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We study the spreading of viscous fluid injected under an elastic sheet, which is driven
by gravity and by elastic bending and tension forces and resisted by viscous forces.
The injected fluid forms a large blister and spreads outwards analogously to a viscous
gravity current or a capillary droplet. The relative strengths of the three driving forces
are determined by how the horizontal length scales of the system compare with three key
transition length scales. Bending is dominant on small length scales, tension is dominant
on intermediate length scales and gravity is dominant on large length scales. We show
how to use the method of matched asymptotic expansions to predict the spreading rate
and thickness profile of the blister of fluid in the seven possible asymptotic regimes, for
both two-dimensional and axisymmetric geometries. Consideration of different physical
effects at the fluid front increases the number of regimes yet further.
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1. Introduction

Flow of viscous liquid in a deformable gap bounded by an elastic plate or membrane
is ubiquitous in nature and in the laboratory. Examples include laccolith formation where
magma spreads under a deformable layer of rock (Pollard & Johnson 1973), flow in the
cardiovascular or respiratory system in the body (Grotberg & Jensen 2004) and flow in
elastic microfluidic devices (Christov et al. 2018).

In this paper, we study the case where the liquid is spreading in the narrow gap between
a flat rigid base and an overlying elastic sheet (Hosoi & Mahadevan 2004), which is
the elastic-lidded analogue of a spreading viscous gravity current or capillary droplet.
For these spreading problems, it is natural to model the bulk of the liquid using the
Navier–Stokes equations with a no-slip boundary condition on the rigid base (and free
slip or no slip on the upper surface, depending on whether it is a free surface or covered by
the elastic lid). However, at the front of the spreading liquid, the moving contact line poses
a problem since the viscous dissipation diverges as the liquid height tends to zero (Huh &
Scriven 1971), and hence other physical effects must come into play near the contact line
to cut off the divergence.

† Email address for correspondence: G.G.Peng@damtp.cam.ac.uk
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FIGURE 1. Schematic figure of fluid injected under an elastic sheet with either
two-dimensional or axisymmetric geometry.

The spreading under an elastic sheet has been studied with various physical mechanisms
at the moving front, including a pre-wetting film (e.g. Lister, Peng & Neufeld 2013;
Hewitt, Balmforth & De Bruyn 2015), a fluid lag (e.g. Hewitt et al. 2015; Ball &
Neufeld 2018; Wang & Detournay 2018) and elastic fracture (e.g. Bunger & Cruden 2011;
Wang & Detournay 2018; Lister, Skinner & Large 2019), and sometimes with additional
complications such as surface tension between two phases (e.g. Peng et al. 2015) or
adhesive forces between the boundaries (e.g. Ball & Neufeld 2018). We focus on spreading
over a pre-wetting layer of thickness h0, as shown in figure 1. This set-up can also be
interpreted as injection in an elastic-walled Hele-Shaw cell, which has been studied by e.g.
Pihler-Puzović et al. (2012) and Pihler-Puzović et al. (2018) in the context of controlling
the Saffman–Taylor viscous-fingering instability.

Some aspects of this system have been studied theoretically (Flitton & King 2004; Lister
et al. 2013; Hewitt et al. 2015) using the method of matched asymptotic expansions,
exploiting the separation of length scales between the large central ‘blister’ of fluid,
where viscous forces can be neglected, and the small ‘peeling region’ near the apparent
contact line, where viscous forces are important. In the blister, the viscous pressure
drop is asymptotically negligible, so the blister has a quasi-static shape analogous to
the spherical-cap shape of a capillary droplet. The peeling region has a travelling-wave
solution, moving outwards at some speed Ṙ = dR/dt. If either bending stresses or tension
forces alone are dominant, then the peeling speed depends on the apparent curvature
κ = d2h/dx2 or slope α = −dh/dx at the edge of the blister solution according to the
‘peeling-by-bending’ or ‘peeling-by-pulling’ laws (see e.g. Lister et al. 2013)

Ṙ = 0.472
Bh1/2

0 κ5/2

12μ
or Ṙ = Tα3

12μ ln[(R/�p)3]
, (1.1a,b)

respectively, where μ is the dynamic viscosity of the fluid, B is the bending stiffness of
the sheet, T is the tension in the sheet and �p is the length scale of the peeling region.
(The peeling-by-pulling law (1.1b) is the elastic analogue of the Cox–Voinov law (Voinov
1976; Cox 1986) for capillary spreading.) Integration of the resulting differential equation
then yields the spreading law R(t) for the blister at late times when any initial transient
behaviour has become irrelevant.

The aim of this paper is to unify and extend the work by Lister et al. (2013) and Hewitt
et al. (2015). These studies considered various, but not all, combinations of bending,
tension and gravitational forces and were restricted to the case of constant injection flux.
We will, for both two-dimensional and axisymmetric geometries, systematically identify
all the possible asymptotic combinations, revealing a rich variety of different behaviours.
We calculate the asymptotic spreading laws R(t) for each case, while allowing fluid to
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Viscous flow under an elastic sheet 905 A30-3

Viscous control with cut-off . . .

. . . height . . . pressure . . . length Energy control

Two-dimensional B (5β + 2)/17 (7β + 2)/23 (3β + 1)/10 β/3
B T (5β + 2)/12 (7β + 2)/16 (3β + 1)/7

}
β/2T (3β + 1)/7∗ (3β + 1)/7∗ (3β + 1)/7∗

B G
}
(5β + 2)/7

}
(7β + 2)/9

}
(3β + 1)/4

⎫⎪⎬
⎪⎭β

B T G
T G (3β + 1)/4∗ (3β + 1)/4∗ (3β + 1)/4∗
G (3β + 1)/5 (3β + 1)/5 (3β + 1)/5

Axisymmetric B (5β + 2)/22 (7β + 2)/30 (3β + 1)/13 β/4
B T (5β + 2)/17 (7β + 2)/23 (3β + 1)/10

}
β/3T (3β + 1)/10∗ (3β + 1)/10∗ (3β + 1)/10∗

B G
}
(5β + 2)/12

}
(5β + 2)/16

}
(3β + 1)/7

⎫⎪⎬
⎪⎭β/2B T G

T G (3β + 1)/7∗ (3β + 1)/7∗ (3β + 1)/7∗
G (3β + 1)/8 (3β + 1)/8 (3β + 1)/8

TABLE 1. Summary of results in this paper for various asymptotic limits, showing the exponent
δ in R(t) ∝ tδ for various cases in two-dimensional and axisymmetric geometries with power-law
injection rates (i.e. V(t) ∝ tβ ). See the discussion in § 8. The mechanism driving the spreading
is either bending (B), tension (T), gravity (G) or a combination as seen in figure 2. For viscously
controlled peeling by pulling, there is also a logarithmic factor (indicated by an asterisk). In each
column, cases with the same exponent and numerical prefactor are grouped together.

be injected at an arbitrary power-law rate (which also includes the important case of
constant-volume spreading).

A possible complicating factor is that the deflection of the elastic sheet also causes it to
stretch and hence generates tension in the sheet, which is additional to the original constant
tension imposed externally by the far-field boundary conditions. This additional tension is
studied using the Föppl–von-Kármán equations in Peng & Lister (2020), so is assumed to
be negligible here for simplicity. The condition for its neglect is discussed briefly in § 8.2.

This paper is laid out as follows. We present the governing equations in § 2. The pressure
driving the flow is coupled to the liquid height by bending, tension and gravitational
forces. We identify three key transition length scales that determine which combination
of forces is dominant and determine the full regime diagram in § 3. We then investigate
the key travelling-wave peeling solutions (§ 4), and combine them with quasi-static blister
solutions to obtain asymptotic predictions for each possible combination of dominant
driving forces (§ 5). The asymptotic results are verified against numerical results in § 6,
and some further regimes are identified in § 7. The main points are summarized in § 8, and
several generalizations of the asymptotic analysis, including to different physical controls
of the peeling front, are discussed. The extraordinary variety of asymptotic results is shown
in table 1, and the different regimes are shown schematically in figures 2 and 5.

2. Governing equations

We consider the situation shown in figure 1. Viscous liquid fills the narrow gap, of
initial height h0, between a horizontal rigid lower boundary and a thin overlying elastic
sheet. The liquid has dynamic viscosity μ and density ρ, and is acted on by gravity
(acceleration g). The sheet has bending stiffness B = Ed3/12(1 − ν2), where E is the
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905 A30-4 G. G. Peng and J. R. Lister

Bending

Smallest
scale �p (t)

Largest
scale R(t)

Largest
scale R(t)

Smallest
scale �p (t)

Gravity

(LTG)

LBG

L L

LBG

LBG

LTG

LBT

LBT LTG

G

T

G

B+G
B+T B+T+G

T+G

B
B

(LBT)
LBT LTG

Bending Tension Gravity

(LBG)

(a) (b)

FIGURE 2. Schematic regime diagrams showing the succession of dominant terms in (2.3) (on
logarithmic axes) for the cases (a) LTG � LBT and (b) LBT � LTG, with LBG = (LBTLTG)1/2.
Main panels show which regime (combination of dominant terms) the system is in for different
values of the largest scale R and the smallest scale �p of the system. The arrows show possible
transitions between regimes as R(t) increases (moving to the right) for the case that �p(t)
increases (moving upwards). The main discussion in this paper covers the unshaded areas, while
the shaded areas are discussed in § 7.1. Arrows above main panels show the transition lengths
(3.2) and which term dominates on a length scale L.

Young’s modulus, ν is the Poisson’s ratio and d is the thickness of the sheet, and is also
under an imposed tension T . We assume that these quantities are all constant.

The vertical length scales of the system are assumed to be small compared with
the horizontal length scales, so that vertically integrated or averaged quantities can
be employed, which are functions of the horizontal position vector x = (x, y) and
time t. (All vectors and tensors here have only horizontal components.) We consider
both two-dimensional (2-D) and axisymmetric (axi) geometries. For the two-dimensional
geometry, we assume that fluid is injected along a line source x = 0 and spreads
symmetrically in the x-direction. For the axisymmetric geometry, we define the radial
coordinate r = |x| and assume that fluid is injected at the origin r = 0 and spreads
axisymmetrically in the r-direction. We use ∇ to denote the horizontal gradient operator,
primes to denote differentiation with respect to the main horizontal coordinate x or r, and
overdots to denote differentiation with respect to time.

We seek to predict the evolution of the cell height profile h(x, t) (i.e. the thickness of the
fluid layer), which for simplicity we often write as h(x) or h(r), leaving the dependence
on t understood. We focus in particular on the height and radius of the blister of injected
fluid, defined by

H(t) = h(0, t), R(t) = min{|x| : h(x, t) = h0}. (2.1a,b)

(In (2.1b) we have chosen to define the blister radius as the distance from the origin to the
closest point at which h = h0. The deflection h − h0 typically has decaying oscillations
in |x| > R and there are other reasonable choices, for example the distance to the closest
minimum of h, but the difference is negligible at late times.)
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Viscous flow under an elastic sheet 905 A30-5

The net upward pressure pe on the sheet and the deflection h − h0 of the sheet are
coupled by the Föppl–von-Kármán equations (e.g. Landau & Lifshitz 1986), which for
constant imposed tension T simplify to

pe = B∇4h − T∇2h. (2.2)

The two terms describe, respectively, the effects of induced bending stresses (cf. the Euler
beam equation) and imposed tension (cf. the Young–Laplace equation) in the sheet.

We model the viscous flow using lubrication theory (Reynolds 1886). The lubrication
flow is driven by horizontal gradients in the pressure field, so we can leave out pressure
contributions that have no horizontal gradient, such as the atmospheric pressure, the
weight of the sheet, and the vertical hydrostatic variation. The resulting effective pressure
p(x, t), hereafter referred to as just ‘the pressure’, is due both to the elastic forces in the
sheet and to the net hydrostatic pressure

p = pe + ρgh = B∇4h − T∇2h + ρgh. (2.3)

We neglect any horizontal motion of the overlying sheet, and obtain a parabolic
Poiseuille-flow profile. This yields the depth-integrated flux q(x, t), from which the
evolution of the height profile is found by mass conservation,

q = − h3

12μ
∇p, ḣ = −∇ · q = ∇ ·

(
h3

12μ
∇p
)

. (2.4a,b)

Equations (2.3) and (2.4) are supplemented by far-field conditions for decay to the
undisturbed pre-wetting film and symmetry conditions at the origin

h → h0, p → ρgh0 as x or r → ∞, h′(0) = h′′′(0) = 0. (2.5a,b)

The volume V(t) of injected fluid is assumed to follow a power law,

2-D:
∫ ∞

0
(h − h0) dx = V(t) = Qtβ, Axi:

∫ ∞

0
(h − h0) 2πr dr = V(t) = Qtβ,

(2.6a,b)
with an injection exponent β ≥ 0. (In the two-dimensional case, V(t) denotes the volume
per unit width in the third dimension in the region x ≥ 0, which is half the total amount
by symmetry.) The injection flux at the origin is thus given by

2-D: qx = − h3

12μ
p′ = V̇ at x = 0, Axi: qr = − h3

12μ
p′ ∼ V̇

2πr
as r → 0. (2.7a,b)

We use the initial condition h = h0 at t = 0, except that for β = 0 (constant volume) the
injected volume is initially localized to a very small region near the origin.

3. Scaling analysis and transition lengths

We first need to determine which of bending, tension and gravity are dominant, and
which can be neglected. In a region with height scale H and length scale L, the scales for
the bending, tension and gravitational pressure terms in (2.3) are

p ∼ BH
L4

,
TH
L2

and ρgH, (3.1)

respectively. Balancing these pairwise reveals three key length scales which we term
the bending–tension length, the bending–gravity length and the tension–gravity length,
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905 A30-6 G. G. Peng and J. R. Lister

respectively,

LBT = (B/T)1/2, LBG = (B/ρg)1/4, LTG = (T/ρg)1/2. (3.2a–c)

These length scales are analogous to the capillary length (γ /ρg)1/2 for capillary spreading.
The bending term dominates on small length scales (L � LBT, LBG), the gravity term
dominates on large length scales (L � LBG, LTG) and the tension term dominates on
medium length scales (LBT � L � LTG, if this interval exists).

Since LBG = (LBTLTG)1/2 lies between LBT and LTG, the three transition lengths can
only be ordered either as LTG ≤ LBG ≤ LBT or as LBT ≤ LBG ≤ LTG. Thus, there are two
asymptotic limits to consider: If LTG � LBG � LBT (or equivalently T2 � Bρg), then
bending is dominant for L � LBG and gravity is dominant for LBG � L, as shown in
figure 2(a), while tension is always negligible. On the other hand, if LBT � LBG � LTG
(or equivalently T2 � Bρg), then bending is dominant for L � LBT , tension is dominant
for LBT � L � LTG, and gravity is dominant for LTG � L, as shown in figure 2(b).

At any given time, the horizontal length scales in the system span the range from the
large blister radius R(t) down to the small length scale �p(t) of the peeling region (see
§ 4), which can be represented as a point (R, �p) in a two-dimensional regime diagram
(figure 2). The diagram can then be divided into regimes according to which forces are
dominant, which is determined by how �p and R compare to the transition lengths LBT , LBG
and LTG.

In figure 2(a), for example, if both �p and R are smaller than LBG, then all length scales
in the system are too, so only bending forces are dominant. We refer to this regime as the
‘pure’ bending regime. Similarly, if both are larger than LBG, then only gravity is dominant.
However, if �p � LBG � R, then bending is dominant in the parts of the system where the
length scale is � LBG, while gravity is dominant in the parts where the length scale is
� LBG, so we have a ‘hybrid’ bending–gravity regime.

Since the fluid spreads and R(t) increases with time, the system moves towards the right
in the regime diagram (figure 2). For ease of discussion, we focus on the case where �p(t)
also increases with time, so that the system also moves upwards in the diagram. We shall
see that this case corresponds to a decreasing peeling speed Ṙ and thus to a condition that
the injection exponent β is not too large. (For sufficiently large β, Ṙ increases and �p(t)
decreases with time, and the system moves downwards in the diagram instead.) Moving
rightwards and upwards in the diagram, the system generally evolves from being purely
bending dominated at very early times to being purely gravity dominated at very late times,
passing through a number of intervening hybrid, or possibly tension-dominated, regimes
at intermediate times.

Since R(t) and �p(t) are not known a priori, our approach is to solve for each regime
first, before determining its temporal range of validity. In § 4 we analyse the peeling region
on the scale �p, and in § 5 we analyse the blister shape and determine the spreading law
R(t) in the various regimes.

4. Travelling-wave peeling solutions

We consider the asymptotic limit h0 � H where the pre-wetting layer is very thin
relative to the thickness of the fluid that has been injected. This results in different parts of
the system having asymptotically different scales, as shown in figure 3. The blister x < R
(or r < R) is the largest region, with height H(t) and radius R(t). Near its edge x ≈ R (or
r ≈ R) at the apparent contact line we expect to find a peeling region with height scale
h0 � H and some length scale �p(t) � R to be determined.
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Viscous flow under an elastic sheet 905 A30-7

R

Symmetry axis

Blister

hb (x) or hb (r)

H

Peeling region

x or r

(Intermediate

region)

hi (xi)

xi

xp

hp (xp) h0

FIGURE 3. Schematic figure of the asymptotic structure. The large blister has a small peeling
region at its edge x = R or r = R. For the hybrid cases where multiple driving forces are
dominant, the peeling region is nested inside an intermediate region (dashed arrows). The
variables hb, hp and hi and local coordinates xp and xi are used to describe the leading-order
asymptotic solutions in each region.

In the peeling region, we define the leading-order solution h = hp(xp), where xp =
R(t) − x or xp = R(t) − r is an inward-pointing local coordinate. The scaling xp ∼ �p � R
allows two approximations. Firstly, regardless of the global geometry (2-D or axi), the
leading-order local peeling process is two-dimensional, with no variation in the horizontal
direction transverse to the direction of motion. Secondly, in the time derivative ∂h/∂t =
∂hp/∂t + Ṙ ∂hp/∂xp the second term, due to the outward spreading motion, is dominant
by a factor of order R/�p (assuming that Ṙ ∼ R/t). Neglecting the first term allows the
governing equation (2.4b) to be integrated once, with far-field condition hp(−∞) = h0, to
yield the travelling-wave equation

Ṙ(hp − h0) = h3
p

12μ

(
Bh′′′′′

p − Th′′′
p + ρgh′

p

)
. (4.1)

Given the value of Ṙ, the peeling length scale �p is determined by balancing the terms
on the left-hand side with the relevant term or terms on the right-hand side. If one of the
three terms is dominant, then �p is given by one of the expressions

�pB =
(

Bh3
0

12μṘ

)1/5

, �pT =
(

Th3
0

12μṘ

)1/3

, �pG = ρgh3
0

12μṘ
. (4.2a–c)

Which of these expressions is the relevant one is determined by comparing them to the
transition length scales (3.2). For example, if Ṙ is very large, then all the options in (4.2) are
smaller than LBG and LBT , so the only self-consistent possibility is that bending is dominant
and �p = �pB. As Ṙ decreases, the length scales all increase and either tension becomes
dominant instead due to both �pB and �pT crossing LBT , leading to �p = �pT , or gravity
becomes dominant instead due to both �pB and �pG crossing LBG, leading to �p = �pG.

When a single term on the right-hand side of (4.1) is dominant, we can introduce the
non-dimensionalization hp = h0F(X ≡ xp/�p), which yields the travelling-wave equations

F − 1 = F3F′′′′′, F − 1 = −F3F′′′, F − 1 = F3F′, (4.3a–c)

for bending, tension and gravity, respectively. These are supplemented by the far-field
condition and a choice of origin

F → 1 as X → −∞, 0 = max{X : F(X) = 1}, (4.4a,b)
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905 A30-8 G. G. Peng and J. R. Lister

–10 –5 0
X

2

0

F F
F

F ′′ F ′

F ′′′′
–F ′′

5 –10 –5 0
X

2

0

5 –10 –5 0
X

2

0

5

(a) (b) (c)

FIGURE 4. Asymptotic travelling-wave peeling solutions for (a) bending (showing the rescaled
height F, curvature F′′ and pressure F′′′′), (b) tension (showing the rescaled height F, slope F′
and pressure −F′′) and (c) gravity (showing the rescaled height or pressure F).

from (2.5a) and (2.1b), respectively, as well as suitable matching conditions to the blister
as X → ∞, as stated below.

4.1. Peeling by bending
For the fifth-order peeling-by-bending equation (4.3a), the condition (4.4a) excludes two
growing solutions and (4.4b) is a third condition, so we can further impose the two far-field
conditions

F′′′′, F′′′ → 0 as X → ∞, (4.5)

which excludes the generic quartic growth of solutions to (4.3a) in favour of a slower
quadratic growth. This yields a unique solution, which can be calculated numerically
(Lister et al. 2013) and is shown in figure 4(a). The solution has a quadratic far-field
behaviour F′′ → Cp as X → ∞, with Cp ≈ 1.350507. In order to match, the leading-order
blister solution h = hb must also have a quadratic behaviour near the apparent contact line,
i.e. satisfy clamped conditions and have a non-zero curvature κ ,

hb(R) = h′
b(R) = 0, κ = h′′

b(R). (4.6a,b)

(These conditions are seen in § 5 to yield a unique solution for the blister, and matching to a
different peeling solution with quartic or cubic far-field behaviour would not be possible.)
Matching the curvature at the edge of the blister to that of the peeling solution yields

κ = Cp
h0

�2
pB

⇒ Ṙ = 0.471800
Bh1/2

0

12μ
κ5/2, (4.7)

from (4.2a), as stated in (1.1a).

4.2. Peeling by pulling
For the third-order peeling-by-pulling equation (4.3b), the condition (4.4a) excludes one
growing solution and (4.4b) is a second condition, so we can further impose (in analogy
with (4.5)) the one condition that

F′′ → 0 as X → ∞. (4.8)

This yields a unique solution, which can be calculated numerically and is shown in
figure 4(b). The leading-order far-field behaviour can be determined analytically from the
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Viscous flow under an elastic sheet 905 A30-9

large-F approximation of (4.3b), 1 ≈ −F2F′′′, as

F ∼ X(3 ln X)1/3, F′ ∼ (3 ln X)1/3 as X → ∞. (4.9)

The far-field slope F′ varies with X, but logarithmically slowly, so, in matching with the
blister region with length scale R, we can use the value of F′ evaluated at X = R/�pT .

In order for the blister solution to match the approximately linear behaviour (4.9), we
require zero height and a non-zero slope α near the contact line,

hb(R) = 0, α = −h′
b(R). (4.10a,b)

Comparison with (4.9) evaluated at X = R/�pT yields

α =
(

3 ln
R
�pT

)1/3 h0

�pT
⇒ Ṙ = Tα3

12μ ln[(R/�pT)3]
, (4.11)

as given in (1.1b). This expression has a weak logarithmic dependence on �pT and hence
on Ṙ. In order to solve for Ṙ explicitly, we can make use of the Lambert W-function, which
we denote by ln∗(x) due to its similarity with ln(x). This is defined by

ln∗(x)eln∗(x) = x, ln∗(x) = ln x + O(ln ln x) as x → ∞. (4.12)

We then obtain, from (4.11) and (4.2b),

Ṙ = Tα3

12μ ln∗[(Rα/h0)3]
. (4.13)

4.3. Peeling by gravitational spreading
For the first-order gravity-current equation (4.3c), the peeling process is simply
gravitational spreading of the fluid under the sheet. The general solution is given implicitly
by

X − X0 = ln(F − 1) + F + F2

2
+ F3

3
, (4.14)

which automatically satisfies the condition (4.4a) leaving only the choice of origin X0. In
this case, the origin cannot be chosen using (4.4b) since F > 1 everywhere (the solution
approaches F = 1 monotonically rather than in an oscillatory manner as X → −∞), but
we can instead choose, for example, F(0) = 1.1, which corresponds to X0 ≈ 0.154. This
solution is shown in figure 4(c).

For matching with the blister solution, we would expect, by analogy with the bending
and tension cases, to use just the height F. Requiring hb to match the cube-root behaviour
F ∼ (3X)1/3 as X → ∞ yields

Ṙ = − ρg
12μ

h2
b(R)h′

b(R), (4.15)

which describes conservation of flux at the apparent contact line.
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905 A30-10 G. G. Peng and J. R. Lister

5. Quasi-static blister solutions and resulting spreading rates

For peeling by bending (4.7) and peeling by pulling (4.13), the peeling speed Ṙ decreases
as h0 decreases, and a posteriori scaling analyses (see § 7) show that if h0 � H then
the spreading is sufficiently slow that the pressure drop in the bulk of the large blister
is asymptotically negligible. The large blister region then evolves quasi-statically and its
shape can be determined analytically. In this section, we perform these calculations and
use (4.7) and (4.13) to obtain the spreading rate R(t) in the various regimes shown in the
regime diagrams in figure 2 (but restricted to the unshaded areas). We also discuss the
non-quasi-static gravity-dominated case in § 5.8.

5.1. The general blister solution
We assume that the viscous pressure drop in the bulk of the blister is asymptotically
negligible, and hence the pressure in the blister is spatially uniform, p = pb(t), to leading
order. Equivalently, pressure variations in the blister region are quickly equilibrated, owing
to the large mobility h3/12μ in the blister, and hence on the much slower time scale of
spreading the pressure is approximately uniform.

The asymptotic leading-order blister solution h = hb is thus obtained by solving the
equation

pb(t) = B∇4hb − T∇2hb + ρghb, (5.1)

(where some of the terms on the right-hand side may be negligible) with a simplified
volume constraint (2.6),

2-D:
∫ R

0
hb dx = V(t) = Qtβ, Axi:

∫ R

0
hb 2πr dr = V(t) = Qtβ, (5.2a,b)

symmetry conditions (2.5b),

h′
b(0) = h′′′

b (0) = 0, (5.3)

and suitable matching conditions to the peeling solution at the apparent contact line x = R
or r = R as follows.

For peeling by bending (§ 4.1), where the fourth-order bending term in (5.1) is dominant
near the contact line, we use the conditions hb(R) = h′

b(R) = 0 from (4.6). For peeling by
pulling (§ 4.2), where the second-order tension term in (5.1) is dominant near the contact
line (and hence the fourth-order term is negligible everywhere), we use the condition
hb(R) = 0 from (4.10). Finally, if gravity is dominant near the contact line (§ 4.3), then
it turns out that the blister is not quasi-static (see § 5.8).

The general solutions of the blister equations (5.1)–(5.3) with these boundary conditions
involve hyperbolic or Bessel functions. The expressions are given in appendix B and some
representative results are shown in figure 5. The solutions yield the curvature κ or slope
α at the edge of the blister in terms of R, t and the parameters of the system, which when
combined with the peeling-by-bending (4.7) or peeling-by-pulling (4.13) law for Ṙ can
be integrated to yield R(t). However, in order to understand the physics better, we solve
the blister equations here using asymptotic methods in each of the regimes indicated in
figure 2 to obtain the relevant values of κ or α as well as power-law expressions for R(t)
in each regime.
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FIGURE 5. Representative two-dimensional quasi-static blister height profiles, comparing the
full solutions (B 1) and (B 2) (solid curves) and the asymptotic solutions (dashed curves).
The regime name, subsection and values of (LBT/R, LBG/R, LTG/R) for each case are (a) ‘B’,
§ 5.2, (5,5,5); (b) ‘T’, § 5.3, (0,0,5); (c) ‘B + T’, § 5.4, (0.1,1,10); (d) ‘T + G’, § 5.5, (0,0,0.1);
(e) ‘B + G’, § 5.6, (0.01,0.1,1); ( f ) ‘B + T + G’, § 5.7, (0.04,0.23/2,0.2). The asymptotic
solutions are given by the main blister solutions (5.4), (5.6) and composites (5.11), (5.14),
(5.16) and (5.18). The letters indicate which term dominates in the bulk of the blister, in the
peeling region, and in an intermediate region (if present). The key quantities – curvature κ = h′′
(associated with bending), slope α = −h′ (associated with tension) and height ζ = h (associated
with gravity) – are labelled.

5.2. Bending only (regime ‘B’)
First, if R � LBG, LBT then bending is dominant everywhere and (5.1) reduces to pb =
B∇4hb. Together with (5.2), (5.3) and (4.6), this yields the blister profile hb, pressure pb
and peeling curvature κ = h′′

b(R) as

2-D: hb = 15
8

V
R

(
1 − x2

R2

)2

,
pb

B
= 45

V
R5

, κ = 15
V
R3

, (5.4a)

Axi: hb = 3
π

V
R2

(
1 − r2

R2

)2

,
pb

B
= 192

π

V
R6

, κ = 24
π

V
R4

, (5.4b)

in agreement with the sample solution of (B 1) shown in figure 5(a).
We substitute the curvature κ into the peeling-by-bending law (4.7) and integrate the

differential equation to find the spreading rate

2-D: Ṙ = 411
Bh1/2

0 Q5/2t5β/2

12μR15/2
⇒ R(t) = 2.83

(
B2h0Q5t5β+2

(5β + 2)2(12μ)2

)1/17

, (5.5a)

Axi: Ṙ = 76.1
Bh1/2

0 Q5/2t5β/2

12μR10
⇒ R(t) = 1.96

(
B2h0Q5t5β+2

(5β + 2)2(12μ)2

)1/22

. (5.5b)

In this case and the following ones, once the spreading rate R(t) is known, the blister height
H(t) and pressure pb(t) can be calculated from the appropriate blister solution if required.
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905 A30-12 G. G. Peng and J. R. Lister

5.3. Tension only (regime ‘T’)
If LBT � (R, �p) � LTG, then tension is dominant everywhere. Equation (5.1) reduces to
pb = −T∇2hb, which is of lower order than (5.1), so we can only impose a single symmetry
condition h′

b(0) = 0, together with hb(R) = 0. The solution, which has a slope α = −h′
b(R)

at the edge, is

2-D: hb = 3
2

V
R

(
1 − x2

R2

)
,

pb

T
= 3

V
R3

, α = 3
V
R2

, (5.6a)

Axi: hb = 2
π

V
R2

(
1 − r2

R2

)
,

pb

T
= 8

π

V
R4

, α = 4
π

V
R3

, (5.6b)

in agreement with figure 5(b).
Substitution of α into the peeling-by-pulling law (4.13) yields a differential equation for

R(t), which can be integrated at leading order by approximating the logarithmic factor ln∗
in (4.13) as a constant. The leading-order result is

2-D: R(t) = 2.29
(

TQ3t3β+1

(3β + 1)12μ ln∗[(12μQ4t4β−1/Th7
0)

3/4]

)1/7

, (5.7a)

Axi: R(t) = 1.48
(

TQ3t3β+1

(3β + 1)12μ ln∗[(12μQ2t2β−1/Th5
0)

3/2]

)1/10

. (5.7b)

We have neglected an O(1) numerical factor inside the argument of each ln∗ in (5.7) as
it represents only a higher-order correction. Determining the values of these O(1) factors
requires not only more careful integration of the differential equation, but also evaluation
of corrections to the blister solution (due to the viscous pressure drop in the blister) and to
the far-field behaviour of the peeling solution; the details are somewhat complicated and
are given in appendix C.

5.4. Bending and tension (regime ‘B + T’)
When �p � LBT � R � LTG, bending is dominant on the peeling length scale �p = �pB,
while tension is dominant on main scale R of the blister. Hence, the peeling-by-bending
solution (4.7) and the tension-dominated blister solution (5.6) apply. Since this blister
solution has a non-zero slope α = −h′(R), it does not satisfy the clamping condition
h′(R) = 0 required for direct matching, so there must be an intermediate region near the
apparent contact line, on the length scale LBT where tension and bending balance.

For the intermediate solution, we define the leading-order solution hi and local
coordinate xi (which is equal to xp) by

h = hi(xi), xi = R(t) − x (2-D) or xi = R(t) − r (axi). (5.8)

In the blister equation (5.1), the constant pressure pb ∼ Tα/R is set by the main solution
(5.6). This pressure is negligible on the intermediate scale, where the bending and tension
terms are much larger, scaling like Tα/LBT (from xi ∼ LBT � R and hi ∼ αxi). Thus, the
leading-order problem on the intermediate scale is

Bh′′′′
i − Th′′

i = 0, hi(0) = h′
i(0) = 0, h′

i(∞) = α, (5.9)

representing the role of bending in effecting the transition from clamped conditions
at xi = 0 to a non-zero slope α as xi → ∞. The unique solution of (5.9) is
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Viscous flow under an elastic sheet 905 A30-13

(e.g. Lister et al. 2013)

hi(xi) = αLBT

[
xi

LBT
+ (e−xi/LBT − 1)

]
, κ = h′′

i (0) = α

LBT
. (5.10a,b)

For comparison with the full solution (B 1), we can form composite solutions of (5.6)
and (5.10). For the two-dimensional case, after rescaling by the blister height, the additive
composite is given by

h = H
1 − (x/R)2 + 2(LBT/R)(e−(R−x)/LBT − 1)

1 + 2(LBT/R)(e−R/LBT − 1)
, (5.11)

and is in good agreement with the full solution, as shown in figure 5(c). The axisymmetric
case can be treated similarly.

The effect of the bending–tension intermediate solution is to convert the slope α given
by the main blister solution (5.6) to a curvature κ = α/LBT that matches with the peeling
region. Substitution into the peeling-by-bending law (4.7) yields, after integration,

2-D: R(t) = 2.11
(

T5h2
0Q10t10β+4

(5β + 2)4(12μ)4B

)1/24

, (5.12a)

Axi: R(t) = 1.37
(

T5h2
0Q10t10β+4

(5β + 2)4(12μ)4B

)1/34

. (5.12b)

For this and the other hybrid solutions calculated below in § 5, the results only apply in
the unshaded areas of the regime diagram (figure 2), as the assumption that the pressure
is approximately uniform throughout the blister fails in the shaded areas. We discuss this
issue further in § 7.

5.5. Tension and gravity (regime ‘T + G’)
Gravity is dominant on the main scale R of the blister if R � LBG, LTG. This reduces (5.1)
to the trivial equation pb = ρghb, resulting in a flat-topped profile with constant height ζ ,

2-D: hb(x) = pb

ρg
= ζ = V

R
, Axi: hb(r) = pb

ρg
= ζ = 1

π

V
R2

, (5.13a,b)

which again agrees with (B 1) and figure 5(d–f ). However, this solution cannot match (4.6)
or (4.10) directly.

If LBT � �p � LTG � R, then tension dominates in the peeling region (while bending
is negligible everywhere). At the edge of the gravity-dominated blister (5.13), there is
need for a tension–gravity intermediate solution hi(xi) on the scale LTG, which satisfies
−Th′′

i + ρghi = pb = ρgζ with the condition hi(0) = 0 and the matching condition
hi(∞) = ζ to (5.13). The solution is

hi(xi) = ζ
[
1 − e−xi/LTG

]
, α = h′

i(0) = ζ

LTG
, (5.14a,b)

which converts the height ζ into the slope α, as illustrated in figure 5(d) (where (5.14) is
used as asymptotic composite of (5.14) and (5.13), with a rescaling). Substitution of α into
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905 A30-14 G. G. Peng and J. R. Lister

the peeling-by-pulling law (4.13) with the length scale LTG instead of R in the argument of
ln∗ yields, after integration,

2-D: R(t) = 2.00
(

(ρg)3/2T−1/2Q3t3β+1

(3β + 1) 12μ ln∗[(12μ)3T3/2Q3t3β−3/(ρg)9/2h12
0 ]

)1/4

, (5.15a)

Axi: R(t) = 1.07
(

(ρg)3/2T−1/2Q3t3β+1

(3β + 1) 12μ ln∗[(12μ)6T3Q3t3β−6/(ρg)9h21
0 ]

)1/7

. (5.15b)

(In this case, the next-order corrections due to the viscous pressure drop in the flat-topped
part of the blister are of relative order O(12μR3/H3t), which turns out to be much greater
than the effect of changing the argument of ln∗ by a O(1) constant or indeed replacing
ln∗(·) with ln(·). Due to the effect to be discussed in § 7.1, this regime has a rather small
range of validity, so we do not calculate the corrections in more detail.)

5.6. Bending and gravity (regime ‘B + G’)
If �p � LBG � R and T2 � ρgB (figure 2a), then gravity dominates in the blister and
bending dominates in the peeling region (while tension is negligible everywhere). This
leads to a bending–gravity intermediate solution hi(xi) on the scale xi ∼ LBG, satisfying
Bh′′′′

i + ρghi = pb = ρgζ with the clamped conditions hi(0) = h′
i(0) = 0 and the matching

condition hi(∞) = ζ . The unique solution is (e.g. Bunger & Cruden 2011)

hi = ζ

[
1 − e−xi/

√
2LBG

(
cos

xi√
2LBG

+ sin
xi√
2LBG

)]
, κ = h′′

i (0) = ζ

LBG
2 , (5.16a,b)

which converts the height ζ of the gravity-dominated blister solution (5.13) into a curvature
κ at the edge as shown in figure 5(e) (where (5.16) is used as asymptotic composite of (5.16)
and (5.13), with a rescaling).

Substitution of (5.13) and (5.16) into the peeling-by-bending law (4.7) yields, after
integration,

2-D: R(t) = 1.41
(

(ρg)5h2
0Q10t10β+4

(5β + 2)4(12μ)4B

)1/14

, (5.17a)

Axi: R(t) = 0.829
(

(ρg)5h2
0Q10t10β+4

(5β + 2)4(12μ)4B

)1/24

. (5.17b)

5.7. Bending, tension and gravity (regime ‘B + T + G’)
If instead T2 � ρgB (figure 2b), so that �p � LBT � LTG � R, then we obtain a nested
hierarchy of intermediate solutions as shown in figure 5( f ). The gravity-dominated blister
(5.13) has a constant height ζ , a tension–gravity intermediate solution (5.14) converts ζ
into the slope α = ζ/LTG, and a bending–tension intermediate solution (5.10) converts α
into the curvature κ = α/LBT , which then feeds into the peeling-by-bending law (4.7). The
two-dimensional asymptotic composite of (5.13), (5.14) and (5.10) shown in figure 5( f ) is

h = H
1 − e−(R−x)/LTG + (LBT/LTG)(e−(R−x)/LBT − 1)

1 − e−R/LTG + (LBT/LTG)(e−R/LBT − 1)
. (5.18)

The relationship between κ and ζ is given by κ = ζ/(LBTLTG) = ζ/LBG
2, which is the

same as the bending–gravity result (5.16) without the intermediate tension. Hence, the
spreading rate is again given by (5.17).
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5.8. Gravity only (regime ‘G’)
If gravity dominates everywhere, then the quasi-static solution (5.13) does not apply:
It clearly does not match the cube-root behaviour (4.15), and a scaling analysis reveals
that the pressure gradient is not, in fact, negligible in the blister. Instead, there is a
full leading-order balance in the lubrication equation (2.4) on the blister scale, with the
condition that hb → 0 with conservation of flux (4.15) at the apparent contact line. At
leading order, this yields the self-similar gravity-current solutions calculated by Huppert
(1982),

2-D: hb(x) = H(t) φ1(x/R(t)), Axi: hb(r) = H(t) φ2(r/R(t)), (5.19a,b)

with the blister radius and height given by the power laws

2-D: R(t) = A1

(
ρgQ3t3β+1

12μ

)1/5

, H(t) = A2

(
12μ Q2t2β−1

ρg

)1/5

, (5.20a)

Axi: R(t) = A3

(
ρgQ3t3β+1

12μ

)1/8

, H(t) = A4

(
12μ Qtβ−1

ρg

)1/4

. (5.20b)

The profiles φ1,2 and the coefficients A1,2,3,4 depend on β and are calculated numerically.
At the apparent contact line, the nose of the gravity current (5.19) connects smoothly to
the pre-wetting layer via the peeling solution (4.14).

6. Comparison with numerical results

We solved the governing equations (2.3)–(2.7) numerically using a finite-difference
method; see appendix A for details. For the numerical calculations, we non-dimensionalized
the equations using the scale h0 for h and the bending scales

2-D: xB =
(

Bβh3β+1
0

(12μ)βQ

)1/(6β−1)

, tB =
(

Bh9
0

12μQ6

)1/(6β−1)

, (6.1a)

Axi: xB =
(

Bβh3β+1
0

(12μ)βQ

)1/(6β−2)

, tB =
(

B2h12
0

(12μ)2Q6

)1/(6β−2)

, (6.1b)

for x or r and t, respectively. These are obtained by balancing the pressure with the
bending term in (2.3), i.e. p ∼ Bh/x4, and then balancing all the other terms in the
remaining equations (2.4)–(2.7). The resulting non-dimensionalization is equivalent to
setting B = 12μ = Q = h0 = 1 and replacing the tension and gravity coefficients T and
ρg with non-dimensional versions

TB = Tx2
B

B
=
(

xB

LBT

)2

, GB = ρgx4
B

B
=
(

xB

LBG

)4

, (6.2a,b)

both in the governing equations (2.3)–(2.7) and in the asymptotic results (§ 5). The
coefficients TB and GB and the injection exponent β form a complete set of three
independent parameters for this system.

We compare the asymptotic predictions for R(t) from § 5 with the corresponding
numerical results in figure 6 using a compensated log–log plot where R(t) is divided by a
suitable power of t in order to highlight the difference between regimes. We focus on the
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FIGURE 6. Numerical results (solid curves) and asymptotic solutions (dashed curves) for
(a) two-dimensional spreading with injection exponent β = 1 and (b) axisymmetric spreading
with injection exponent β = 1.5. We use the bending scales (6.1) and fix ρg = 10−32B/x4

B,
while considering three values for tension, T = 0, T1 = 10−10B/x2

B and T2 = 10−6B/x2
B. The

asymptotic results are labelled as in figures 2 and 5, with the subscripts indicating the value of T .
The radius R(t) has been divided by the power of t from the bending–tension hybrid regime (5.12)
in order to show more clearly the differences between the regimes. The dotted lines indicate
where R is equal to one of the transition lengths (3.2).

fixed value GB = 10−32 for the non-dimensional gravity, and consider three different values
TB = 0, 10−10, 10−6 for the non-dimensional tension. These values have been chosen to
be rather extreme, in order to allow the system to display clear transitions between the
various regimes. We find that the transitions are very similar for the two-dimensional and
axisymmetric cases, albeit with different exponents. The following discussion applies to
both cases, and more generally to cases where the injection exponent β is sufficiently small
that �p increases with time.

Initially, since TB � 1 and GB � 1 the system is bending dominated and follows the
pure-bending spreading law (5.5), labelled ‘B’.

For the case TB = 0 (which corresponds to figure 2a), the bending-dominated regime
lasts until the radius crosses LBG = 10−8xB (indicated by the dotted line). Then,
gravitational forces become important and the system follows the bending–gravity hybrid
solution (5.17), labelled ‘B + G’. Finally, the system transitions to the gravity-current
spreading law (5.20), labelled ‘G’.

For the cases TB = 10−10 and 10−6 (which correspond to figure 2b), the system
transitions from the pure-bending regime to the bending–tension hybrid regime (5.12),
labelled ‘B + T1,2’, as R crosses LBT . For TB = 10−10, when R subsequently crosses LTG
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the system transitions to the bending–tension–gravity regime, whose spreading rate is the
same as the bending–gravity regime (‘B + G’), and eventually into the gravity regime
(‘G’). For TB = 10−6, the bending–tension regime gives way to the pure-tension regime
(5.7), labelled ‘T2’. The system then follows the tension–gravity regime (5.15), labelled
‘T2 + G’, briefly before transitioning to the gravity regime (‘G’).

We have thus exhibited all possible transitions shown in the regime diagrams in
figure 2, and found excellent agreement between the numerical results and our asymptotic
predictions. For less extreme, but still small, values of TB and GB, the same transitions
will happen but less clearly, while if one or both of TB and GB is large then some of the
earlier regimes involving bending might not occur. Also, for larger values of β other paths
through the regime diagram might be taken.

However, a more careful investigation reveals that there are a few additional transitional
regimes, indicated by the shaded areas in the regime diagrams in figure 2. We identify
these by examining the validity of some of the asymptotic assumptions made.

7. Validity of assumptions

The asymptotic results presented in this paper thus far rely on several assumptions,
which we shall now check a posteriori, making use of the bending scales xB and tB (6.1)
to keep the expressions simple.

Firstly, the governing elastic and lubrication equations (2.2) and (2.4) require the slope
of the sheet to be small, h′ � 1, in order to be valid. Thus, the validity of the results
shown in figure 6 depends on the aspect ratio xB/h0 of the non-dimensionalization (6.1),
since the true slope h′ is related to the non-dimensional slope h′∗ by h′ = (h0/xB)h′∗. In
general, any non-dimensional results in a finite time range have a maximum slope h′∗ and
hence are valid provided that xB/h0 � h′∗. More specific bounds can be obtained for each
asymptotic regime. For example, for the two-dimensional pure-bending case (5.5a), the
slope is largest in the blister, with h′ ∼ H/R ∼ (h0/xB)(t/tB)

(7β−4)/17. Thus, for β < 4/7
the slope decreases with time and the equations are valid for t � tB(h0/xB)

17/(4−7β), while
for β > 4/7 the criterion is t � tB(xB/h0)

17/(7β−4).
Secondly, the height H(t) of the blister must satisfy H � h0. Using (5.5a) as an example

again, we have H ∼ h0(t/tB)
(12β−2)/17, so for β > 1/6 the result is valid at late times t � tB,

while for β < 1/6 the result is valid at early times t � tB. As long as this height condition
H � h0 is satisfied, the separation of length scales between the large two-dimensional or
axisymmetric blister and the small two-dimensional travelling-wave peeling region (R �
�p) is also guaranteed.

Thirdly, the horizontal length scales �p and R must lie in the predicted range according
to the regime diagram in figure 2. For the radius R(t), the situation is straightforward.
For example, in the absence of tension, the pure-bending solution (5.5) transitions to the
gravity–bending solution (5.17) when gravity becomes important due to R(t) crossing LBG
as expected (figure 6), and this transition can also be identified by simply equating the
results (5.5) and (5.17).

However, for the peeling length �p(t) things are more complicated. For example,
consider the transition from the bending–gravity regime (5.17) towards the gravity-current
regime (5.20). The two-dimensional result (5.17a) yields the prediction �pB(t) ∼
G−1/14

B (t/tB)
(1−β)/7xB for the peeling-by-bending length scale, which crosses LBG =

G−1/4
B xB at the time t ∼ tBG5/(4β−4)

B . However, the transition actually occurs at the time
found from equating (5.17) and (5.20) as seen in figure 6,

G5/14
B (t/tB)

(5β+2)/7 ∼ G1/5
B (t/tB)

(3β+1)/5 ⇒ t ∼ G−11/(8β+6)

B tB. (7.1)
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FIGURE 7. Numerical results (height profiles) for two-dimensional bending- and gravity-driven
spreading with β = 1 and xB/LBG = G1/4

B = 10−3 (see (6.1a)). The initial evolution t/tB ≤ 109

(main figure) is rescaled using the pure-bending asymptotic result (5.5) and the subsequent
evolution t/tB ≥ 109 (inset) is rescaled using the pure-gravity asymptotic result (5.20). The
asymptotic result (5.16) is overlaid for t/tB = 109 (dashed curve).

Past this transition, although the peeling length is �p = �pB � LBG and bending forces are
present, the spreading rate R(t) is given by the gravity-current solution (5.20).

This is because, fourthly, the asymptotic method requires viscous dissipation in the
blister to be small compared with the viscous dissipation in the peeling region, so that
the spreading is controlled by the peeling process. In the blister, the dissipation is due
to the (slow) evolution represented by ḣ in (2.4), and results in a pressure drop that
scales like Δp = 12μRṘ/H2, which needs to be small compared with the blister pressure
pb ∼ BH/R4 in order to be negligible. For the pure-bending regime (5.5), we obtain
Δp/pb ∼ (h0/H)1/2, so this condition is satisfied provided H � h0. However, for the
bending–gravity regime (5.17), we have pb ∼ ρgH and find that Δp/pb ∼ �pBR/LBG

2.
Thus, the condition �pB � LBG is not sufficient, and instead we have the stricter condition
�pBR � LBG

2, which agrees with the transition (7.1) above.

7.1. Additional regimes
We have thus found that when �pB � LBG � R, so that bending and gravity dominate in
the peeling and blister regions, respectively, if also �pBR � LBG

2 then the spreading is
controlled by viscous dissipation in the bulk of the blister rather than by peeling. Hence
we recover the gravity-current solution (5.20) for the blister, with a peeling-by-bending tip
that has a negligible effect on the spreading rate, but which persists until �p � LBG.

We illustrate the relevant transitions in figure 7 with some snapshots from a
two-dimensional numerical simulation with no tension (TB = 0) and weak gravity GB =
10−12, leading to a bending–gravity length scale LBG = 103xB. (This case has been studied
in more detail by Hewitt et al. (2015).) Initially, when xB � R(t) � LBG, the system
follows the pure-bending solution (5.5), and the profiles collapse onto the blister prediction
(5.4) when rescaled by the predicted time dependence. As R crosses LBG, gravity becomes
important and the blister becomes flatter. At t = 109tB the profile matches the asymptotic
bending–gravity solution (5.16), and then tends towards the gravity-current profile (inset
of figure 7).
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The peeling-by-bending solution (4.7) and the bending–gravity intermediate solution
(5.16) are still present near the apparent contact line, as predicted by the regime diagram
(figure 2), but they do not control the spreading. Rather, the causality can be thought of as
being reversed: the spreading rate Ṙ set by the gravity current (5.20) determines the peeling
curvature κ (4.7), which sets the cut-off height ζ (5.16) at the front of the gravity-current
solution as seen in the inset of figure 7.

This regime, where bending and gravitational forces are dominant in different regions
but R(t) is given by the gravity-current result (5.20) instead of the bending–gravity hybrid
result (5.17), is indicated schematically by the shaded area in figure 2(a). Similarly, in the
analogous light shaded areas in figure 2(b), elastic forces are present but the leading-order
solution is the gravity current (5.20). The results labelled ‘G’ in figure 6 are in fact in these
shaded regimes, rather than in the pure-gravity regime.

The only remaining additional regime is for the combination of bending and tension,
and corresponds to the dark shaded area in figure 2(b). In the transition between peeling
by bending and peeling by pulling, there is an intermediate regime that is very similar to
the pure-tension regime (§ 5.3), but with the bending–tension intermediate solution (5.10)
and peeling-by-bending region (4.7) providing a cutoff. In this case, the bending–tension
length LBT takes the place of the peeling-by-pulling length �pT in the logarithm in (4.11),
resulting in a spreading rate that has the same main power-law behaviour as for pure
tension (5.7) but with a different logarithmic factor. A scaling analysis shows that this
regime has a very narrow range of validity,

R
LBT

(
ln

R
LBT

)1/3

� H
h0

� R
LBT

(
ln

R
LBT

)2

,
R

LBT
� 1, (7.2)

so we do not study it further.

8. Summary and generalizations

We have investigated spreading of a large two-dimensional or axisymmetric blister of
fluid in the narrow gap between a horizontal rigid base and an overlying elastic sheet,
with a pre-wetting film extending ahead of the blister. The spreading is driven by various
combinations of bending, tension and gravitational forces depending on the horizontal
length scales of the system as shown in figure 2, and is typically controlled by viscous
forces in a travelling-wave peeling region at the apparent contact line at the edge of the
blister (§ 4). The blister is then described by a quasi-static solution, as shown in figure 5,
which depends on which of the driving forces play a role (§ 5).

If R(t) � LBG, LBT , then the blister is bending dominated and has the profile (5.4)
with given curvature κ at its edge. The peeling speed is then given in terms of κ by the
peeling-by-bending law (4.7).

If LBT � R(t) � LTG, then the main part of the blister is tension dominated and has the
parabolic profile (5.6), with given slope α at its edge. If the peeling length �p(t) is also
in the same range, then the peeling speed is given in terms of α by the peeling-by-pulling
law (4.13). If, on the other hand, the peeling length is much shorter, then the slope α is
converted into a curvature κ by a bending–tension intermediate solution (5.10), and the
peeling speed is given by the peeling-by-bending law (4.7).

If R(t) � LBG, LTG, then the bulk of the blister is gravity dominated and has the profile
(5.13) with a constant height ζ (provided the spreading is sufficiently slow). Intermediate
solutions convert the height ζ into either the curvature κ of (5.16) for peeling by bending
(4.7) or the slope α of (5.14) for peeling by pulling (4.13). (However, if the viscous
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dissipation of the elastic peeling solutions is too small, then the dissipation in the blister
dominates instead, and the blister spreads like a classical viscous gravity current (5.20)
despite the presence of elastic forces at the apparent contact line.)

In all the above cases, except for the gravity-current regimes, we obtain a differential
equation for R(t) which is readily solved. A summary of the power laws obtained in the
various cases is given in table 1, which also contains some extensions to our work as
described below.

8.1. Alternative physics at the peeling front
As mentioned in § 1, the problem that a no-slip contact line cannot advance (Huh &
Scriven 1971) can be resolved by other physical mechanisms than a pre-wetting layer. If
these mechanisms are also ‘microscopic’, i.e. only have an effect on a scale much smaller
than the blister, then the spreading remains controlled by the physics near the advancing
contact line, and the quasi-static blister solutions calculated in § 5 still apply, but match to
alternative peeling solutions at their edge.

All of the asymptotic results in this paper can be directly translated to cover other
microscopic mechanisms with a fixed height scale Hp, by simply replacing h0 with a
suitable O(1) multiple of Hp. Two such examples are when the no-slip condition on the
sheet and base are replaced by a Navier-slip condition with a small slip length λ (e.g.
Hocking 1983), or when the base has a porous upper layer of thickness b and permeability
k through which the fluid also flows (e.g. Hewitt, Chini & Neufeld 2018). For these cases,
the lubrication equation (2.4a) is modified to

q = −h3 + 6λh2

12μ
∇p or q = −h3 + 12kb

12μ
∇p, (8.1)

respectively, and due to the additional mobility as h → 0, these models admit
travelling-wave solutions which touch down with h(R) = h′(R) = q(R) = 0. After solving
the peeling-by-bending equations analogous to (4.3a), we obtain the peeling speed
(4.7) with h0 replaced by 1.037968λ or 0.959070(kb)1/3, respectively; consequently
the results (5.5), (5.12) and (5.17) for R(t) simply acquire the same modification. The
peeling-by-pulling results (4.13), (5.7) and (5.15), however, apply with h0 replaced by λ or
(kb)1/3 directly, since any O(1) prefactor inside the ln∗ has no leading-order effect, while
the logarithmic corrections calculated in appendix C would need different values for Cp.

Alternatively, the viscous resistance to motion might cause the pressure near the
advancing contact line to drop to a critical value −Pp (relative to the ambient) at which
gases come out of solution or the liquid itself evaporates, resulting in the fluid lagging
behind the point where the sheet contacts the base, and the gap between the fluid and the
contact point being filled with inviscid vapour at constant pressure −Pp (e.g. Hewitt et al.
2015). In this case, or any other with a fixed microscopic pressure scale, a scaling analysis
for the peeling wave with a given pressure scale Pp yields

Ṙ ∝ B3/2κ7/2

12μPp
1/2 or Ṙ = Tα3

12μ ln[(RPp/αT)3]
, (8.2)

for peeling by bending and peeling by pulling, respectively. The resulting power-law
exponents for each regime are shown in the second column of table 1.

Another possibility is that the elastic sheet model (2.2) breaks down near the contact
line, due to the horizontal peeling length scale being sufficiently small that it is comparable
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to the sheet thickness d. In this case, the full equations of linear elasticity apply instead
(e.g. Lister et al. 2019), and, provided that the spreading is controlled by viscous
dissipation on this scale, a balance in the travelling-wave equation (4.1) with �p = d yields

Ṙ ∝ Bdκ3

12μ
or Ṙ = Tα3

12μ ln[(R/d)3]
. (8.3)

The resulting power-law exponents, for this case and any other with a fixed peeling length
scale �p, are shown in the third column of table 1.

Finally, it is also possible that the spread of the blister is not dynamically controlled
by viscous resistance, but rather (quasi-)statically controlled by a surface energy, in that
increasing the peeled area (e.g. A = πR2 in the axisymmetric case) by a given increment
dA requires a fixed energy γ dA. This could be due to bonds between the sheet and the
plate requiring a fracture energy to break (e.g. Lister et al. 2019), van der Waals forces
(e.g. Hosoi & Mahadevan 2004) or magnetic attraction (e.g. Ball & Neufeld 2018). It could
also be due to surface tension (with coefficient γ /2) around an injected pancake-shaped
gas bubble filling the blister (e.g. Peng et al. 2015). A balance between the elastic or
gravitational energy released by the blister spreading and the surface-energy requirement
for peeling then yields the quasi-static conditions (e.g. Landau & Lifshitz 1986)

κ2 = 2γ

B
, α2 = 2γ

T
or ζ 2 = 2γ

ρg
. (8.4)

Solving for R(t) using the blister solutions in § 5 yields the power laws shown in the fourth
column of table 1.

8.2. Generalizations to other related problems
We have considered injecting the liquid with a specified volume V(t) or equivalently
flux V̇(t). For an alternative injection strategy, such as a specified (effective) pressure
or specified height, or something more exotic like a height-dependent injection flux (e.g.
Kiradjiev, Breward & Griffiths 2019), the blister solutions (5.4), (5.6) and (5.13) can be
used with V(t) depending on t and R so as to achieve the desired effect, and the new
differential equations obtained for R(t) can be integrated to yield the solution. Similarly,
if there is a slow temporal and/or gentle spatial variation in the physics (such as the value
of h0) at the contact line then the peeling laws (§ 4) still apply but the final integration of
the equation for R(t) is different.

For spreading in two horizontal dimensions with non-axisymmetric spatial variations or
initial conditions, although the blister shape cannot be solved for analytically in general,
the asymptotic decomposition can still be employed to simplify the problem. Instead of
fully resolving the contact-line dynamics, a numerical method can be employed to simply
track the location of the contact line and solve for a quasi-static constant-pressure blister
shape within it. The curvature or slope at the contact line then determines the speed at
which it advances.

For a viscous fluid spreading in the thin gap between an inner rigid cylinder and an outer
concentric elastic cylindrical shell (e.g. Elbaz & Gat 2016), the axial evolution equation
for the axisymmetric layer thickness h is given by

ḣ =
(

h3

12μ
p′
)′

, p = Bh′′′′ − Th′′ + Ed
a2

h, (8.5a,b)
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where primes denote differentiation with respect to the axial coordinate z, T is the axial
tension in the sheet, a is the radius of the rigid cylinder, and the remaining quantities are
defined as before. We recognize this as being identical to our equations (2.3) and (2.4)
for two-dimensional spreading, but with an elastic term (due to the hoop tension in the
cylindrical shell) taking the place of the gravity term, so all of our asymptotic results also
apply directly to this geometry.

Finally, as mentioned in § 1, the deflection and consequential stretching of the sheet
generates additional tension. Assuming that this induced tension scales like Ed(H/R)2,
we find that it is negligible compared with the externally imposed tension T provided
that H/R � √

T/Ed. However, even when T = 0, the results in this paper for bending
and gravity may be valid. For example, if H � d (i.e. the deflection remains much
smaller than the sheet thickness), then the induced tension is negligible compared with
bending everywhere, since the blister radius R is smaller than the transition length scale√

B/(Ed(H/R)2) ∼ Rd/H.
When the induced tension does become significant, the main principle of separation of

scales between the blister and peeling regions still holds, but with modified solutions for
the blister and peeling regions. We study this case in more detail in Peng & Lister (2020).

8.3. Conclusion
Although the pressure expression (2.3) is very simple with only three terms, these
bending, tension and gravity driving forces can be combined in seven different ways
as shown in figure 2, each leading to a distinct asymptotic spreading regime, in both
two-dimensional and axisymmetric geometries. Coupled with the different possible
peeling physics controlling the spreading, this leads to a vast range of asymptotic regimes
as listed in table 1. Although many of the spreading exponents are numerically similar
and may be difficult to distinguish experimentally, each regime is governed by a genuinely
different physical balance and has a different dependence on the physical parameters of
the system.
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Appendix A. Numerical method

The governing equations (2.3)–(2.7) are solved in non-dimensional form using a fully
implicit (backward-Euler) finite-difference scheme with a rescaled spatial coordinate ξ =
x/R(t) or ξ = r/R(t) instead of x or r. The rescaling introduces the unknown speed Ṙ in
the governing equations, which is determined by the additional condition h = h0 at ξ = 1.

Without the rescaling, the size of the time step would be limited by the fast time scale
�p/Ṙ of translation of the peeling wave, which is many orders of magnitude smaller than t
at late times. The rescaling, however, naturally incorporates this translation so that h(ξ, t)
evolves on the time scale t, allowing the time step to be a reasonable fraction of t even at
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extremely late times. The time step is automatically adjusted to ensure accuracy to within
1 % by comparing each single step with two steps of half the size.

The spatial grid is also automatically adapted to the solution. The distance D between
the first location (ξ = 1) where h crosses h0 and the second such location is used as
an estimate of the wavelength in the peeling region, and the domain is set to extend in
ξ > 1 at least 10D ahead of the first crossing with a grid spacing at most 0.01D. As ξ
decreases away from the peeling region in 0 ≤ ξ < 1, the grid spacing is set to increase
approximately like 0.01(1 − ξ). This guarantees that all regions are spatially resolved to
within 1 %.

Appendix B. General quasi-static blister solutions

The general quasi-static solution of the blister equation (5.1) with the symmetry
condition (5.3) is of the form

2-D: hb(x) = C1 + C2 cosh(λ+x) + C3 cosh(λ−x), (B 1a)

Axi: hb(r) = C1 + C2I0(λ+r) + C3I0(λ−r), (B 1b)

where I0 is the modified Bessel function of the first kind and order zero, the (potentially
complex) roots λ of the equation Bλ4 − Tλ2 + ρg = 0 are given by

λ± = 1
2LBT

√√√√1 ±
√

1 − 4
LBT

2

LTG
2 , (B 1c)

and LBT and LTG are given in (3.2). The constants C1,2,3 are determined by the volume
constraint (5.2) and the clamping conditions (4.6) for matching to a peeling-by-bending
travelling-wave solution.

If the peeling length scale �p � LBG, LBT then bending forces can be neglected
everywhere. The solution of the reduced blister equation pb = −T∇2hb + ρghb (5.1) and
symmetry condition h′(0) = 0 (5.3) then has the form

2-D: hb = C1 + C2 cosh(x/LTG), Axi: hb = C1 + C2I0(r/LTG), (B 2a,b)

where the constants C1,2 are determined by (5.2) and (4.10).

Appendix C. Logarithmic corrections for peeling by pulling

In this appendix, we present the method for determining the appropriate O(1) numerical
coefficient inside ln∗(·) in the results of § 5.3. This changes the leading-order result by a
relative order O(1/ ln(H/h0)), where for the purposes of scaling analysis we can ignore
the difference between ln∗(·) and ln(·) and also neglect any exponentiation of the argument
of those functions. This logarithmically small correction is thus asymptotically negligible
but may be significant in practice. The correction is due to the viscous pressure drop inside
the quasi-static blister. We treat the two-dimensional case in detail, and give the results for
the axisymmetric case in appendix C.4.
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C.1. The two-dimensional blister solution
In the blister region, we introduce O(1) non-dimensional variables and substitute into the
governing equation (2.4) with p = −Th′′,

h(x, t) = V
R

ĥ(x̂, t), x̂ = x

R
⇒ TV3

12μR7
(−ĥ3ĥ′′′)′ = − Ṙ

R
(x̂ ĥ)′ + V̇

V
ĥ + ˙̂h. (C 1)

Integration using the injection condition (2.7) yields

− ĥ′′′ = 12μR7

TV3

⎡
⎢⎢⎢⎣− Ṙ

R
x̂

ĥ2
+ V̇

V

∫ x̂

0
ĥ dx̂ − 1

ĥ3
+

∫ x̂

0

˙̂h dx̂

ĥ3

⎤
⎥⎥⎥⎦ , (C 2)

which suggests an asymptotic expansion of the form

ĥ = ĥ0(x̂) + 12μR7

TV3

[
Ṙ
R

ĥ1R(x̂) + V̇
V

ĥ1V(x̂)

]
+ O

(
1

ln(H/h0)2

)
. (C 3)

Here, ĥ0(x̂) = 3
2(1 − x̂2) is the leading-order solution, ĥ1R and ĥ1V represent the

O(12μR7/TV3t) = O(1/ ln(H/h0)) corrections from the viscous pressure drops due to the
outward spreading of the blister and to the injection flow from the origin into the blister,
and there is no contribution at this order from the last term in (C 2) since ĥ0 is independent
of t.

As these logarithmic corrections are O(1/ ln(H/h0)) = O(1/ ln(R/�p)), we can safely
neglect any quantities that are algebraically small (compared with the leading order), such
as O(h0/H) or O(�p/R). Hence, as the height scale of the peeling region is h0 � H, the
blister solution satisfies ĥ ≈ 0 at the edge. Thus, both ĥ1 = ĥ1R and ĥ1 = ĥ1V satisfy the
conditions ĥ′

1(0) = ĥ1(1) = ∫ 1
0 ĥ1 dx̂ = 0. The (C 2) then yields

ĥ′′′
1R = x̂

ĥ2
0

= 4
9

x̂

(1 − x̂2)2
, ĥ′′′

1V =

∫ 1

x̂
ĥ0 dx̂

ĥ3
0

= 4
27

x̂3 − 3x̂ + 2
(1 − x̂2)3

, (C 4a,b)

with the solutions

ĥ1R = 1 − x̂

9
ln(1 − x̂) + 1 + x̂

9
ln(1 + x̂) + 1 − x̂2

6
− 2 ln 2

9
, (C 5a)

ĥ1V = −(1 − x̂)2

36
ln(1 − x̂) + 3x̂2 − 6x̂ − 5

108
ln(1 + x̂) + 3x̂2 + 2x̂ − 5 + 8 ln 2

108
.

(C 5b)

C.2. The peeling-by-pulling region
For the peeling region, the (4.3b), (4.4) and (4.8) remain the same, since all corrections
are of algebraic order such as O(h0/H) or O(�p/R). (In particular, the condition
F′′(∞) = 0 (4.8) for matching to the blister solution applies, as its second derivative is
of order O(H/R2) � O(h0/�

2
p).) Hence, the peeling solution is still given by the solution
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shown in figure 4(b), and the effect of the logarithmic corrections is only in altering the
length scale �p.

However, the matching of slopes between the blister and peeling regions requires
knowing the far-field behaviour of the slope F′(X) to a more accurate degree than (4.9).
Again using the approximation −1 = F2F′′′, which has an algebraically small O(1/X)

error in the far field, we find, by imposing F′′ → 0, the generic far-field behaviour

F ∼ X(3 ln X)1/3

[
1 − Cp

ln X
−

10
27 + Cp

2

(ln X)2
+ O

(
1

(ln X)3

)]
as X → ∞. (C 6)

The value of the constant Cp is obtained from a numerical solution of the full
travelling-wave equation (4.3b) as

Cp = 0.423087. (C 7)

(In order to calculate this value of Cp accurately, which requires reaching sufficiently large
values of ln X that the subdominant terms in (C 6) can be easily distinguished, we used
the transformation X = Y + eY , G(Y) = (F(X) − 1)/(1 + eY) and solved numerically for
G(Y) instead, using the transformed form of (4.3b), (4.4a) and (C 6) together with a
translated form G(0) = 0.5 of (4.4) for simplicity, which only introduces an algebraically
small error. We discretized the system used a fourth-order finite-difference method on a
uniform grid with step size ΔY = 0.001 in the domain |Y| ≤ Ymax = 1000 and calculated
the solution using Newton–Raphson iteration, and verified that the result (C 7) changes by
less than 10−6 when ΔY is reduced by a factor 10 or Ymax is increased by a factor 10.)

C.3. Completing the matching
We now need to match the slopes, −h′, of the blister and peeling solutions. The first-order
corrections do not yield a fixed value analogous to α, so instead we need to impose that
the asymptotic behaviours of the slopes agree. A careful analysis reveals that there is an
intermediate region involving logarithmic quantities (see Hocking (1983) for details), but
its effect is equivalent to matching the asymptotic expansion of (−h′)3 directly between
the blister and peeling regions as we now proceed to do.

The result −ĥ′
0(1) = 3 and the limiting behaviours of the blister solutions (C 5),

− ĥ′
1R ∼ ln(1 − x̂) + 3 − ln 2

9
, −ĥ′

1V ∼ −1/3
9

as x̂ → 1−, (C 8a,b)

yield, using the definition of α in (5.6) and the leading-order power-law exponents from
(5.7),

(−h′)3 = α3 + 12μṘ
T

[
9 + 3 ln

R − x

R
− 3 ln 2 − 7β

3β + 1
+ O

(
1

ln(H/h0)

)]
. (C 9)

Similarly, the far-field behaviour of the peeling solution (C 6),

(F′)3 = 3 ln X + (3 − 9Cp) + O
(

1
ln X

)
as X → ∞, (C 10)

yields

(−h′)3 = 12μṘ
T

[
3 ln

R − x

h0(T/12μṘ)1/3
+ 3 − 9Cp + O

(
1

ln(H/h0)

)]
. (C 11)
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Equating (C 9) and (C 11) then yields

Tα3

12μṘ
= ln

12μṘ
Tα3

+ 3 ln
2Rα

h0
− 6 − 9Cp + 7β

3β + 1
+ O

(
1

ln(H/h0)

)
, (C 12)

and hence, after exponentiation of both sides and using the definition (4.12) of ln∗(·),

Ṙ = Tα3

12μ ln∗[(cRα/h0)3]
, with c = 2 exp

(
−2 − 3Cp + 7β

3(3β + 1)

)
, (C 13)

to the required degree of accuracy.
We substitute α3 from (5.6) and separate variables (ignoring the argument of ln∗) to

obtain

7R6Ṙ ≈ 189 TQ3t3β

12μ ln∗[(cRα/h0)3]
. (C 14)

We integrate both sides, making use of the approximate formula (valid for arbitrary
positive constants a, b and B)∫

ata−1

ln∗[Btb]
dt ≈ ta

ln∗[Btb exp(−b/a)]
, (C 15)

and the fact that, in this case, the argument (cRα/h0)
3 of ln∗ is an approximate power of t

with exponent b = 3(4β − 1)/7, from (5.7). Then, solving for R(t) using the formula

Ra = A
ln∗[BR−b]

⇔ Ra =
a

a − b
A

ln∗

[
a

a − b
(Ba/Ab)

1/(a−b)

] , (C 16)

yields the result

2-D: R(t) = 2.29
(

TQ3t3β+1

(3β + 1) 12μ ln∗[(c112μ Q4t4β−1/Th7
0)

3/4]

)1/7

, (C 17a)

c1 = exp
(

−1.842 − 21Cp − 28
9(3β + 1)

)
(3β + 1). (C 17b)

C.4. The axisymmetric case
In the axisymmetric case, the non-dimensionalization and expansion

h = V
R3

ĥ(r̂, t), r̂ = r
R

, ĥ = ĥ0 + 12μR10

TV3

[
Ṙ
R

ĥ1R(r̂) + V̇
V

ĥ1V(r̂)
]

+ · · · (C 18)

and leading-order result ĥ0 = (2/π)(1 − r̂2) yield the first-order equations

(
1
r̂
(r̂ĥ′

1R)
′
)′

= r̂

ĥ2
0

= π2

4
r̂

(1 − r̂2)2
,

(
1
r̂
(r̂ĥ′

1V)′
)′

=

∫ 1

x̂
ĥ r̂ dr̂

r̂ĥ3
0

= π2

16
1

r̂(1 − r̂2)
,

(C 19a,b)
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(R

/x
T)

/(
t/t

T)
(3

β
+1

)/
7

1.4

1.2

1.0

0.8 Numerical
Leading-order
Corrected

(R
/x

T)
/(

t/t
T)

(3
β
+1

)/
1
0

105

t/tT
1010

β = 1

β = 2

β = 3

1.4

1.2

1.0

0.8

105

t/tT
1010

β = 1

β = 2

β = 3

(a) (b)

FIGURE 8. Comparison of numerical and asymptotic results for the evolution of R(t) in the
tension-dominated (a) two-dimensional and (b) axisymmetric cases, for three values of the
power-law exponent β, rescaled using (C 24).

conditions ĥ′
1(0) = ĥ1(1) = ∫ 1

0 ĥ1 2πr̂ dr̂ = 0 and solutions

ĥ1R = π2

128
(r̂2 ln r̂2 + (1 − r̂2) ln(1 − r̂2) − Li2(r̂2) + r̂2 − 1) + π4

768
, (C 20a)

ĥ1V = π2

32
Li2(r̂2) + π2

16
(1 − r̂2) − π4

192
, (C 20b)

where Li2(x) = ∫ 1
x ln(t)/(t − 1) dt is the dilogarithm.

The peeling-by-pulling solution from appendix C.2 applies, so equating (C 11) to

(−h′)3 ∼ α3 + 12μṘ
T

[
6 + 3 ln

2xp

R
− 3

4
10β

3β + 1
+ O

(
1

ln(H/h0)

)]
(C 21)

from (C 20) yields

Ṙ = Tα3

12μ ln∗[(cRα/h0)3]
, with c = 1

2
exp

(
−1 − 3Cp + 5β

2(3β + 1)

)
, (C 22)

and hence, after integration, the result

Axi: R(t) = 1.48
(

TQ3t3β+1

(3β + 1) 12μ ln∗[(c212μ Q2t2β−1/Th5
0)

3/2]

)1/10

, (C 23a)

c2 = exp
(

−6.174 − 15Cp − 5
2(3β + 1)

)
(3β + 1). (C 23b)

C.5. Comparison with numerical results
In the purely tension-dominated case, rescaling h by h0, and x or r and t by

2-D: xT =
(

Tβh3β+1
0

(12μ)βQ

)1/(4β−1)

, tT =
(

Th7
0

12μQ4

)1/(4β−1)

, (C 24a)
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Axi: xT =
(

Tβh3β+1
0

(12μ)βQ

)1/(4β−2)

, tT =
(

Th5
0

12μQ2

)1/(2β−1)

, (C 24b)

leaves the exponent β as the only non-dimensional parameter. Figure 8 shows the evolution
of the radius R(t) in a compensated log–log plot where the main time dependence t(3β+1)/7

or t(3β+1)/10 has been divided out. The main asymptotic results (5.7) indeed capture the
leading-order behaviour correctly, and the logarithmic corrections in (C 17) and (C 23)
improve the agreement considerably.
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