.2(ii), are proper.

Proof. Let {Aj}f=1 be a sequence of pairwise disjoint subsets of B such that
= 2~J. Let

/(w) = (l-|w|2)-<"+1)/" £c,.K,.(w), weB,
j=i

where Kj is the characteristic function of Ay We put c} = 2ilp if p> 1, and c,=2J if p< 1.
If p > l , then / satisfies (2.7) and therefore /eL?(v). On the other hand, f$LP(y), and
this shows that L?(v)#Lp(v) for p> 1. The case p< 1 is considered similarly.

Although the spaces L\ and U are different, their restrictions to some important
classes coincide. Here we consider the case of holomorphic functions.

Proposition 2.5. We have LJ(v) n H(B) = Lp(v) n H(B), and the corresponding "norms"
are equivalent.

Proof. Let feH(B) and oefl. Then fo(t>aeH(B) and therefore the function |/°<£a|«
(q < oo) is subharmonic, whence

0fl|^T = E-2" f |/|«dt.
eB £(a, e)

Hence

| / | g CM,,./, (2.8)

where C is independent of / . This proves that LJ(v) n i/(B)<=Lp(v) n //(B).

(Observe that the case q = oo is trivial.) To conclude the proof we have to prove that
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From (2.8) and the obvious modification of (2.3) we have Mx J-^CM^ t(^PJ) =
CMPJ, where <5 = 2£/(l+e2). Hence L'(v)nff(fl) = LJ>)nff(fl)cL£.'(v)n'ff(B),
which was to be proved.

3. Projections

Our main result is the following.

Theorem 3.1. For 0<p<l, TS is a bounded operator on Lp(v) = L{ E(v) if and only if

s>(n+l){p-1-l). (3.1)

//(3.1) holds, then Ts projects L?(v) onto Lp{v)nH{B).

The second assertion is easily deduced from the first, (0.3), and Proposition 2.5.
To prove the first assertion we need the following lemma which can be found in
[10, Proposition 1.4.10].

Lemma 3.1. For a real number a. let

Then

Ja(w)=l j f a<0 ,

l

Remark. For two nonnegative functions F and G defined on a set S we write
F(w) = G{w), weS, if there is a positive constant C such that G{w)/C^F(w)^CG(w) for
all weS.

Proof of Theorem 3.1. Assuming (3.1) we have L\{y)cD(Ts), by Proposition 2.3'. Let
feLpi(v). For a fixed zeB let h(w) = Qs(z,w), weB, where Qs is defined by (1.10). Then,
by (1.9) and Proposition 2.3,

I
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where C is independent of / , z. Since M1(//i)^(M1/)(M0Oft) and Mmh^C\h\ (by
Lemmas 1.1 and 1.2), we get

\(TJ){z)\>£C \{MJY(W)\Qs(z,W)\"dx{.w), (3.2)

B

where C is independent of/, z. Now integration yields

11 TJ) (z) |" dv(z) ̂  C J (M1/)"(w) dr(w) j | Qs(z, w) |" dv{z)
B B B

HwJfl -1 ufr J » dv(vv),

where a = (s + n+ \)p —(n + l). If (3.1) holds, then a>0, so the function (1 —|w|2)"Ja(w) is
bounded on B (by Lemma 3.1). Hence we conclude that if (3.1) holds, then Ts is a
bounded operator from L?(v) into L"(v) n H(B) = L?(v) n H(B).

Assuming that s^(n + l)(p~1 —1), we have to prove that Ts is not bounded. Consider
the functions fb,beB, defined by

. - |w | 2 ) - ( s + n + 1 ) if weE(b,e)
otherwise.

Then

For each zeB the function w->(l —<z, w»"( 5 + n + 1 ) is antiholomorphic. Hence, by (1.7),

Hence

\ \ \ \ \ \ \ \ beB, (3.3)

where a = sp—(n+ 1)(1 — p)^0. On the other hand, applying Lemma 1.1 and (2.5) gives

(Mxfb)(w)^C(l-\w\2)-^+n+1) if weE(b,8),

= 0 if w$E{b,d),

where ^ = 2e/(l+£2). From this we find that
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k,,£C(l-|if)-<", beB, (3.4)

where a is the same as in (3.3). From (3.3), (3.4) and Lemma 3.1 we conclude that Ts is
unbounded on the bounded set {(1 — \b\2Ylpfb:beB}, and this completes the proof of the
theorem.

Remark. The above proof shows that Theorem 3.1 remains true if we replace L?(v)
by any of the spaces LP(v), 1 g q ^ oo.

Theorem 3.2. The Forelli-Rudin theorem remains true if we replace Lp(v) by L\(v).

Proof. If Ts is bounded on L?(v), p2:l, then Ts acts as a bounded operator from
L"(v) to itself because of the continuous inclusions L"(v) c L{(v) and Lp(v)=>Lp(v) nH(B)
( = the image of L?(v)). Hence, that the boundedness of Ts on L{(v) implies (0.4) is a
consequence of the Forelli-Rudin theorem.

In view of Propositions 2.4 and 2.5, if s>p~1 — 1, then Theorem 3.2 states somewhat
more than the Forelli-Rudin theorem. Nevertheless, a slight modification of Forelli and
Rudin's proof proves Theorem 3.2. Namely, it follows from [4] that if s>p~l — 1, p ^ l ,
then the equality

(UJ) (z) = J /(w) \Qs(z, w) | dz(w), z 6 B,
B

defines a bounded linear operator on L"(v). This implies that if / e L?(v), then

(because Mj/eLp(v)). On the other hand, by using (2.4) (applied to fQs) and Lemmas
1.1 and 1.2 we see that if USMJ is defined, then so is TJ and \TJ\^CUSMJ, where
C is independent of / . Combining these estimates shows that Ts is a bounded operator
from L{{y) to LP{y)dJ[{v), which completes the proof.

At the end we use Theorem 3.1 to extend another result of Forelli and Rudin [4].

Theorem 3.3. / / fefi(B) and the real part of f belongs to Lp(v)(0<p<oo), then
f€L"(v).

Forelli and Rudin considered the case there p2:1.

Proof. Let 0 < p < l , u = Ref. The implication ueL?(v)=>/eLp(v) is a direct conse-
quence of Theorem 3.1. and the identity

= 2Ts U- /(0) ,U 6L?(v) ,s>(n+l)(p-1- l ) . (3.5)
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Thus we have to prove (3.5) and the implication

weL"(v)=>ueL?(v). (3.6)

For 0 < r < 1 define fr and ur by fr(z)=f(rz) and ur(z) = u{rz). Since freD(Ts) we have,
by (0.3), 2Tsur = TJr+Tjr=fr+J{0). Hence

f(rz) + /(O) = 2 J u(rw)Ks{z, w)dv(w) = 2r~2n | u(w)Ks(z, w/r)dv(w), zefl,
A rB

where

(i-IH2r

Now (3.5) is proved by using the Lebesgue dominated convergence theorem and the
inclusion L?(v)cD(TS).

The implication (3.6) is proved (in the same way as Proposition 2.5) by using the
following result of Hardy and Littlewood [5].

Theorem HL. / / u is a pluri-harmonic function on B, then for 0<p< 1

\u(0)\p^Ce-2n l\u\'dv, 0 < e < l , (3.7)
cB

where C is a constant depending only on n,p.

In fact, (3.7) holds for any harmonic function, and a proof can be found in Fefferman
and Stein [3]. An elementary proof, using only the mean-value property over balls, is
given in [8].

4. New view to Theorem 3.1

After we wrote the first three sections of this manuscript and we had discussions
mentioned in the acknowledgement (see below) we discovered a new approach to
Theorem 3.1.

In this section we will only sketch a proof of Theorem 4.1 (below) in the setting of the
unit disk. A proof with an obvious modification works in the case of the unit ball. A
detailed proof with further results will appear in a later paper.

Let D denote the unit disk in C and let 8 be a fixed positive number less than 1.
Let P = {Dk:k^l} be a partition of D (i.e. \J?=1Dk=D, and DknDj=(p for fc#y) so

that each Dk is a measurable set and the (pseudo-hyperbolic) diameter of each Dk is not
greater than 6.
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We denote by Bp, 0<p<oo, the space consisting of all analytic functions f such that

\\f\\p
BP=i\f(z)\"dxdy<+00.

D

These spaces are known as Bergman spaces. We refer the reader to Axler's survey paper
[1] for properties of these spaces.

Recall that

Let 0 < p < l and let q> be a measurable function on D. In order to define the space on
which Ts is a bounded operator we first write formally

(7»(z)=£ f Ks(z,wMw)dudv.
k=l Dk

Next, let {ak} be a fixed sequence such that akeDk for each fc^l, and let Ak(z) =
( l- |a t |

2 ) s + 2-2 / p( l-zaf c) s + 2 . If s + 2-2/p>0, i.e. (s + 2)p>2, the power of ( l - | a t |
2 ) in

the previous expression is exactly what we need to insure that such terms have an Bp

norm which is bounded by a constant. The functions of the form as Ak are building
blocks in the Coifman-Rochberg decomposition of Bergman's space and we are
motivated by their approach [2].

By Lemmas 1.1 and 1.2, there exist the functions ck(z,w) and an absolute constant c
such that (s+l)n-l(l-\w\2Y+2'2ip(l-zwy+2 = ck(z,w)Ak(z) and c-l^\ck{z,w)\^c for
every zeD and every wEDk.

Hence

7>(z)= £ kk(z)Ak{z)

where

kk = kk(z) = {s+\)n-y f ck(z,w)(l-\w\2)2«'-'-1)<p(»)dudv,
Dk

and consequently

|(7»(z)|<;C £ cpk\Ak(z)\, (4.1)

where

<Pk= J (l-H^-'-^cpMldudv. (4.2)
Dfc
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Now, we are motivated for the following definition. Let Mp, 0 < p < oo, denote the space
of all complex measurable functions q> on D for which

") I/P

_ Wk\p\ < + oo,
J k = l

where cpk is defined by (4.2).

Theorem 4.1. Let 0 < p < l and s>2(p~1 — 1). Then Ts is a bounded operator from MP

into B".

Proof. Let (peM". Then as above we have (4.1). Now, the desired conclusion follows
from (4.1) and the inequality

\T.<p)(z)\>£cYl\q>k\''\Ak(z)\>

by integration.

The following lemma shows that Theorem 4.1 contains the main part of Theorem 3.1.
Recall that the space LI s(v) was defined in Section 2 and that v denotes the normalized
Lebesgue measure on D.

Lemma 4.1. Let P = {Dk:k^l} be a partition of the unit disk described above. In
addition, if there is an absolute constant c such that v(Dk)^.c(l — \ak\

2)2, fc^l, and
0 < p < l then LpcM", where Lp = L?>(5(v).

Proof. Let <peLp
u ak = JDk|<p(z)|dz(z), k^l, and zeDk. Since the pseudo-hyperbolic

diameter of Dk is less than 5, we have Dk<=E(z,S) and consequently |ak|p^<
for every zeDk. By integration over Dk, k^ 1,

and consequently

£ \oik\
pv{Dk)^c £ f \MMz)\'dxdy. (4.3)

* = 1 k=l Dk

Since <peLp it follows from (4.3) that

|M 'v ( J>*)<co . (4-4)

Recall that by the hypothesis there is a constant c such that v(Dk)^c(l — \ak\
2)2. Hence,

by (4.4) we get
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Thus by Lemma 1.1, cpeM".
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Addendum. The dual of LJ, 0<p<oo, l^q<oo, is LJ-, where q' = q/(q—l), p' =
p/(p — 1) for p > l and p' = ao for p g l and the pairing is given by jBf(z)g(z)dn(z).

This answers a question posed by the referee.
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