
Canad. Math. Bull. Vol. 58 (1), 2015 pp. 91–104
http://dx.doi.org/10.4153/CMB-2014-057-x
c©Canadian Mathematical Society 2014

Essential Commutants of Semicrossed
Products

Kei Hasegawa

Abstract. Let α : G y M be a spatial action of a countable abelian group on a “spatial” von Neumann
algebra M and let S be its unital subsemigroup with G = S−1S. We explicitly compute the essential
commutant and the essential fixed-points, modulo the Schatten p-class or the compact operators, of
the w∗-semicrossed product of M by S when M′ contains no non-zero compact operators. We also
prove a weaker result when M is a von Neumann algebra on a finite dimensional Hilbert space and
(G, S) = (Z, Z+), which extends a famous result due to Davidson (1977) for the classical analytic
Toeplitz operators.

1 Introduction

Let A be a (not necessarily self-adjoint) operator algebra on a Hilbert space H. We
denote by Sp = Sp(H) the Schatten p-class operators on H with 1 ≤ p < ∞ and
by S∞ = S∞(H) the compact operators K = K(H) on H. We also denote by I(A)
the set of all isometries in A. In this paper we investigate the following two sets:

Esscomp(A) = {X ∈ B(H) | aX − Xa ∈ Sp(H) for a ∈ A},
Essfixp(A) = {X ∈ B(H) | v∗Xv − X ∈ Sp(H) for v ∈ I(A)},

called the essential commutant and the essential fixed-points of A modulo the ∗-ideal
Sp, respectively. Clearly, Esscomp(A) is contained in Essfixp(A), and these two sets
coincide when A is a C∗-algebra that contains the identity operator, since any unital
C∗-algebra is the linear span of its unitary elements. Johnson and Parrott [8] and
Popa [13] proved that Esscom∞(A) = A′ + K holds when A is a von Neumann
algebra, and Hoover [7] proved that Esscomp(A) = A′ + Sp when A is a C∗-algebra
but p 6= ∞. On the other hand, for a non-self-adjoint algebra these two sets do
not coincide in general, and thus the computation of them is non-trivial. Such non-
trivial results, among others, are Esscom∞(T(H∞)) = T(H∞ + C) + K(H2), due
to Davidson [2] and Essfix∞(T(H∞)) = T(L∞) + K(H2), due to Xia [16], where
T(H∞), T(H∞ + C), and T(L∞) are the sets of all Toeplitz operators on the Hardy
space H2 = H2(T) whose symbols are in the bounded Hardy space H∞ = H∞(T),
the Douglas algebra H∞ + C (with C = C(T)), and L∞ = L∞(T), respectively (see
[3, Chapters 6 and 7]).

In this paper, we study the essential commutant and the essential fixed-points for
w∗-semicrossed products. The notation below follows [9]. Let M be a von Neumann
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algebra on a Hilbert space H, let G be a countable abelian group acting on M by
α, and let S be a subsemigroup of G which contains the unit of G and generates G.
We also assume that the action α : G y M is spatial; that is, α is implemented by
a unitary representation {ug | g ∈ G} of G on H. We denote by the same symbol
α the action of G on M′ implemented by {ug | g ∈ G}. Then we can construct the
left and right w∗-crossed products Gn̄αM and M′ōαG on L2 := H ⊗ `2(G) with
(Gn̄αM)′ = M′ōαG. The left and right reduced w∗-semicrossed products Sn̄αM
and MōαS are constructed as σ-weakly closed subalgebras of Gn̄αM and MōαG,
respectively. Let P denote the orthogonal projection from L2 onto H2 := H ⊗ `2(S)
and define the Toeplitz map T : B(L2) → B(H2) by TX := PX|H2 for X ∈ B(L2).
The left and the right w∗-semicrossed products S×̄αM and M×̄αS are constructed
as σ-weakly closed subalgebras of B(H2), and in fact, coincide with T(Sn̄αM) and
T(MōαS), respectively (see Proposition 2.6), where, for a subset F of B(L2), the
T(F) stands for {TF | F ∈ F}. In the typical case of (M,H,G, S) = (C,C,Z,Z+), the
“left” and the “right” algebras (Gn̄αM, Sn̄αM, S×̄αM) and (MōαG,MōαS,M×̄αS)
coincide and become (L∞,H∞,T(H∞)). The concept of w∗-semicrossed products
and reduced ones were introduced by Kakariadis [9] for σ-weakly closed operator
algebras and their normal endomorphisms and for von Neumann algebras and their
automorphisms, i.e., the case of (G, S) = (Z,Z+), respectively. The latter coincides
with the adjoint of analytic crossed products studied by McAsey, Muhly, and Saito
[11]. Toeplitz operators associated with analytic crossed products were studied by
Saito [14], and the algebras of analytic Toeplitz operators in this sense essentially
coincide with w∗-semicrossed products, as above.

In Section 2 we define these objects and prove some elementary properties.
When M′ contains no non-zero compact operators, we can explicitly compute
Esscomp(S×̄αM) and Essfixp(S×̄αM) as follows.

Theorem 1.1 Let M ⊂ B(H) be a von Neumann algebra, let α : G y M be a
spatial action of a discrete countable abelian group, and let S be a subsemigroup of G that
contains the unit of G and generates G. If M′ contains no non-zero compact operators,
then

Essfixp(S×̄αM) = T(M′ōαG) + Sp(H2),

Esscomp(S×̄αM) = M′×̄αS + Sp(H2)

hold for every 1 ≤ p ≤ ∞.

Corollary 1.2 The assertion of Theorem 1.1 holds when H is the standard Hilbert
space L2(M) and M is either diffuse, B(`2) of infinite dimension, or a (possibly infinite)
direct sum of them.

Another immediate corollary of Theorem 1.1 is the double commutant theorem
for S×̄αM and S×̄αM′ in the Calkin algebra under the assumption that M∩K = M′∩
K = {0}. The proofs of Theorem 1.1 and Corollary 1.2 will be given in Section 3.
In Section 4, we consider the case where H is finite dimensional (and hence so is M)
and (G, S) = (Z,Z+), and can prove the following theorem.
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Theorem 1.3 Let M be a von Neumann algebra on a finite dimensional Hilbert space
H and letα be a ∗-automorphism on M implemented by a unitary operator on H. Then
we have

Esscomp(Z+×̄αM) ⊂ T(M′ōαZ) + Sp(H2) for 1 ≤ p ≤ ∞.

This theorem is just [2, Theorem 2] for the classical analytic Toeplitz operators
specialized to M = C and p = ∞, though our proof is slightly improved with the
help of several ideas in [12,16]. We do not consider the essential fixed-points because
there is a technical obstruction to translating the argument in [16] into our setting
(see Remark 4.7). In the final section, we examine whether or not the assertion of
Theorem 1.3 still holds when M is an arbitrary von Neumann algebra of standard
form.

2 Preliminaries

Remark 2.1 For a given v ∈ I(A) we consider the unital completely positive map
Ψv : X 7→ v∗Xv on B(H). Then Essfixp(A) is nothing but the set of operators “fixed
modulo Sp” by {Ψv | v ∈ I(A)}. It is immediate that Esscomp(A) ⊂ Essfixp(A).
Moreover, these two sets coincide if A is a C∗-algebra, since any C∗-algebra is gen-
erated by its unitary elements. By [7, 8, 13] any von Neumann algebra M ⊂ B(H)
satisfies Esscomp(M) = Essfixp(M) = M′ + Sp for every 1 ≤ p ≤ ∞.

Next, let us recall w∗-semicrossed products and the Toeplitz maps associated with
them. Our notation and formulation follow [9]. Note that those do not completely
agree with the usual ones for crossed products. Let M ⊂ B(H) be a von Neumann
algebra and let G be a countable discrete abelian group. Assume that we have a spatial
actionα : G y M implemented by a unitary representation u : G 3 g 7→ ug ∈ B(H);
i.e., we have αg(x) = ugxu∗g for every x ∈ M and g ∈ G. Since G acts on M′

too by Ad ug , we also denote by the same symbol αg the automorphism Ad ug on
M′. Let G 3 g 7→ λg ∈ B(`2(G)) be the left regular representation of G and let
eg ∈ B(`2(G)) be the orthogonal projection onto Cδg . Set L2 := H ⊗ `2(G) and
define representations π : M → B(L2) and λ( · ), ρ( · ) : G→ B(L2) by

π(x) =
∑
g∈G

αg(x)⊗ eg , λ(g) = 1⊗ λg , ρ(g) = u∗g ⊗ λg

for x ∈ M and g ∈ G. The left and right w∗-crossed products of M by G are defined
to be the von Neumann algebras Gn̄αM = π(M) ∨ {λ(g) | g ∈ G}′′ and MōαG :=
M ⊗ C1 ∨ {ρ(g) | g ∈ G}′′, respectively. It is well known that (Gn̄αM)′ = M′ōαG
(see e.g., [15, Theorem 1.21]). We also note that when M is of standard form, each
action α : G y M is spatial thanks to [4, Theorem 3.2].

Definition 2.1 (Kakariadis [9]) Let M ⊂ B(H) and let α : G y M be as above.
For a given subsemigroup S of G that contains the unit ι of G and generates G, the
left and right reduced w∗-semicrossed product Sn̄αM and MōαS of M by S are defined
to be the σ-weakly closed subalgebras of Gn̄αM and MōαG generated by π(M) and
{λ(s) | s ∈ S} and by M ⊗ C1 and {ρ(s) | s ∈ S}, respectively.
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Let P be the projection onto H2 := H⊗`2(S) ⊂ L2. The Toeplitz map T : B(L2)→
B(H2) is defined by TX := PX|H2 for X ∈ B(L2). The left and right w∗-semicrossed
product S×̄αM and M×̄αS of M by S are defined to be σ-weakly closed subalgebras
of B(H2) generated by T(π(M)) and {Tλ(s) | s ∈ S} and by M ⊗ C1`2(S) and {Tρ(s) |
s ∈ S}, respectively. Here, for a subset F of B(L2) the T(F) stands for {TF | F ∈ F}.

Remark 2.2 Since T is normal and multiplicative on Sn̄αM and MōαS, one has

T(Sn̄αM) ⊂ S×̄αM ⊂ T(Sn̄αM)
σ-w

and T(MōαS) ⊂ M×̄αS ⊂ T(MōαS)
σ-w
.

Moreover, for any x, z ∈ (Sn̄αM) ∪ (MōαS) and Y ∈ B(L2), we have T∗x TY Tz =
Tx∗Y z. We also note that P is in π(M)′, and hence one has

Essfixp

(
T(π(M))

)
= Esscomp

(
T(π(M))

)
= T(π(M)′) + Sp.

We will use these facts throughout.

Remark 2.3 Define a unitary operator W :=
∑

g∈G ug ⊗ eg on L2. It is easily seen
that W ∗π(x)W = x ⊗ 1 and W ∗λ(g)W = ρ(g) for x ∈ M and g ∈ G. Moreover,
since W commutes with P, Ŵ := TW is also unitary on H2, and hence one has
Ŵ ∗Tπ(x)Ŵ = x ⊗ 1`2(S) and Ŵ ∗Tλ(g)Ŵ = Tρ(g) for x ∈ X and g ∈ G. Therefore, the
“left” and “right” algebras are unitarily equivalent.

Proposition 2.4 Let M,G, S, α be as in Definition 2.1. Then we have

Sn̄αM = {x ∈ Gn̄αM | x(1⊗ eι) = Px(1⊗ eι)},
MōαS = {x ∈ MōαG | x(1⊗ eι) = Px(1⊗ eι)}.

Proof Put Ω := {x ∈ Gn̄αM | x(1⊗eι) = Px(1⊗eι)}. Clearly, Sn̄αM is contained
in Ω. Let Ĝ be the dual group of G equipped with the normalized Haar measure
µ, and let α̂ : Ĝ → Aut(Gn̄αM) be the dual action. By [10, Corollary 4.3.2], it
suffices to show that for any x ∈ Ω its spectrum spα̂(x) is contained in S (see [10,
Definition 2.1]). Indeed, if g is in G \ S, then it is not hard to see that the function
Ĝ 3 γ 7→ γ(g)−1 ∈ C belongs to the annihilator of x. Hence, for any h ∈ spα̂(x) we
have

∫
Ĝ γ(g)−1γ(h)dµ(γ) = 0, which implies g 6= h. Since g ∈ G \ S is arbitrary,

we have h ∈ S, and hence spα̂(x) is contained in S. By the preceding remark, one has
MōαS = {x ∈ MōαG | x(1⊗ eι) = Px(1⊗ eι)}.

Recall that a semigroup S is right amenable if S has a right invariant mean; that is,
there exists a state ψ on `∞(S) that satisfies that ψ( f ) = ψ(rs f ) for f ∈ `∞(S) and
s ∈ S, where rs f (t) = f (ts), t ∈ S. It is known (see [5, Theorem 17.5]) that every
abelian semigroup is (right) amenable.

Proposition 2.5 If S is a right amenable semigroup and σ : S → B(H) is a unitary
representation, then {σ(s) | s ∈ S}′ ∩ cow{σ(s)∗xσ(s) | s ∈ S} 6= ∅ for every
x ∈ B(H).

Proof Let ψ be a right invariant mean on S. Fix x ∈ B(H). For ξ ∈ S1(H), define
fξ ∈ `∞(S) by fξ(s) = Tr(σ(s)∗xσ(s)ξ), s ∈ S. Then there exists y ∈ B(H) ∼=
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S1(H)∗ such that Tr(yξ) = ψ( fξ) for ξ ∈ S1(H). Since fσ(s)ξσ(s)∗ = rs fξ for s ∈ S
and ψ is right invariant, we have Tr(σ(s)∗yσ(s)ξ) = ψ( fσ(s)ξσ(s)∗) = ψ( fξ) = Tr(yξ),
which implies that y ∈ {σ(s) | s ∈ S}′. Suppose that y /∈ cow{σ(s)∗xσ(s) | s ∈ S}.
By the Hahn–Banach separation theorem, there exist ξ ∈ S1(H) and a constant
c ∈ R such that Reψ( fξ) = Re Tr(yξ) < c ≤ Re Tr(σ(s)∗xσ(s)) = Re fξ(s) for s ∈ S.
However, by the Kreı̌n–Mil’man theorem, ψ belongs to the weak∗ closed convex hull
of S ⊂ `∞(S)∗, a contradiction.

The following proposition gives us a Brown–Halmos type criterion ([1, Theorems
6 and 7]).

Proposition 2.6 Let M ⊂ B(H), S ⊂ G, α be as in Definition 2.1. Then the follow-
ing are true.

(i) For a given X ∈ B(H2), X belongs to T(M′ōαG) (resp. T(Gn̄αM′)) if and only if
X commutes with T(π(M)) (resp. M⊗C1`2(S)) and satisfies that T∗λ(s)XTλ(s) = X
(resp. T∗ρ(s)XTρ(s) = X) for every s ∈ S.

(ii) T(M′ōαS) = M′×̄αS = (S×̄αM)′ and T(Sn̄αM′) = S×̄αM′ = (M×̄αS)′.

Proof Let X ∈ T(π(M))′ be arbitrarily chosen in such a way that T∗λ(s)XTλ(s) = X
for every s ∈ S. Since T(π(M))′ = T(π(M)′), there exists x ∈ π(M)′ such that
X = Tx. By Proposition 2.5, we find y in cow{λ(s)∗PxPλ(s) | s ∈ S}∩{λ(s) | s ∈ S}′.
Note that y is in M′ōαG = (Gn̄αM)′ = π(M)′ ∩ {λ(g) | g ∈ G}′, since PxP is in
π(M)′, the λ(s), s ∈ S, normalize π(M)′, and S generates G. Since the Toeplitz map
T is σ-weakly continuous, one has Ty ∈ cow{T∗λ(s)XTλ(s) | s ∈ S} = {X}, which
implies that X = Ty ∈ T(M′ōαG). Conversely, let x be in M′ōαG ⊂ π(M)′. Then
Tx ∈ T(π(M)′) = T(π(M))′. For any s ∈ S, we have T∗λ(s)TxTλ(s) = Tλ(s)∗xλ(s) = Tx,
which implies (i).

To see (ii) it suffices to prove that (S×̄αM)′ = T(M′ōαS) by Remark 2.2. It is
immediate to see that T(M′ōαS) ⊂ (S×̄αM)′. Conversely, let Y ∈ (S×̄αM)′ be
arbitrary. By the preceding paragraph, there exists a ∈ M′ōαG such that Y = Ta.
By the assumption that G = S−1S, for each g ∈ G \ S there exist s, t ∈ S such that
g = s−1t . Since a commutes with λ(s), s ∈ S, we have〈

aξ ⊗ δι, η ⊗ δg

〉
=
〈

(1− P)aPξ ⊗ δι, η ⊗ δs−1t

〉
=
〈

Pλ(s)(1− P)aPξ ⊗ δι, η ⊗ δt

〉
=
〈

[Ta,Tλ(s)]ξ ⊗ δι, η ⊗ δt

〉
= 0

for every ξ, η ∈ H, and hence (1⊗ eg)a(1⊗ eι) = 0. Therefore, a belongs to M′ōαS
by Proposition 2.4.

3 Proof of Theorem 1.1

Throughout this section, let M ⊂ B(H) denote a von Neumann algebra, α : G y M
a spatial action of discrete countable abelian group, and S a subsemigroup of G that
contains the unit ι of G and generates G.
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Lemma 3.1 If M′ (resp. M) contains no non-zero compact operators, then so does
π(M)′ (resp. (M′ ⊗ C1)′).

Proof Assume that M′ ∩ K = {0}. By Remark 2.3 it suffices to prove that
(M ⊗ C1)′ ∩K(L2) = {0}. Let K ∈ (M ⊗ C1)′ ∩ K(L2) be arbitrary chosen.
Since (M ⊗ C1)′ = M′⊗̄B(`2(G)), the (1 ⊗ λ∗g eg)K(1 ⊗ ehλh)|H⊗Cδι belongs to
(M′ ⊗ Ceι) ∩K(H ⊗ Cδι) ∼= M′ ∩K(H) = {0} for every g, h ∈ G, which implies
K = 0.

Lemma 3.2 The restrictions of the Toeplitz map to {λ(g) | g ∈ G}′ and
{ρ(h) | h ∈ G}′ are isometries. Consequently, every isometry in S×̄αM and M×̄αS
is of the form Tv with some isometry v in Sn̄αM and MōαS, respectively.

Proof First, we prove that the restriction of T to {λ(g) | g ∈ G}′ is injective. Let
x ∈ {λ(g) | g ∈ G}′ be chosen in such a way that Tx = 0. Since S generates G
and G is abelian, for each g, h ∈ G there exist s, s′, t, t ′ ∈ S such that g = t−1s and
h = t ′−1s′. Since x commutes with λ(g), g ∈ G, one has〈

x(ξ ⊗ δt−1s), η ⊗ δt′−1s′
〉

=
〈

x(ξ ⊗ λ∗t δs), η ⊗ λ∗t′δs′
〉

=
〈

x(ξ ⊗ λt′δs), η ⊗ λtδs′
〉

=
〈

Tx(ξ ⊗ δt′s), η ⊗ δts′
〉

= 0

for every ξ, η ∈ H, and hence x = 0. By Proposition 2.5 there exists

y ∈ cow{λ(s)∗PxPλ(s) | s ∈ S} ∩ {λ(g) | g ∈ G}′.

Note that ‖y‖ ≤ ‖Tx‖. Since Pλ(s)P = λ(s)P for s ∈ S, one has

Ty ∈ cow{T∗λ(s)TxTλ(s) | s ∈ S} = cow{Tλ(s)∗xλ(s) | s ∈ S} = {Tx}.

Since T is injective on {λ(g) | g ∈ G}′, it follows that x = y. Thus, ‖x‖ ≤ ‖Tx‖ ≤
‖x‖, and hence the restriction of T to {λ(g) | g ∈ G}′ is isometric.

To see the second assertion let V ∈ I(S×̄αM) be arbitrary. By Proposition 2.6 we
find v ∈ Sn̄αM in such a way that V = Tv. Then one has 1 = V ∗V = T∗v Tv = Tv∗v.
Since T is injective on Sn̄αM ⊂ {ρ(g) | g ∈ G}′, v itself must be isometry. Similarly,
one can prove the same assertion for {ρ(g) | g ∈ G}′ and M×̄αS.

By the preceding lemma, it is immediate to see that T(M′ōαG) + Sp is contained
in Essfixp(S×̄αM). Hence the next theorem completes the proof of Theorem 1.1.

Theorem 3.3 Assume that M′ ∩K = {0}. For a given X ∈ B(H2) the following are
true.

(i) The X belongs to T(M′ōαG) + Sp if and only if X commutes with T(π(M))
modulo Sp and satisfies that T∗λ(s)XTλ(s) − X ∈ Sp for every s ∈ S.

(ii) The X belongs to M′×̄αS + Sp if and only if X commutes with T(π(M)) and
{Tλ(s) | s ∈ S}modulo Sp.

Proof First, we prove the “if” part of (i). Let X ∈ Esscomp(T(π(M))) be arbitrarily
chosen in such a way that T∗λ(s)XTλ(s) − X ∈ Sp for every s ∈ S. By Remark 2.2 there
exist a ∈ π(M)′ and K ∈ Sp such that X = Ta + K. Note that (Ta−T∗λ(s)TaTλ(s))P =
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P(a − λ(s)∗aλ(s))P ∈ π(M)′, since a, P ∈ π(M)′ and λ(s), s ∈ S, normalize π(M)′.
For each s ∈ S one has

(Ta − T∗λ(s)TaTλ(s))P = (X − T∗λ(s)XTλ(s))P − (K − T∗λ(s)KTλ(s))P

belongs to K ∩ π(M)′ by assumption. Thus, it follows from Lemma 3.1 that
T∗λ(s)TaTλ(s) = Ta for every s ∈ S, and hence we have Ta ∈ T(M′ōαG) by Propo-
sition 2.6. Therefore, the X = Ta + K is in T(M′ōαG) + Sp. The “only if” part of (i)
also follows from Proposition 2.6.

Next, we prove (ii). Since M′×̄αS = (S×̄αM)′, the “only if” part is trivial. By
the preceding paragraph, it suffices to prove that every Ty ∈ T(M′ōαG) commuting
with {Tλ(s) | s ∈ S} modulo Sp belongs to M′×̄αS = T(M′ōαS). By Proposition
2.4, it suffices to show that (1 ⊗ eg)y(1 ⊗ eι) = 0 for every g ∈ G \ S. Note that
(1 ⊗ eg)y(1 ⊗ eι) ∈ π(M)′, since (1 ⊗ eh) ∈ π(M)′ for every h ∈ G. As in the
proof of Proposition 2.6 we can find s, t ∈ S in such a way that g = s−1t , and have
〈yξ ⊗ δι, η ⊗ δg〉 = 〈[Ty ,Tλ(s)]ξ ⊗ δι, η ⊗ δt〉 for every ξ, η ∈ H, which implies
that (1⊗ eg)y(1⊗ eι) is compact, and hence (1⊗ eg)y(1⊗ eι) ∈ π(M)′ ∩K = {0}.
Therefore, we get Ty ∈ M′×̄αS.

Proof of Corollary 1.2 By [4, Theorem 3.2] every action α : G y M is spatial.
Since M is anti-spatially isomorphic to M′, it suffices to prove that K ∩ M = {0}.
We first prove the case when M = B(`2). Since(

B(`2), L2(B(`2))
) ∼= (B(`2)⊗ C1, `2 ⊗ `2

)
and `2 is infinite dimensional, we have K∩(B(`2)⊗C1) = {0}. When M is diffuse, it
is clear that K∩M = {0}. The general case follows from [4, Lemma 2.6], which guar-
antees that each central projection q ∈ M enjoys (Mq, qL2(M)) ∼= (Mq, L2(Mq)).

4 Proof of Theorem 1.3

Let (M,H, α) be as in Theorem 1.3. We first point out that the same assertions of
the lemmas below hold true for ρ(1), since λ(1) and ρ(1) are unitarily equivalent; see
Remark 2.3. Remark that λ(n) converge to 0 weakly, and hence λ(n)∗Kλ(n) converge
to 0 strongly for every compact operator K. Also, note that (1− P)λ(n) converges to
0 strongly. These facts are frequently used throughout.

The following two lemmas seem well known, but we give their proofs for the
reader’s convenience.

Lemma 4.1 There exists a ∗-isomorphism from L∞ = L∞(T) onto {λ(1)}′′ sending
z to λ(1).

Proof Let U be the bilateral shift on L2(T) with respect to the standard basis
{zn | n ∈ Z} and define the unitary transformation V : `2(Z)→ L2(T) by V δn := zn,
n ∈ Z. Then one has λ(1) = 1⊗ λ1 = 1⊗V ∗UV . Since the von Neumann algebra
generated by U is known to be L∞, the correspondence L∞ 3 f 7→ 1 ⊗ V ∗ f V ∈
{λ(1)}′′ obviously gives the desired ∗-isomorphism.
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We denote by Φ the quotient map from B(H) onto the Calkin algebra. Recall that
the essential norm ‖X‖e of X ∈ B(H) is defined to be

‖X‖e = inf{‖X − K‖ | K ∈ K(H)}.

Lemma 4.2 [λ(1), P] is a compact operator and the mapping C(T) 3 f 7→ Φ(T f̂ ) ∈
C∗(Φ(Tλ(1))) gives a ∗-isomorphism, where L∞ 3 f 7→ f̂ ∈ {λ(1)}′′ is the ∗-isomor-
phism in the preceding lemma.

Proof Since the range of Pλ(1)(1 − P) is H ⊗ Cδ0 and H is finite dimensional,
Pλ(1) − λ(1)P = Pλ(1)(1 − P) is compact. Hence, Φ ◦ T|C∗(λ(1)) forms a ∗-homo-
morphism. By the preceding lemma we have C∗(λ(1)) ∼= C(T), and hence it suffices
to show that ‖Tx‖e = ‖x‖ for x ∈ C∗(λ(1)). Indeed, for any x ∈ Zn̄αM and
K ∈ K(H2), it follows from [14, Poposition 3.4] and the compactness of K that
ρ(n)∗(PxP−K)ρ(n) converges to x strongly. By the lower-semicontinuity of operator
norm, we have ‖Tx − K‖ ≥ ‖x‖. Since K is arbitrary, we get ‖Tx‖e = ‖x‖.

Lemma 4.3 If a ∈ π(M)′ satisfies that [Ta,Tλ(1)] ∈ K, then every σ-weak cluster
point of {λ(n)∗PaPλ(n)}n≥0 belongs to M′ōαZ.

Proof Let b be a σ-weak cluster point of {λ(n)∗PaPλ(n)}n≥0. Then there exists a
subnet Λ of N such that b = σ-w-limn∈Λ λ(n)∗PaPλ(n). Since PaP ∈ π(M)′ and
λ(1) normalizes π(M)′, one has b ∈ π(M)′. Hence, it suffices to show that the b
commutes with λ(1). Since [PaP, Pλ(1)P] is compact by assumption, one has

λ(1)(λ(n)∗PaPλ(n))

= λ(n)∗Pλ(1)PaPλ(n)

= λ(n)∗PaPλ(1)Pλ(n) + λ(n)∗[Pλ(1)P, PaP]λ(n)

= λ(n)∗PaPλ(n)λ(1) + λ(n)∗[Pλ(1)P, PaP]λ(n) + λ(n)∗PaPλ(1)(1− P)λ(n)

n∈Λ
−−→ bλ(1) strongly,

which implies that [b, λ(1)] = 0.

We denote by ‖X‖p ∈ [0,+∞] the Schatten p-norm of X ∈ B(H) with 1 ≤ p <
∞ and define ‖X‖∞ := ‖X‖, the operator norm of X. Recall the fact that the norms
‖ · ‖p are lower-semicontinuous with respect to the weak operator topology (see e.g.,
[6, Proposition 2.11]).

Lemma 4.4 Let b ∈ {λ(1)}′, let K ∈ K, and let 1 ≤ p ≤ ∞ be given and set
X := Tb + K. Assume that x is an element in the ∗-algebra generated by λ(1) and that
there exists a constant δ > 0 such that ‖TxX − Tbx‖p > δ. Then ‖[Txλ(n),X]‖p > δ
and xλ(n) ∈ Z+n̄αM hold for all sufficiently large n ∈ N.
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Proof Since x is a polynomial of λ(1) and λ(1)∗, there exists n0 ∈ N such that
xλ(n0) is in Z+n̄αM. For n ≥ n0 one has that

T∗λ(n)[TxTλ(n),X] = T∗λ(n)TxTλ(n)X − T∗λ(n)(Tb + K)TxTλ(n)

= TxX − T∗λ(n)bTxλ(n) − T∗λ(n)KTxTλ(n)

= TxX − Tbx − T∗λ(n)KTxTλ(n)

converges to TxX − Tbx strongly as n→∞, since K is compact. Thus, by the lower-
semicontinuity of ‖ · ‖p, there exists n1 > n0 such that

‖[Txλ(n),X]‖p ≥ ‖T∗λ(n)[TxTλ(n),X]‖p > δ

as long as n ≥ n1.

First, we deal with the case where p = ∞. Although Claim 4.5 can be shown in
the same way as the proof of [2, Theorem 2], we give a somewhat simplified proof
based on the techniques used in [12,16]. The method of our proof may be essentially
known, but we could not find a suitable reference that explicitly explains such an
argument.

Proof of Theorem 1.3 when p =∞ Let X be in Esscom∞(Z+×̄αM). Since X is in
Esscom∞(T(π(M))) = T(π(M)′) + K, there exists a ∈ π(M)′ such that X − Ta is
compact. Let Λ be a subsequence of N such that the limit

b = σ-w- lim
n∈Λ

λ(n)∗PaPλ(n)

exists. Lemma 4.3 states that this b must be in M′ōαZ. If Ta − Tb is compact, then
so is X − Tb. Since Ta is in Esscom∞(Z+×̄αM), that is, [Ta,Y ] is compact for every
Y ∈ Z+×̄αM, the proof will be complete after establishing the following claim.

Claim 4.5 If Ta − Tb is not compact, then there exists Z in Z+n̄αM such that
[TZ ,Ta] is not compact.

Proof Set δ := ‖Ta − Tb‖e > 0 and A := C∗(Φ(Ta − Tb),Φ(Tλ(1)). For γ ∈ T let
Jγ be the closed ideal of A generated by {Φ(T f̂ ) | f (γ) = 0} and let ϕγ : A→ A/Jγ
be the quotient map. Since Φ(Ta − Tb) commutes with Φ(Tλ(1)) and C∗(Φ(Tλ(1))) is
isomorphic to C(T), by [3, Theorem 7.47]

∑⊕
γ∈T ϕγ : A →

∑⊕
γ∈T A/Jγ is injective.

Thus, there exists γ ∈ T such that ‖Φ(Ta − Tb) + Jγ‖ > δ/2. Now for any f ∈ C(T)
with f (γ) = 1, we have

‖T f̂ Ta − T f̂ b‖e = ‖T f̂ (Ta − Tb)‖e = ‖Φ(Ta − Tb) + Φ(T f̂−1(Ta − Tb))‖, > δ/2

since Φ(T f̂−1(Ta − Tb)) ∈ Jγ .

Let us construct a sequence {pk}k ⊂ Z+n̄αM such that limk→∞ ‖[Tpk ,Ta]‖ ≥
δ/2 and the sum

∑∞
k=1 pk converges strongly. Set Bγn := {γ′ ∈ T | |γ′ − γ| < n−1}

and c( f ) := ‖T f̂ Ta − T f̂ b‖ for f ∈ L∞(T). Note that c( · ) is σ-weakly lower-

semicontinuous. For n + 2 < k one can take fn,k ∈ C(T) in such a way that
0 ≤ fn,k ≤ 1, f = 0 on Bγk ∪ (T \ Bγn) and f = 1 on Bγn+1 \ Bγk−1. Note that { fn,k}k

converges almost everywhere to a function fn ∈ C(T) with fn(γ) = 1. Hence, by
the lower-semicontinuity of c( · ) together with Lebesgue’s dominated convergence
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theorem, there exists n′ > n such that c( fn,n′) > δ/2. We can inductively choose
n1 < n′1 < n2 < n′2 < · · · in such a way that gk := fnk,n′k

satisfies that 0 ≤ gk ≤ 1,
{gk}k have pairwise disjoint supports, and c(gk) > δ/2. Let hk be a trigonomet-
ric polynomial such that ‖gk − hk‖∞ < 2−k and c(hk) > δ/2. By Lemma 4.4

one can choose mk such that ‖[Tĥkλ(mk),Ta]‖ > δ/2 and ĥkλ(mk) ∈ Z+n̄αM. Set

pk := ĥkλ(mk); then ‖[Tpk ,Ta]‖ ≤ 2‖hk‖∞‖a‖ ≤ 4‖a‖. Thus by passing to a sub-
sequence if necessary, we may and do assume that limk→∞ ‖[Tpk ,Ta]‖ exists. Let χk

be the characteristic function of supp(gk). Then χ̂k, k ∈ N, are mutually orthogonal
projections in {λ(1)}′′ satisfying that ‖pk(1 − χ̂k)‖ = ‖hk(1 − χk)‖∞ < 2−k and
‖pkχ̂k‖ = ‖χ̂k pkχ̂k‖ ≤ 2 for every k ∈ N. For any ξ ∈ L2 and k < l, we have that∥∥∥ l∑

i=k
piξ
∥∥∥ ≤ ∥∥∥ l∑

i=k
χ̂i piχ̂iξ

∥∥∥ +
∥∥∥ l∑

i=k
pi(1− χ̂i)ξ

∥∥∥ ≤ 2
∥∥∥ l∑

i=k
χ̂iξ
∥∥∥ + 2−(k−1)‖ξ‖

converges to 0 as k, l → ∞, and hence the {pk}k is the desired sequence. Note that
pk and p∗k converge to 0 strongly. Since Ta ∈ Esscom∞(Z+×̄αM), we can apply
[12, Lemma 2.1] to compact operators [Tpk ,Ta] and obtain a subsequence {pk(i)}∞i=1

such that
∞∑
i=1

[Tpk(i) ,Ta] converges strongly and
∥∥∥ ∞∑

i=1
[Tpk(i) ,Ta]

∥∥∥
e
≥ δ/2.

Letting Z :=
∑∞

i=1 pk(i), we have Z ∈ Z+n̄αM and [TZ ,Ta] /∈ K, which implies the
claim.

We then treat the case where p 6= ∞. The next lemma originates in [12, Lemma
2.1].

Lemma 4.6 Let H1 be a Hilbert space and fix 1 ≤ p < ∞. Assume that a sequence
{Kn}n ⊂ Sp(H1) satisfies the following conditions:

(i) ‖Kn‖p > 2 for every n ∈ N;
(ii) supn ‖Kn‖ < C1 for some C1 > 0;
(iii) Kn and K∗n converge to 0 strongly.

Then there exists a subsequence {Knk}∞k=1 such that
∑∞

k=1 Knk converges strongly and∑∞
k=1 Knk /∈ Sp(H1).

Proof Let H0 be the separable Hilbert space generated by
⋃∞

n=1(Ker Kn)⊥. Choose
an orthonormal basis {en}∞n=1 of H0, and let Rn be the orthogonal projection onto
the linear span of e1, . . . , en. We claim that there exist mutually orthogonal finite
rank projections {Qk}∞k=1 and a subsequence {Knk}∞k=1 such that

(a) ‖QkKnk Qk‖p > 1,
(b) ‖Knk Q⊥k ‖p < 3−k and ‖Q⊥k Knk‖p < 3−k,
(c) ‖Knk Rk‖ < 2−k,

with Q⊥k := I − Qk. Assume that we have chosen Q1, . . . ,Qk and n1, . . . , nk. Put

Q :=
∑k

j=1 Q j . Since Kn,K∗n → 0 strongly and Q is finite rank, there exists nk+1 > nk

such that ‖Knk+1 Rk+1‖ < 2−k−1, ‖Knk+1 Q‖p < 3−k−1, and ‖QKnk+1‖p < 3−k−1. Thus
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this Knk+1 satisfies the desired (c). Write K := Knk+1 for short. We have

2 < ‖K‖p ≤ ‖Q⊥KQ⊥‖p + ‖QKQ⊥‖p + ‖KQ‖p < ‖Q⊥KQ⊥‖p + 1,

implying that ‖Q⊥KQ⊥‖p > 1. Let F j ≤ Q⊥, j ∈ J, be an increasing net of
finite rank projections that converges to Q⊥ strongly. Since K is in Sp, one has
‖FiKFi − Q⊥KQ⊥‖p, ‖KF⊥i ‖p, and ‖F⊥i K‖p converge to 0. By the lower-semiconti-
nuity of norm, we can find j ∈ J in such a way that Qk+1 := F j < Q⊥ satisfies (a)
and (b) for K = Knk+1 . Hence we can construct the desired Qk and Knk by induction.

Write Kk := Knk for short. By (ii) and (b) we have∥∥∥ n∑
k=1

Kk

∥∥∥ ≤ ∥∥∥ n∑
k=1

QkKkQk

∥∥∥ +
n∑

k=1

∥∥∥Q⊥k KkQk

∥∥∥ +
n∑

k=1

∥∥∥KkQ⊥k

∥∥∥ < C1 + 2.

Hence
∑n

k=1 Kk is norm bounded. If ξ in RnH0 and m ≥ l ≥ n, then by (c) we have∥∥∥( m∑
k=1

Kk −
l∑

k=1
Kk

)
ξ
∥∥∥ ≤ m∑

k=l+1
‖KkRn‖‖ξ‖ ≤

m∑
k=l+1

2−k‖ξ‖ ≤ 2−l‖ξ‖.

Since
⋃∞

n=1 RnH1 is dense in H0 and each Kk is equal to 0 on H⊥0 ,
∑∞

k=1 Kk converges
strongly. Set X =

∑∞
k=1 Kk. Since each Qn is finite rank, Qn

∑m
k=1 KkQn converges to

QnXQn in norm. For each n ∈ N we have

‖QnXQn‖p = lim
m→∞

∥∥∥Qn

m∑
k=1

KkQn

∥∥∥
p
≥ ‖QnKnQn‖p −

∑
k 6=n
‖QnKkQn‖p

≥ 1−
∑
k 6=n
‖Kk(I − Qk)‖p ≥ 1−

∑
k 6=n

3−k ≥ 1

2
,

which implies that X /∈ Sp, since Qn, n ∈ N, are mutually orthogonal.

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3 when p 6=∞ Let X ∈ Esscomp(Z+×̄αM) be arbitrarily cho-
sen. Since Esscomp(Z+×̄αM) ⊂ Esscom∞(Z+×̄αM), there exists b ∈ M′ōαZ such
that X − Tb is compact. Suppose that X − Tb ∈ K \ Sp. Define cp : L∞ →
[0,+∞] by cp(g) = ‖T(ĝ)X − T(bĝ)‖p. Note that cp is lower-semicontinuous with
respect to the weak operator topology and cp(1) = +∞. Suppose that for each
γ ∈ T there exists n ∈ N such that cp( f ) ≤ 2 as long as f ∈ C(T) satisfies that
0 ≤ f ≤ 1 and supp( f ) ⊂ Bγn . Then, by the compactness of T, there exist such

(γ1, n1), . . . , (γk, nk) ∈ T × N with T =
⋃k

i=1 Bγi
ni

. Taking a partition of the unity

{ψi}k
i=1 for the covering {Bγi

ni
}k

i=1, we have cp(1) ≤
∑k

i=1 cp(ψi) ≤ 2k, a contradic-
tion. Hence, we can find γ ∈ T such that for every n ∈ N there exists fn ∈ C(T) such
that cp( fn) > 2, 0 ≤ fn ≤ 1, and supp( fn) ⊂ Bγn . By a same approximation argument
as in the case of p =∞ together with Lemma 4.4, we obtain pk ∈ Z+n̄αM such that
pk and p∗k converge to 0 strongly,

∑∞
k=1 pk converges strongly, and that ‖pk‖ ≤ 2 and

‖[Tpk ,X]‖p > 2 for every k ∈ N. Applying Lemma 4.6 to Kk = [Tpk ,X] we obtain a
subsequence {pk(i)}i such that Z :=

∑∞
i=1 pk(i) ∈ Z+n̄αM and [TZ ,X] /∈ Sp. This is

a contradiction; hence X − Tb is in Sp.
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Remark 4.7 To compute the essential fixed-points, there is a technical obstruction.
In the proof of Lemma 4.3, it is crucial that that λ(1) normalizes π(M)′. In [16] Xia
computed Essfix∞(T(H∞)) by using the finite Blaschke product wn instead of the
inner function zn; see [16, Proposition 3]. However, unitary elements in C∗(λ(1)) do
not normalize π(M)′ in general.

5 Condition (?)

Let M be a von Neumann algebra on L2(M) and α be a ∗-automorphism of M. We
say (M, α) satisfies condition (?) if

(?) Esscomp(Z+×̄αM) ⊂ T(M′ōαZ) + Sp, 1 ≤ p ≤ ∞

holds true. Note that (M, α) satisfies (?) if and only if so does (M′, α) if and only if

Esscomp(M×̄αZ+) ⊂ T(Zn̄αM′) + Sp, 1 ≤ p ≤ ∞

holds. We have already seen that (M, α) satisfies (?) when M is either diffuse, a type
I∞ factor, a direct sum of them (Corollary 1.2), or is finite dimensional (Theorem
1.3). In fact, we can prove the next theorem, asserting that condition (?) is satisfied
in a more general case. For a given (M, α) it is known and not hard to see that M is
decomposed uniquely as M = Mc⊕M∞⊕

∑⊕
n≥1 Mn, where Mc is diffuse, the M∞ a

direct sum of infinite type I factors, and Mn = Mn(C)⊗ `∞(Xn), n ≥ 1, with discrete
sets Xn. The uniqueness of this decomposition guarantees that α is also decomposed
as α = αc ⊕ α∞ ⊕

∑⊕
n≥1 αn. It is not difficult to see that there exists a unique

automorphism βn of `∞(Xn) and a unitary element vn ∈ Mn(C)⊗ `∞(Xn) such that
αn = Ad vn ◦ (id⊗βn). Remark that βn induces a unique bijection θn on Xn. With
these notation we have the following theorem.

Theorem 5.1 Assume that every orbit of θn forms a finite set. Then (M, α) satisfies
condition (?).

To prove this theorem we need the following lemma.

Lemma 5.2 Let {(Mi , αi)}i∈I be a family of von Neumann algebras and their ∗-auto-
morphisms. Set M :=

∑⊕
i∈I Mi and α :=

∑⊕
i∈I αi . If every (Mi , αi) satisfies condition

(?), then so does (M, α).

Proof Let X ∈ Esscomp(Z+×̄αM) be arbitrarily chosen. Let ei be the central sup-
port of π(Mi) in π(M) and put A := {ei | i ∈ I}′′. Note that λ(1) and P com-
mute with A. Then there exists a ∈ π(M)′ ⊂ A′ such that X − Ta ∈ Sp. Since

Ta is also in Esscomp(Z+×̄αM) and Z+×̄αM =
∑⊕

i∈I Z+×̄αi Mi , we have Taei ∈
Esscomp(Z+×̄αi Mi). By assumption, there exist bi ∈ M′i ōαi Z and Ki ∈ Sp(eiL2(M))
such that Taei = Tbi + Ki . Set b :=

∑
i∈I bi and K :=

∑
i∈I Ki . Since

b ∈
∑⊕

i∈I M′i ōαi Z = M′ōαZ,

it suffices to prove that K ∈ Sp. Since Taei − T∗λ(n)ei
Taei Tλ(n)ei → Ki strongly as

n → ∞, the lower-semicontinuity of ‖ · ‖p enables us to find ni ∈ N in such a way
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that

‖[Tλ(ni )ei ,Taei ]‖p ≥ ‖Taei − T∗λ(ni )ei
Taei Tλ(ni )ei‖p > 2−1‖Ki‖p.

Then x :=
∑

i∈I λ(ni)ei belongs to Z+n̄αM. Since Ta ∈ Esscomp(Z+×̄αM), one has
[Tx,Ta] =

∑
i∈I[Tλ(ni )ei ,Taei ] ∈ Sp. Hence, it follows from the inequality above

that K ∈ Sp.

Proof of Theorem 5.1 By Corollary 1.2 and Lemma 5.2 we may and do assume that
M = Mn and α = id⊗βn. Decompose Xn into the disjoint θn-orbits Xn, j , j ∈ Jn. Set
Mn, j := Mn(C)⊗ `∞(Xn, j), which sits inside Mn = Mn(C)⊗ `∞(Xn) naturally. Then

Mn =
∑⊕

j∈ Jn
Mn, j , and clearly α(Mn, j) = Mn, j holds for every j ∈ Jn. Consequently,

one has

(Mn, αn) =
∑⊕

j∈ Jn
(Mn, j , α|Mn, j ).

By assumption each Xn, j is a finite set, and hence Mn, j is finite dimensional. There-
fore, the desired assertion follows from Theorem 1.3 thanks to Lemma 5.2.

Here a question naturally arises.

Question 5.3 Let σ be the ∗-automorphism on `∞(Z) induced from the transla-
tion n ∈ Z 7→ n + 1 ∈ Z. Does (`∞(Z), σ) satisfy condition (?)?

In fact, the positive answer to the question enables us to get rid of the assump-
tion from Theorem 5.1 as follows. We use the notation in the proof of Theorem 5.1.
Thanks to Lemma 5.2 and Theorem 5.1, it suffices to prove that for every infinite θn-
orbit Xn, j , (Mn, j , α|Mn, j ) satisfies condition (?). Then (Mn, j , α|Mn, j ) can be identified
with (Mn(C)⊗`∞(Z),Ad vn, j◦id⊗σ) for a unitary element vn, j ∈ Mn(C)⊗`∞(Xn, j),
and hence we may assume that (M, α) = (Mn(C) ⊗ `∞(Z), id⊗σ). Write `∞ :=
`∞(Z) and `2 := `2(Z) for simplicity. The standard form of Mn(C) ⊗ `∞ be-
comes Mn(C) ⊗ C1 ⊗ `∞ on Cn ⊗ Cn ⊗ `2. Hence, Zn̄id⊗σ(Mn(C) ⊗ `∞) and
(Mn(C)⊗`∞)′ōid⊗σZ become Mn(C)⊗C1⊗(Zn̄σ`

∞) and C1⊗Mn(C)⊗(`∞ōσZ),
respectively. It is easily seen that

Esscomp

(
Mn(C)⊗ C1⊗ (Z+×̄σ`∞)

)
⊂ C1⊗Mn(C)⊗ Esscomp(Z+×̄σ`∞) + Sp.

Therefore, if Question 5.3 had an affirmative answer, then (M, α) would satisfy con-
dition (?), since

Esscomp(Z+×̄αM) = Esscomp

(
Mn(C)⊗ C1⊗ (Z+×̄σ`∞)

)
⊂ C1⊗Mn(C)⊗ Esscomp(Z+×̄σ`∞) + Sp

⊂ C1⊗Mn(C)⊗ T(`∞ōσZ) + Sp

= T(M′ōαZ) + Sp.

Finally, we should remark that the canonical implementing unitary operator of σ is
nothing but the bilateral shift on `2(Z) with respect to the standard basis. Hence
Question 5.3 seems operator theoretic rather than operator algebraic.
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