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THE QUADRATIC FORM IN NINE PRIME VARIABLES

LILU ZHAO

Abstract. Let f(z1,...,2zn) be a regular indefinite integral quadratic form
with n > 9, and let ¢ be an integer. Denote by U, the set of p-adic units in Z,.
It is established that f(z1,...,zn) =t has solutions in primes if (i) there are
positive real solutions, and (ii) there are local solutions in U, for all prime p.

81. Introduction

Let A = (a;j)1<i,j<n be a symmetric integral matrix with n > 4. In other

words,
at,1 a1,
(1.1) A=
Uni - o
with a; j =a;, € Z for all 1 <i < j <n. Let f(z1,...,z,) be the quadratic

form defined as
n n
(12) f(:L'l, ey fL’n) = Z Z (I@j!Eil‘j.
i=1 j=1
Let ¢ be an integer. We call f regular if A is invertible. For regular indefinite
quadratic forms with n >4, the well-known Hasse principle asserts that

f(z1,...,x,) =t has integer solutions if and only if f(z1,...,x,) =1t has
local solutions.

In this paper, we consider the equation f(x,...,x,)=1t, where
xi,...,T, are prime variables. It is expected that f(xi,...,x,)=1 has
solutions with z1, ..., z, primes if there are suitable local solutions. The

classical theorem of Hua [7] deals with diagonal quadratic forms in five
prime variables. In particular, every sufficiently large integer, congruent
to 5 modulo 24, can be represented as a sum of five squares of primes.
Recently, Liu [9] handled a wide class of quadratic forms f with 10 or more
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22 L. ZHAO

prime variables. The general quadratic form in prime variables (or in dense
sets) was recently investigated by Cook and Magyar [3], and by Keil [8]. In
particular, Cook and Magyar [3] handled all regular quadratic forms in 21
or more prime variables, while the work of Keil [8] can deal with all regular
quadratic forms in 17 or more variables. It involves only five prime variables
for diagonal quadratic equation due to the effective mean value theorem.
This is similar to the problem concerning Diophantine equations for cubic
forms. The works of Baker [1], Vaughan [10, 11] and Wooley [13, 14] can
deal with the diagonal cubic equation in seven variables. However, more
variables are involved for general cubic forms. One can refer to the works of
Heath-Brown [4, 5] and Hooley [6] for general cubic forms.

The purpose of this paper is to investigate general regular quadratic forms
in nine or more prime variables. We define

NeoX)= > A,

1<x1,..., xn<X j=1
F(@1,e,mn)=t

where A(-) is the von Mangoldt function. Our main result is the following.

THEOREM 1.1.  Suppose that f(z1,...,x,) is a reqular integral
quadratic form withn > 9, and that t € Z. Let &(f,t) and J;,(X) be defined
in (3.11) and (3.13), respectively. Suppose that K is an arbitrary large real
number. Then we have

(1.3) Nii(X)=6(f,1)34(X) + O(X" ?log™ & X),

where the implied constant depends on f and K.

Denote by P the set of all prime numbers. For a prime p € P, we use Z,, to
denote the ring of p-adic integers. Then we use U, to denote the set of p-adic
units in Z,. The general local to global conjecture of Bourgain-Gamburd-
Sarnak [2] asserts that f(x1,...,x,) =1 has prime solutions provided that
there are local solutions in U, for all p € P. Liu [9, Theorem 1.1] verified this
conjecture for a wide class of regular indefinite integral quadratic forms with
ten or more variables. Theorem 1.1 has the following consequence improving
upon Liu [9, Theorem 1.1].

THEOREM 1.2.  Let f(x1,...,x,) be a regular indefinite integral
quadratic form withn > 9, and let t € Z. Then f(x1,...,x,) =1t has prime
solutions if we have the following two conditions:
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(i) there are real solutions in R™, and
(ii) there are local solutions in Uy for all prime p.

We define N}:t(X) to be the number of prime solutions to f(p1,...,pn) =
t with 1 <p1,...,pn < X. Suppose that f is regular with n > 9. Actually,
in view of Theorem 1.1, one has N} ,(X) > X "=2]og™™ X for sufficiently
large X if the conditions (i) and (ii) in Theorem 1.2 hold.

Theorem 1.2 covers all regular indefinite integral quadratic forms in
nine prime variables. The O-constant in the asymptotic formula (1.3)
is independent of t. Therefore, Theorem 1.1 can be applied to definite
quadratic forms. In particular, if f(x1,...,z,) is a positive definite integral
quadratic form with n > 9, then there exist r, ¢ € N so that all sufficiently
large natural numbers N, congruent to » modulo ¢, can be represented as
N = f(p1,...,pn), where p1, ..., p, are prime numbers.

The method in this paper can also be applied to refine Keil [8, Theorem
1.1]. In particular, one may obtain a variant of Keil [8, Theorem 1.1] for a
wide class of quadratic forms in nine variables.

§2. Notations

As usual, we write e(z) for e*™*. Throughout we assume that X is

sufficiently large. Let L =log X. We use < and > to denote Vinogradov’s
well-known notations, while the implied constants may depend on the form
f. Denote by ¢(gq) Euler’s totient function.

For a set S in a field F, we define

(2.1) S"={(x1,...,x)": x1,..., 2, €S}

We use M, ,(S) to denote the set of m by n matrixes

(2.2) M0 (S) = {(aij)1<i<m, 1<j<n @i € S}

and GL,(S) to denote the set of invertible matrixes of order n
(2.3) GL,(S)={B € M, ,(S): B is invertible},
respectively. We define the off-diagonal rank of A as

(2.4) rankog(A) = max{r: r € R},

where

R = {rank(B): B = (ai, j,)1<ki<r With {i1,..., 0 {j,..., 5} =0}
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In other words, rank,g(A) is the maximal rank of a submatrix in A, which
does not contain any diagonal entries. For x = (21, . .., z,)? € N, we write

Ax)=Azy) - - A(zp).

For x = (1, ..., x,)T € Z", we also use the notation A(x) to indicate that
the argument A(z;) holds for all 1 < j < 's. The meaning will be clear from
the text. For example, we use 1 <x < X and x| < X to denote 1 <z; < X
for 1 <j<nand |z;|] <X for 1 <j<n, respectively.

In order to apply the circle method, we introduce the exponential sum

(2.5) S(a) = Z A(x)e(axT Ax),

1<x<X

where A is defined in (1.1). We define

q
(2.6) M@= J U M),
1<g<Q  a=1
(a,q)=1
where
M(q,a; Q) = {a: a— Z‘gq?{z}

The intervals M(q, a; Q) are pairwise disjoint for 1 <a < ¢ < Q and (a, q) =
1 provided that @ < X/2. For @ < X/2, we set

(2.7) m(Q) = M(2Q) \ M(Q).
Now we introduce the major arcs defined as
(2.8) M= M(P) withP =LK,

where K is a sufficiently large constant throughout this paper. Then we
define the minor arcs as

(2.9) m=[X"1 14+ X7\ M.
83. The contribution from the major arcs

For ¢ € N and (a, q¢) =1, we define

(3.1) Clg.a)= Y e<hTAh“>,

1<hgq q
(h,g)=1
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where A is given by (1.1). Throughout, we assume that f is connected to A
given by (1.1) and (1.2). Let

(32 Brle) = 5 X Claa)e(=2).

Concerning By (q), we have the following multiplicative property.
LEMMA 3.1.  The arithmetic function Byy(q) is multiplicative.
Proof. The desired conclusion can be proved by changing variables. []

LEMMA 3.2. Suppose that A is invertible. For any prime p, there exists
Yp = Yp(f, t) such that By, (p*) =0 for all k > ~y,. Moreover, if pt2 det(A),
then we have vy, = 1.

Proof. Throughout this proof, we assume that (a, p) = 1. We first deal
with the case p > 3. We claim that if

(3.3) Ck ay=p Y e <hTAh‘2)
1<hgph—I P
(h,p)Zl .
Ah=0(mod p7)

for some j < (k — 2)/2, then
(3.4) C(p*, a) = p"Uty Z e <hTAhi) .
1<hgph—i-1 P
(h,p)=1
Ah=0(mod pit1)
Indeed, by changing variables, we obtain from (3.3) that

C(pkv CL) = pnj Z Z

1<u<gp 1<h<pk7j—1
~(hp)=1 ,
A(up*—7=14+h)=0(mod p’)

X e<(upkj1 +h) T A(up*—7=1 4 h)i).
p

It follows from j < (k —2)/2 that j < k—j—1and k<2(k—j—1). Thus
we deduce that
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C(p*,a) = pv Z Z e <2pk_j_1uTAh}i) e <hTAh;€)

ISusp 1<hgph—i-1t
(hp)=1
Ah=0(mod p7)

= p”(j'H) Z e (hTAh;k> .

I<hgph—o—t
(hp)=1_
Ah=0(mod pt1)

This establishes the desired claim, and therefore we arrive at

(3.5) C@ra)=p= Y e(hTAhi>,
o p
1<hgp™™e
(h,p)=1
Ah=0(mod p?)

where s=|k/2]. There exists P € GL,(Z,) with det(P)=1 such that
PTAP =D =diag{ds,...,d,} with di, ..., d, € Z,. Note that A is invert-
ible, one has di - - - d,, # 0. In particular, we can choose r € N such that
p"1d; for all 1< j<n. The condition Ah=0(mod p°®) implies DPh=
0(mod p®). If s > r, then Ph = 0(mod p). So we obtain h = 0(mod p), which
is a contradiction to the condition (h, p) = 1. Therefore, we conclude that

(3.6) C(p*,a) =0 for all k>2r.

Moreover, when p{2det(A), we can take r =1 in (3.6).
For p = 2, the above argument is still valid with minor modifications. We
now claim that if

nj a
(3.7) c@Fa)=221 > e<hTAh2k)
1<hg2k—2
(h,2)=1
Ah=0(mod 27)

for some j < (k —4)/4, then
n(J a
(3.8) C(2F, a) = 22"+ > e (hTAh2k> .
1<h<2k72]’72
(h,2)=1

Ah=0(mod 2711)

This claim can be established by changing variables h = u2¢¥=%-2 + v with
u(mod 22) and v(mod 2¥~2/=2). The argument leading to (3.6) implies that
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there exists kg such that
(3.9) C(2%,a) =0 for all k>ko.

The desired conclusion follows from (3.2), (3.6) and (3.9). [

LEMMA 3.3. Let By.(q) be defined as (3.2). If A is invertible and n > 5,
then

Byy(q) <ge q 7.

Proof. In view of Lemma 3.2, it suffices to prove
(3.10) C(p,a) <z p"
for pt2det(A) and (a, p) = 1. Note that
Clp,a)= Y e<hTAh“> -5 ¥ e(hTAjha>
p =1 h n—1 p
eN
1<hg

heN™ J
1<hgp

shsp
a
+ Z Z €<hTAijh> + O(pnig),
1<i<j<n heNn—2 p
1<h<gp

where A; denotes the submatrix of A by deleting the jth row and jth
column, and A;; denotes the submatrix of A; by deleting the ith row and
1th column. For complete Gauss sums, we have

Z e<hTMha> <<pk—rank(M)/2’
p

heNF
1<h<p

where the implied constant depends on the square matrix M. The estimate
(3.10) follows by observing that rank(A;) > 3 and rank(A;;) > 1. We com-
plete the proof. 0

Now we introduce the singular series S(f, t) defined as
(3.11) &(f,t)=_ Br(q),
q=1

where By,(q) is given by (3.2). From Lemmas 3.2 and 3.3, we conclude the
following result.
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LEMMA 3.4. Suppose that A is invertible and n > 5. Then the singular
series S(f,t) is absolutely convergent, and

G(fa t) = H Xp(fa t)v
P
where the local densities x,(f,t) are defined as

Xp(F,t) =1+ Br(p™).

m=1
Moreover, if f(x1, ..., x,) =t has local solutions in U, for all prime p, then
one has
S(f,t)>1.

Proof. It suffices to explain &(f, t) > 1 provided that f(z1,...,z,) =t
has local solutions in U, for all prime p. Indeed, in view of Lemma 3.3, one
has Hp%)o Xp(f,t) > 1 for some py. When p < pg, by Lemma 3.2, for some
v =p we have

.,
Xp(fit) =1+ Br(@™= > L
m=1

1<hgp”
(h,p)=1
F(h)=t(mod p7)

Since f(x1,...,xy,) =1 has local solutions in U,, one has x,(f,t) > 0. This
concludes that [ x,(f,t) > 1. [
J2

REMARK 3.5. We point out that in view of the proof of Lemmas 3.2-3.3,
one has

Bf,t(qulqz) < 2—(rank(A)/4)kq1—rank(A)/2q2—rank(A)/3

I

where q; is square-free and (2, ¢1¢2) = (q1, ¢2) = 1. In particular, the singular
series is absolutely convergent if rank(A) > 5. Therefore, the condition that
f is regular with n > 9 in our Theorem 1.1 can be replaced by rank(A4) > 9.

We define

(3.12) I1(B) = /[0 . e(BxT Ax)dx.
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Since I(B) < X™(1 + X?2|B|)~2 for rank(A) > 5, we introduce the singular
integral

o0

(3.13) 352 = [ 1B)e(-t8)d5,

—0o0

where f(x)=x! Ax. Note that J74(X) > X" 2 if f(21,...,2,) is indef-
inite and f(z1, ..., zy) =t has positive real solutions.

LEMMA 3.6. Lett € Z, and let

S(a) = Z A(x)e(axT Ax),

1<x<X

where A € My, ,(Z) is a symmetric matriz with rank(A) > 5. Then one has
(3.14) / S(a)e(—ta) da = S(f, 1)31.4(X) + O(X"2LK/4),
m
Proof. We write f(x) for xT Ax. By the definition of 91, one has

/m S(a)e(—ta) da
=Y S [ % awe(seo(2 ) e(—(%5) )as

g<P (1<a)<q IBIS 7 1<x<x
a,q)=1
(3.15)

We introduce the congruence condition to deduce that

> aee( (%))

1<x<X
= e(ﬂh)Z) T A@e(f()8)
1<h<g 1<x<X
x=h(mod ¢)
. e(f(h)Z) Y A®E(f(x)B) + OX"ILP).
1<h<q 1<x<X
(h,g)=1 x=h(mod q)

Since ¢ < P = L¥, the Siegel-Walfisz theorem together with summation by
parts will imply for (h, ¢) =1 that
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AR = g [ G0+ O L)

= I(B) + O(X™ L),
q
It follows from above

(3.16) 1<;XA < ( +B>> Cla-a) gy o(xmL10K),

¢"(q)
By putting (3.16) into (3.15), we obtain

(3.17)
| st@e(=ta) da - > Blo /ws,;z 1(8)e(~18)dB + O(X"LK),
It follows from I(8) < X™(1 + X?|3|)~2 that
(3.18) Jra(X) < X772
and
(3.19) /WP I(B)e(~t8)dB = I 74(X) + O(qX 2P,

Combining (3.17)—(3.19) together with Remark 3.5, we conclude

/ S(a = (1, 1)34(X) + O(X"2LK/Y),
The proof of Lemma 3.6 is complete.
§4. Estimates for exponential sums
LEMMA 4.1. Let {&.} be a sequence satisfying || < 1. Then one has

2
<X ) min{X, [jza] '}
|| X

e(ayz)

ly|l<X ' |z|l<X

Proof. We expand the square to deduce that

oY Gelayz) Yoo Gl Y elay(z— =)

lyl<X ' |2|<X |21 <X |z2|<X lyl<X

<X S| clawta )|

|21|<X |2z2|< X ' |yl X
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By changing variables, one can obtain

S e « T X

Z e(ayx)

lyl<X " |z|<X |zl X |zl X ' |yl X
<X Z Z e(ayz)
lz|<X 7 Jyl<X
<X > min{X, [lzal "'}
||« X
We complete the proof. [

LEMMA 4.2. For a € m(Q), one has
Z min{X, |za|~'} < LQ™'X?.
lz|<X

Proof. For a€m(Q), there exist a and ¢ such that 1<a<q<2Q,
(a,q) =1and |a — a/q| < 2Q(¢X?)~!. By a variant of Vaughan [12, Lemma
2.2] (see also Exercise 2 in Chapter 2 [12]), one has

. _ 1 1 q(1+X?8])
X 1 Lx?|—— 4+ — 4 2 V)
E min{X, [|za|” "} < <q(1+X2|B|) + X + e
|zl X

Since a € m(Q), one has either ¢ > Q or |a —a/q| > Q(¢X?)~!. Then the
desired estimate follows immediately. U

LEMMA 4.3. Leta€m and 8 €R. For d € Q, we define
fla, B)="Y A@)e(ads® +zp).
I<e<X

If d#0, then one has
(4.1) fla,B) < XL7K/5,

where the implied constant depends only on d and K.

Proof. The result is essentially classical. In particular, the method used
to handle » 0,  x A(x)e(ax?) can be modified to establish the desired
conclusion. We only explain that the implied constant is independent of
5. By Vaughan’s identity, we essentially consider two types of exponential
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(4.2) Z Ty Z e(adr?y? + zyp)

and

(4.3) Z Z Eenye(ada®y® + xyp).
z oy

By Cauchy’s inequality, to handle the summation (4.3), it suffices to deal
with

DO T Y elada®(yf —v3) + x(y1 — y2)B).-

yi ooy z

One can apply the differencing argument to the summation of the type
>, e(a/z? + zB') as follows

2

= Z Z e(of (2 — 23) + (z1 — 22)5)

=> Y e@dha+hB)<Y | e(20/ha)
h T h T

This leads to the fact that the estimate (4.1) is uniformly for 5. [

Z e(o/z? + zp")

x

LEMMA 4.4. Let « € m(Q). Suppose that A is in the form

Ay B 0
(4.4) A=|BT A, C |,
0 CT A

where rank(B) > 3 and rank(C) > 2. Then we have
(4.5) S(a) < X"Q 012 Ln+/2,

REMARK 4.5. In view of the proof, the estimate (4.5) still holds provided
that rank(B) + rank(C) > 5.

Proof. By (4.4), we can write S(«) in the form
S(a)= ) AA(Y)A(e)
1<x<X

1<y<X
1<z<X

x e(a(xT A1x + 2xT By + yT Agy + 2y” Cz + 2" Azz)),
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where x € N, y € N®* and z € N’. Then we have

S(a) < Z Z A(x)e(a(xT Ajx + QXTBy))'
1<y<X | 1<x<X
Z Az)e(a(2yT Cz + ZTA3Z))‘
1<z<X

By Cauchy’s inequality, we obtain

2\ 1/2
S(a) < L ( S Y A)e(ax"Ax + 2x" By)) )
I<y<X ' 1<x<X
2\ 1/2
(4.6) ( 1) A@e(a2y"Cz + 2" Agz)) ) .
1<y<X '1<z<X
We deduce by expanding the square that
2
Z Z A(x)e(a(x” A1x + 2xT By))
ISy<X ' 1<x<X
Yo > Exixe) Y el2a(xi —x3)" By)
1<x <X 1<xo<X 1<y<X
=Y ) &x+hx) Y e2a(h”By))
[hj<X 1<x<X ISy<X
1<x+h<X
<SXLT Y | ) e(2a(hTBy))',
hi<X '1I<y<X

where £(x1, X2) is defined as
£(x1, x9) = A(x1)A(x2)e(a(x] Arx; — x3 A1x2)).

We write

Since rank(B) > 3, without loss of generality, we assume that rank(Bp) = 3,
where B() = (bi,j)1<i7j<3- Let B’ = (bi,j)4<i<r,1<j<3~ Then one has
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D

[h|<X

ety %

‘h4|77‘hT|<X \uKX

Z e(2h? Bya)

1ISy<X

Z e(2a(u” By + kT)v)

1<vsX

)

where u’ = (hy, ho, h3), vI = (y1,42,y3) and k' = (h4,...,h,)B’. By
changing variables x” = 2(u” By 4 k), we obtain

> <X X

‘h|<X |h4‘77|hT|<X |X‘<<X

< X7ts—6 Z Z e(a(xTV))‘.

x|« X ' 1I<vsX

Z e(2h? Bya)

1ISy<X

> clatxtv)

1<v<X

We apply Lemma 4.2 to conclude that

>

[h|<X

> e(2h"Bya)| < X" Q7 L?,

1ISy<X

and therefore,

@ >

1<y<X

2
Z Ax)e(a(x? Ajx + 2xT By))| < XZTsQ 3123,

1<x<X

Similar to (4.7), we can prove

(4.8) >

1ISy<X

2
< X2t+SQ—2L2t+2 )

Z A(z)e(a(2y? Cz + 2" Azz))

1<z<X

The proof is completed by invoking (4.6)—(4.8). 0
LEMMA 4.6. Suppose that A is in the form (4.4) with rank(B) > 3 and
rank(C') > 2. Then we have
/ 1S(a)| da < X"~2LK/3.
m

Proof. By Dirichlet’s approximation theorem, for any a € [X ™1 1+
X 1], there exist a and ¢ with 1<a<¢<X and (a,q)=1 such that
o —a/q| < (gX)~!. Thus the desired conclusion follows from Lemma 4.4
by the dyadic argument. 0
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85. Quadratic forms with off-diagonal rank <3

PROPOSITION 5.1.  Let A be given by (1.1), and let S(a) be defined in
(2.5). Suppose that rank(A) > 9 and rank.g(A) < 3. Then we have

/ S(a)| da < X"2L-K/6,
m

where the implied constant depends on A and K.

From now on, we assume throughout Section 5 that rank(A) > 9 and

(5.1) rank,g(A) = rank(B) = 3,
where

a4 G15 0416
(5.2) B= a4 a5 azgp

asz4 azs Aaze

Then we introduce By, By, B3 € M3 ,_4(Z) defined as

a5 a6 a7 aig - Qi
(5.3) By = a5 ase a7 asg - azn |,

azs asg a37 a3g azn

a4 a1 G177 a1g ain
(5.4) By = |a24 ase a7 asg asn

az4 a3g G37 a38 azn
and

a4 a1 a7 a1g ain
(5.5) B3 = a4 azs az7 asg asn

az4 G35 G37 G38 asn

Subject to the assumption (5.1), we have the following.
LEMMA 5.2. Ifrank(B;) =rank(By) =rank(B3) =2, then one has

/ 1S(a)| da < X"2LK/S,
m

LEMMA 5.3.
has

If rank(B;) =rank(B2) =2 and rank(Bs3) =3, then one

/ 1S(a)| da < X" 2L7K/6,
m
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LEMMA 5.4. If rank(B1) =2 and rank(By) =rank(Bs) =3, then one
has

/ 1S(a)| dow < X" 2L7K/6,
m

LEMMA 5.5. Ifrank(B;) =rank(Bs) =rank(B3) =3, then one has
/ 1S(a)| dow < X" 2L7K/6,
m

Remark for the Proof of Proposition 5.1. If rank.g(A) =0, then A is a
diagonal matrix and the conclusion is classical. When rank.g(A) =3, our
conclusion follows from Lemmas 5.2-5.5 immediately. The method applied
to establish Lemmas 5.2-5.5 can also be used to deal with the case 1 <
rank,g(A) < 2. Indeed, the proof of Proposition 5.1 under the condition
1 <rankyg(A) <2 is easier, and we omit the details. Therefore, our main
task is to establish Lemmas 5.2-5.5.

LEMMA 5.6. Let C' € My, ,(Q) be a symmetric matriz, and let H €
M, 1(Q). For a € R and B € R*, we define

Fla, B) = Z w(x)e(ax? Cx + xTHP),

xeX

where X CZ" is a finite subset of Z™. Let

Then we have

/ Fla, B)P da dB < N(F),
[071}k+1

where the implied constant may depend on C' and H.

Proof. We can choose a natural number h € N such that hC' € M,, ,,(Z)
and hH € M, 1(Z). Then we deduce that
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[ 1P B dcap

2
< / S w(x)e(hLax? (hC)x +xT (hH)(h1B))| do B
[0,p)+1 xeX
2
= phtl / Z w(x)e(ax? (hC)x 4+ xT(hH)B)| do dp.
[0, 1]+ xeX
By orthogonality, we have
2
/ Z w(x)e(ax? (hC)x 4+ xT (hH)B)| do dB
[0,1]k+1 xeX
= > w(x)w(y) =N(F).
xe X, ye X
xT (hC)x=y™ (hC)y
x"(hH)=y" (hH)
Therefore, one obtains
[ IFe B dadpit N ()
[071}k+1
and this completes the proof. [

LEMMA 5.7. Let C € My, ,(Q) be a symmetric matriz, and let H €
M, (Q). We have

M NQ,
where
N = E 1 and ANy = Z 1.
x| <X, |y|<X x| <X, ly|<X
xTCx=yTCy x"Cy=0
xTH:yTH xT H=0

Proof. By changing variables x —y =h and x+y =2, the desired
conclusion follows immediately. 0

The following result is well known.
LEMMA 5.8. Let C € My, (Q). If rank(C) > 2, then one has

IORE S G

x| <X, ly|<X
xTCy=0

where the implied constant depends on the matriz C.
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5.1 Proof of Lemma 5.2
LEMMA 5.9. Ifrank(B;)=rank(Bs) =rank(B3) =2, then we can write
A in the form

A, B 0
(5.6) A=|BT 4, C|,
0o cT D

where B € GL3(Z), C € M3 ,_6(Z) and D = diag{d,, ..., dn—6} is a diago-
nal matrix.

Proof. We write for 1 < j <n — 3 that

al, 3+
(5.7) v = | az,3+;
CL37 3+

Since B = (71, 72, 73) € GL3(Z), 71, 2 and 3 are linearly independent. For
any 4 < j<n—3, one has rank(ys2, 73, v;) < rank(B;) = 2. Therefore, we
obtain 7; €< 2,3 >. Similarly, one has v; €< vy1,v3 > and v; €<y, 72 >.
Then we can conclude that v; =0 for 4 <j <n — 3.

For 7 <i < j < n, we write

ai4 Qis aie Qaij 77{
By — | @4 025 ms 025 _ 772::
as4 azs aze a3 3
a; 4  Qi5 Qi6  Qj UZ

Since 3 < rank(B; ;) < rankeg(A) = 3, we conclude that nl can be linearly
represented by 71, nd and 773?- Then we obtain a; ; =0 due to a1 ; =az; =
azj =0. Therefore, the matrix A is in the form (5.6). We complete the
proof. 0

Proof of Lemma 5.2. By Lemma 5.9, we have

S@= > 2. X

xEN3  yeN3 zeNn—6
1<x<X 1<y<X 1<z<X

x e(a(x? A1x + 2xT By + yT Agy + 227 CTy + 27 Dz))
x A(x)A(y)A(z).
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By orthogonality, we have

a_/m S Y Y Y o Ax+wly +27Dz)

weZ3 xeN3  yeN3 zeNn—6
|W‘<<X 1<x<X 1<y<X 1<z<X

x e((2xTB +yT Ay + 227 CT — wh)B)A(x)A(y)A(z) dB,
where B = (81, 2, 83)T and we use dB to denote df; dfs dB3. We define
Fla, B) = Z e(axT Ayx + 2xT BB)A(x),

xeN3
1<x<X

and

fila, B) =Y elad;z® +22¢] B)A(=),

1<2<X
where ;= (a4,6+j, a5.64j5 a676+j)T for 1<j<n—6. On writing I3=
(e1, e2, e3), we introduce

B)= 3 3 elawy+ 7B - wel BA(Y),

lw|< X 1<y<X

where VJ-T = (a3+4j4, a34j5, az+j6) for 1 < j < 3. With above notations, we
have

/ S(a) do = / Flov, B)Ha (o, B)Hal(or, B)Hs(ar, B)
m m J[0,1]3

n—6

< [ fi(e, B) dB da.
j=1

Therefore, one has the following inequality

Jsenas [ ],

(5.8) % H fia, B) ’dﬁ da.
j=1

(o, B)H1(a, B)Ha (v, B)Hs(cr, B)

We first consider the case rank(D) > 3. Without loss of generality, we assume
dydads # 0. By (5.8) and the Cauchy—Schwarz inequality, one has

(59) [ 1s@)do< 7T s I ste

,36[0 1} J=3
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where

(5.10) 7, = / F v, B) fi (e B) folcr, B)[2 dB dos
[0,1]4

and

(5.11) T, = /[0 . M B B o B)[2 4B da.

By Lemmas 5.6 and 5.7, one has

I < Lo Z 1

|X‘,|X",|21 |7|Zi |7‘Z2|7‘Zé|<<X
xTA1x—&-cl1z%—&-dgz%:x’Tz%x’—i—dlziz-‘,-dgzé2
xT Btz1yf +2ovd =x'T B+2{yT +257F

< L' Z 1.

|X‘,|X",|zl Ivlzi Iv‘Z2|7‘Zé|<<X
xTAlx'—‘rdllei—i-dngZé:O
XTBJer’Y%—“i’ZQ’Yg:O

Since B is invertible, we obtain

AR Lo Z 1.

|X/‘,|Zl ‘,'Zi |7|22|7‘Zé|<<X
—(217T +2278) B~ L A1/ +d1 2124 +d2 2225 =0

Then we conclude from Lemma 5.8 that
(5.12) T, < X501
It follows from Lemmas 5.6-5.7 that

I < L° >

|w1Hw/lHwZ‘)'wé‘)lw'&‘)lwé‘)lylMy/l|7‘y2|7‘yé|7|y3|’|yé‘<<x
w1y1 +waye+wsys=w] y; +whyh+wiyl
y171 —wief +y273 —wael +ysvi —wsel =yiv{ —wief +ypv; —whes +yivi —whed

< LS Z 1

le|7|w,1|7|w2‘7|w/2‘7|w3‘7|wé‘7|y1‘ylyll|7|y2|7‘yé|7‘y3|7|yé|<<X
w1y} +w) Y1 +w2ys +Fwyye +wsys+wsys=0
y1vF —wieT +yovT —wael +ysvT —wzel'=0

< L° > 1,

|w/1|’|w/2|’|wé"|y1‘)lyll‘7|y2|7‘y/2|7‘y3|7‘y/3|<<x
Yy (i28) Ty +y T w'=0
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where Y= (y17 Y2, Z/3)T= y/ = (y/17 yéa ylj)T and W/ = (w/17 w/27 wg)T Then by
Lemma 5.8, we have

(5.13) Ty < XTLT.
Since d3 # 0, we obtain by Lemma 4.3

sup |fs(a, B)| < XLfK/5,
acm

Be[0,1]?
and thereby

n—6
(5.14) sup Hfj(oz,ﬂ)‘<<X”8LK/5.
acm .
Bep =3

Now we conclude from (5.9), (5.12)—(5.14) that
/ 1S(a)| da < X215/,
m

Next we consider the case 1 < rank(D) < 2. Without loss of generality,
we suppose that d; # 0 and dj =0 for 3 <k < n. Since rank(A) > 9, there
exists k with 3 <k <n — 6 such that & #0 € Z3 Then we can find 4, j with
1 <1< j <3 so that rank(e;, e, §) = 3. Without loss of generality, we can
assume that i =1, j =2 and k= 3. One has

/m |S(a)| dev < gfg a, 8) ‘( / | F(a, B)Hs(e, B)|* dB da) "

1/2
X </[01]4 |H1(a, B)Ha(ar, B) f3(cv, ﬁ)|2 a8 da) ‘
We deduce from Lemmas 5.6-5.7 that

/ |F(a, B)Hs(c, ,6')]2 dBda < L8 Z 1
[0,1]*

I, [ Jwl, [w], yl, [y <X
xT Ay x4wy=x'T A1 x’'+w'y’
2xT B+yyT —wel =2x'T B+y/vT —w'el

< LB Z 1

<l [/ Jwl, [w] [yl [y [ <X
2xT Ay x" 4wy’ +w'y=0

2xT B—&-y'yg —we?:O
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< L >

. |X’\,|;U|7\w'1|:\y|:\y/|<<X
—(yv; —we3 ) B~ A1 x'+wy’'+w'y=0

Then by Lemma 5.8, one has

(5.15) / | F(a, B)H3(ax, B)|* dB da < X° L.
0,1]*

We deduce from Lemmas 5.6-5.7 again that

/[0 e H1(ov, B)Ha(v, B) f3(e, B)|* dB dar

< I Z 1

[wil,Jw) | [wz |l wh |yl vzl lys sl 2] |2 <X
wiy1tway2+dsz? =wiy) +whyh+dzz"?
y17] +y2y3 —wie] —waed +22€5 =yiv{ +hv; —wie] —whel +22'¢7

1~ W2e;
< LS > 1.

|w1‘)|w/1‘)le‘)lwIQ‘)lylI:lyll|7‘y2|7‘yé|7|2|’|‘z/|<<X
w1y +wiy1 +wayh+whys+2d3zz'=0
1] +y2rd —wiel —wael +2267=0

On applying rank(ej, e, £&3) = 3 and Lemma 5.8, we obtain

(5.16) / 1M1 (e, B)Ha(a, B) f3(a, B)|? dB dov < X° L.
[0,1]*

It follows from Lemma 4.3 that

(5.17) sup H [y, ,3)’ < XKD,
peloap |73
Then we conclude from (5.15)—(5.17) that
/ 1S(a)| da < X"—2LK/S.
m

Now it suffices to assume D = (. Then the matrix A is in the form

A, B 0
(5.18) A= BT 4, C
0o T o

It follows from rank(A) > 9 that rank(C') > 3. By Lemma 4.6,
/ 1S(a)] da < X"2LK/3.
m

This completes the proof of Lemma 5.2.
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5.2 Proof of Lemma 5.3
LEMMA 5.10. If rank(B;) =rank(B2) =2 and rank(B3) =3, then the

symmetric integral matriz A can be written in the form

A C v5&T
A=|cT 4, Vv ,
&3 VT D+ heg?

where C' = (y1,72) € M32(Z), 13 € Q3, £ € Z"°, V € My _5(Z), h€ Q and
D =diag{d;,...,dn—5} € My_5,—5(Q) is a diagonal matriz. Moreover, one
has (/717 Y2, /73) € GL3(Q)

Proof. Let us write

ai,3+j
/ .
v = | a2,3+; for 1<j<n — 3.
agz, 3+j

Since rank(v], 74, v4) = rank(B) =3, we conclude that ~], 75 and ~4 are
linearly independent. For any 4 < j <n — 3, we deduce from rank(B;) =
rank(B2) =2 that 7; €< 75,73 >N <7y, 73 >=< 73 >. Therefore, we can
write A in the form

A C oyt

A=|CT A, V |,

&g VT A
where C = (v1,72) € M32(Z), v3€ Q®, £ € Z" 5, V € My ,—5(Z) and A3 €
Mn—5,n—5(@)'

For 6 < j < n. we define an = (@jay -y Qjj1, Qjjil,s - -5 Ajn) L €ZMTH
Then we set 9;% = (Aidy ey Qijo1s Qs - - -5 Qi) L €ZM4 for 1<i< 3.
Since rank,g(A) = rank(B) =rank(B3) =3, n; can be linearly represented
by (91’]‘, 92’]‘ and 937j. Let
0F = (aia, .., ai,)" €Z™3 for 1<i<3.

)

Then one can choose a;-,j € Q such that (aj4,...,a;5;5-1, a;-J-, @jjt1s -
ajn) is linearly represented by 61, 62 and 63. We consider Az and A% defined

/
a6 -t A6 Gee ' dgn
As=1 + ... and A= @ ... |,

’ /
an6 - Onn ane " Qpn
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. / . .
where a] j = @i for 6 <i# j <n. Since Aj is symmetric, we conclude from

above that A} = h&€T for some h € Q. The proof is completed by noting
that D = A3 — A% is a diagonal matrix. 0

Proof of Lemma 5.3. One can deduce from Lemma 5.10 that
Z Z Z a(xTAyx + 2xT 36Tz + 27 Dz + hal€¢T 7))

xeN®  yeN? zeNn—5
1<x<X 1<y<X 1<z<X

e(a(ZXTC'y +yT Ay + ZZTVTy))A(X)A(y)A(z).

We introduce new variables w € Z? and s € Z to replace 2x7 C +yT Ay +
2z7VT and €7z, respectively. Therefore, we have

S(a) = /[0 JPlz Y Y Y AxAAR

s|«X weZ? xeN?  yeN? zeNn—5
[w|X 1<x<X 1<y <X 1<z<X

x e(a(xT Aix +wly + 27 Dz + 2x"y35 + hs?))
x e((2xTC +yT Ay + 227 VT —wT)3)
x (€72 — 5)B3) B,
where 3 = (81, B2), B = (b1, B2, B3)" and dB = df1 dfs dfBs. We define

Z Z a(xT Ayx + 2xTy3s 4+ hs?) + 2xT OB — s63)A(x).
[s|«X xeN3
1<x<X

On writing I» = (e, e2), we introduce

a,B)= Y Y elawy+yp]B —we] B)A(y),

Jlwl« X 1<y<X

where p; = (a3+j4, a34j5)7 for 1<j<2. Let €= (€1, ..., €n—5)T. Then we
define
fila, B) = Z e(ad;z? + ZZU;‘»FB' +€;2033)A(2),
1<z<X
where V = (v1, ..., vp—5) with v; = (a4,54, a5y5+j)T for 1 <j<n—>5. With
above notations, we obtain

(5.19)

[sorses | [,

(a, B)H1(cv, B)Ha(ev, B) Hfj a, B)| dB da.
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Let
Ji= / |F (o, B) filer, B)? dB da
[0,1]4

and

Jo— / Ha (, B)Ha(er, B) f; (v, B)) dB do.
[0,1]4

By (5.19) and the Cauchy—Schwarz inequality, one has for i # j that

(5.20) /]S )| da<J, g2 1/2 sup H fr(a, ,B'

36[0 1]3 k#i.j

One can deduce by Lemmas 5.6 and 5.7 that

Ji < LP > 1.
[ 1x"|,[s],]s"],] 2], | " |<< X
xT A1 x'+xTy3s'+svI %' +hss'+d; 22/ =0
XTC-i-ZU;-T:O

s=¢€;z

Note that
> 1= > 1
x|, [x,]s|,|s",] 2], 2" | <X [x,|x"[,]s],] 2], 2" [« X
xTAlx’—l—xT'yg,s’+5'y§x’+hss’+dizz’:0 xTA1x’+xT'735'+eizvgx’—&—heizs’-‘rdizz’zo
xTC+zviT:O xTCJrzviT:O
s=€;z

= > 1.

x|, [x"[,]s],|s"|;] 2], 2" | <X
xTAlx’—&-ss’—i-eiZ'ygx’—l—heizs’-‘rdizz’zo
xT(Crys)+(zv] ,—5)=0

Recalling rank(C, v3) = 3, one can replace x by — (20!, —5)(C, v3) L. There-
fore, by Lemma 5.8, one has

(5.21) J1 < X°L° if d; #0.
The argument leading to (5.16) also implies
(5.22) Jo < X°LP if ¢; #0.

Now we are able to handle the case rank(D) > 2. Since rank(B3) = 3, one
has € # 0 for some [ satisfying 2 <1 < n — 5. We may assume €5 # 0. We also

https://doi.org/10.1017/nmj.2016.23 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.23

46 L. ZHAO

have €; #0 due to rank(B) = 3. If d; # 0 for some [ > 3, then we can find
i, j, k pairwise distinct so that ¢; # 0 and d;dj, # 0. If dida #0 and €; #0
for some j > 3, then we can also find 7, j, k pairwise distinct so that €; # 0
and d;dy, # 0. In these cases, we can conclude from (5.20)—(5.22) that

/ 1S(a)| da < X"—2LK/S.
m

Next we assume d; =¢; =0 for all [ > 3. Then we can represent A in the

form
A, H 0
A=|HT" v W/,
o wT o

where H € M34(Z), Y € My4(Z) and W € My,,—7(Z). It follows from
rank(B) = 3 and rank(A) > 9 that rank(H) > 3 and rank(WW) > 2. We apply
Lemma 4.6 to conclude

/ 1S(a)| da < X" 2LK/3,
m

We are left to handle the case rank(D) < 1. Since rank(D) + rank(V') +
1.

1+5>rank(A) > 9, we obtain rank(D) > 1. Therefore, rank(D) =1. We
have
(5.23) / |S(a)] da<j1/2 1/2 Sup H ful
m ,36[0 1]3 uF#i,j,k
where
G [ | Fle@he B dgdo
0,1
and

j4 :/[ i "H2(CY7 IB)fl(a7 ,B)fj(a7 B)fk(a, /6)|2 dﬁ dov.

)

By Lemmas 5.6-5.7, we have

Tz < LB E 1.
[,/ Is][s" L1yl 1y |l w], Jw' <X
2xT A1 x'+2xTygs' +2hss'+2sv1 %' +wy'+yw'=0
2xTC+ypf7welT:0
s=0
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Since rank(C') > 3, we can represent two of x1, zo, x3 (say x; and z3) in
terms of x3, y and w. Then by Lemma 5.8, one has

(5.24) T < XTLO.

T
We deduce from Lemma 5.10 that rank <§/> > rank(A) — 5 — rank(D) > 3.

ol ol Wl
Therefore, there exist distinct i, j, k, s such that rank < ! J k) =3

€ € €
and ds # 0. By Lemmas 5.6-5.7, we also have

Ty < LB Z 1.

[yl |y lwl,Jw'] 21|21 ], 1221 |25, 23], 25| < X
wy' +yw'+2d; 21 24 +2dj 2025 +2dy 2325 =0
T _ T 2 T 2 T 2 Tfo
Yypy —wey +2z1v; + 22V; +2z3v;, =
€;21+€;22+€,23=0

Hence we can replace z1, z2 and z3 by linear functions of y and w, and it
follows that

(5.25) T < X°L°.

Hence we can obtain again that
/ 1S(a)| da < X"—2LK/3,
m

The proof of Lemma 5.3 is finished.

5.3 Proof of Lemma 5.4
The proof of Lemma 5.10 can be modified to establish the following result.
The detail of the proof is omitted.

LEMMA 5.11. If rank(B;) =2 and rank(Bsz) =rank(B3) =3, then we
can write A in the form

A 7 (72,713)C
(5.26) A= v a vl ,
CT(y2,73)" v D+CTHC

where 7€ Zga V2,73 € ng Ce M2,n—4(Z)7 ac Z7 v e Zn74; He M2,2(Q)
and D = diag{d, ..., dn—4a} € Myp_4,-4(Q) is a diagonal matriz. Moreover,
one has (71,72, 73) € GL3(Q).
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LEMMA 5.12. Let A be given by (5.26). We write

(527) C= (gla SR gn74) and UT = (Ula sy Unf4)'
Let

_ (&G & &
(5.28) Rijx= (Ui . Uk) .

Under the conditions in Lemma 5.11, one can find pairwise distinct
1, 5, k,u with 1<14,7,k,u<n—4 such that at least one of the following
two statements holds: (i) rank(R; ;) =3 and dy, #0; (ii) rank(&;, &) =2
and dyd,, # 0.

Proof. It follows from 9 < rank(A) < rank(D) + rank(v) + rank(C) + 4
that rank(D) > 2. If rank(D) = 2, say dida # 0, then rank(R) > 3, where

Re (S,
vz o Un—4

Then statement (i) holds. Next we assume rank(D)>3. Note that
rank(&1, &2) =2 due to rank(B) =3. If d,ds; #0 for some r > s >3, then
statement (ii) follows by choosing i =1, j =2,k =17 and u = s. Therefore,
we now assume that rank(D) =3 and dydy # 0. Without loss of generality,
we suppose that ds # 0 and ds =0(4 < s <n — 4). We consider rank(&7, &)
and rank(&a, &) for 4 <s<n —4. If rank(;, &) =2 for some s with 4 <
s<n —4, then one can choose =1, j=s k=2 and u=3 to establish
statement (ii). Similarly, statement (ii) follows if rank(&s, £5) =2 for some
s with 4 < s<n —4. Thus it remains to consider the case rank(&;, ;) =
rank(&, &) =1 for 4 < s <n — 4. However, it follows from rank(;, &) =
rank(&1, &2, &) =2 that £ =0, and this is contradictory to the condition
rank(A) > 9. We complete the proof of Lemma 5.12. [

Proof of Lemma 5.4. We deduce from Lemma 5.11 that

S@= 2, >, 2

xeN3  1<y<X zeNn—4
1<x<X 1<z<X

x e(a(xT Ayx + 2xT (v2,73)Cz 4+ 2" Dz + 27 CT HC?z))
x e(a(2xTy1y + ay® + 227 vy))A(x)A(y)A(z).
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We introduce new variables w € Z and h € Z? to replace 2x’~ + ay +
2z7vT and Cz, respectively. Therefore, we have

se=[ 3 3 3 3 Y AwAwAG)

heZ? |w|<X xeN3 1<y<X zeNn—4
|h|<«X 1<x<X 1<z<X

x e(a(xT A1x + 2x7 (49, y3)h + 27 Dz + hT Hh + wy))
x e((2x" 1 +ay + 2270 — w) i)

x e((Cz—h)" @) dB,
where B = (81, Ba, B3)T, B = (B2, B3)T and dB = dB;1 df> dBs. Now we intro-
duce

Z Z a(xT Ayx + 2xT (72, v3)h + hT Hh))

heZ? xeN3

|hj< X 1<x<X

x e(2xT 181 — hT B')A(x),
and

= > > elawy+ (ay — w)B)A(y).

|lw|< X 1<y<X

On recalling notations in (5.27), we define

fi(a, B) = Z e(ad;z* + 2zv; 81 + zéf,@')A(z).

1<2<X

Then we obtain from above

(5.29) /m|5(a)|da</m/[o’1]3 Fla

One can deduce from Lemmas 5.6 and 5.7 that

n—4
H(e, B) [ fi(e B)| dB da.
j=1

/[0 1t [H (e, B) fi(er, B) fi(c, B) fr(a, ,3)‘2 dB da

<I® > 1.
|w|7‘wl|7|y|7‘y/|v‘ziMZ;MZJ'|7‘Z;|7|Zk|7‘zfg|<<X
wy' +yw' +2(ds 22 +d; 225 +dg 212, ) =0
ay—w+2(vizi+vjzj+vk 2 )=0
zi&i+2;€+2,8=0
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If rank(Ri7j7k) = 3, then we can represent z;, z; and zj, by linear functions of
y and w. Then by Lemma 5.8,

[, Pl B0 B (0. B) (o, B B o< XL

If rank(&;, £;) = 2, then we can represent z;, z; and w by linear functions of
y and z;. Then we obtain by Lemma 5.8 again

[, B B0 B) il B d dc < X717
0,1
provided that d # 0. By Lemmas 5.6-5.7, we can obtain

/014 | F(a, B)> dB da < L® § : 1
0.1 x| ] [ X
xT A1 +xT (y2,73)0 +x'T (y2,73)h+hT Hh’/=0
xTy1=0
hT=0

=L > 1.
|||, [h'| <X
xT A1x'+xT (v2,73)h'=0
xTy1=0

Then we deduce that
/ | F(a, B)]? dB da < LS > 1
(0.1 [x], x|, |b’|,|b| < X

xT A1 x'+hTh’'=0
xT (v1,72,73)=(0,nT)

< IS Z 1.

Ix'[,/h’|,[h|< X
(0,8T)(y1,72,73) "L A1x’+hTh'=0

On invoking Lemma 5.8, we arrive at
/ | F(e, B)|? dB da < X5L.
[0,1]*

If 1<i,j, k<n—4 are pairwise distinct, then one has by (5.29) and the
Cauchy—Schwarz inequality
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/ |S(a)| doe < sup
m

Belo1)  vFIF

1/2
X (\/[ 4 ’H(awg)fi(aa ﬁ)f](a7 ﬁ)fk(Oé,,B)F d,BdOz) .
0,1
Now it follows from above together with Lemmas 4.3 and 5.12 that
/ |S ()| da < xn—21-K/6
m

We complete the proof of Lemma 5.4.

5.4 Proof of Lemma 5.5
Similar to Lemmas 5.9-5.11, we also have the following result.

LEMMA 5.13. If rank(B;) =rank(By) =rank(B3) =3, then we can
write A in the form

Al (717 Y2, 73)0
) A=
(5 30) (CT(Vb Y2, '73)T D + CTHC ’

where C € M3,n73(Z)7 Y1, 72,73 € Q37 He M3,3(@) and D = diag{dlv SR
dp—3} € My_3,-3(Q) is a diagonal matriz. Furthermore, we have (71,

Y2, 73) € GL3(Q).

LEMMA 5.14. Let A be given by (5.30) satisfying the conditions in
Lemma 5.13. We write

(5.31) C=(,. -, 6n-3)

Then we can find pairwise distinct w;(1<j <6) with 1< uy,ug, us, uq,
us, ug <N — 3 so that rank(&y,, §uys &uy) = 3 and dy,dysdyg 7 0.

Proof. It follows from rank(A)>9 that rank(D) > 3. If rank(D)=
3, then we may assume that didadz3 #0 and d; =0 for j>4. Thus
rank(&y, ..., &,—3) = 3, and the desired conclusion follows. Next we assume
rank(D) > 4. Since rank (&1, &2, {3) = 3, the desired conclusion follows again
if there are distinct k1, k2 and k3 such that dy, dg,dr, # 0 and k1, k2, k3 > 4.
Thus we now assume that for any distinct k1, k2, k3 > 4, one has dj, di,di, =
0. This yields rank(D) < 5. We first consider the case rank(D) = 4. There
are at least two distinct ji,j2 <3 such that d; dj;, #0. Suppose that
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ds, =0 for 1 <i<n—7. Then the rank of {{;, }1<i<n—7 is at least 2, say
rank(&s,, &s,) = 2. Since rank(¢y, &2, €3) =3, we can find j with 1<j<3
such that rank(&;, &, &s,) =3. The desired conclusion follows easily by
choosing u; = j, ug = s; and ug = s2. Now we consider the case rank(D) =
5, and we may assume that dijdodsdsds #0 and d, =0 for r > 6. Since
rank(A) > 9, there exist 7 > 6 (say r =6) such that & # 0. Then one can
choose j1, j2 < 3 so that rank(¢;,, &j,, §6) = 3. The desired conclusion follows
by choosing u; = j1, ug = jo and uz =6. The proof of Lemma 5.14 is
completed. 0

Proof of Lemma 5.5. We apply Lemma 5.13 to conclude that

Z Z A(x (a(xT A1x + y! Dy))

XENB N~ 3
1<x<X 1<y<X

e(a(2x" (71,72,73)Cy +y' CT HCy)).

By orthogonality, one has

S(a) :/[071]3 YY) A (a(x"A1x + y" Dy))

xeN? yeN"—3 z¢73
1<x<X 1<y <X 2|« X
e(a(2x" (71,72, 13)2 + 2" Hz))

xe((y'CT —2")B) dB,

where B = (81, 2, 3)T and dB = dB; dBs dB3. Now we introduce

Z Z A(x)e(a(xT Ayx + 2xT (71, 72, 3)z + 2! Hz) — z' 3),
xeN?  zeZ3
1<x<X1<z<X
and
fila, B) = eldjay® +2y¢] B)A(y),
1<y<X
where &1, ..., &,—3 is given by (5.31). We conclude from above

(5.32) Lﬁwww&ﬁﬁm

n—3
Flo, B) I file, B)| dB da.
j=1
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One applying Lemmas 5.6-5.8, we can easily establish

(5.33) /
0,1t

provided that rank(&,,, &u,y, Sus) = 3 and dy, dy, # 0. Similarly, we also have

5 2

dB da < X°LM1

fu;(c, B)
1

1=

(5.34) / |F(a, B)]?dBda < XL
[0,14

By (5.32) and the Cauchy—Schwarz inequality, one has for distinct
u1, U, uz, Uy and us that

[is@laas s | T Res)

aem
Be[0,1]3  kFuLu2,us,us,u5

1/2
x(/ Lﬂmmﬁwmﬁ
[0,1]4

2 1/2
(5.35) « ( /[0 y i3 da> |

Combining (5.33)—(5.35), Lemma 4.3 and Lemma 5.14, one has

5
I1 fula. 8)
=1

/ 1S(a)| da < X"—2LK/S.
m

The proof of Lemma 5.5 is finished.
§6. Quadratic forms with off-diagonal rank >4

PROPOSITION 6.1. Let A be defined in (1.1), and let S(«) be defined in
(2.5). We write

(6.1) G=

Suppose that det(G) # 0. Then we have
/ 1S(a)| dor < X"2LK/2),
m

where the implied constant depends on A and K.
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Throughout this section, we shall assume that the matrix G given by
(6.1) is invertible.

LEMMA 6.2. Let 7 #0 be a real number. Then we have
/ / Z min{X, |lzr(o — B)|| 7"} da dB < LQT/?X 2,

where the implied constant depends on T.

Proof. Without loss of generality, we assume that 0 < |7| <1. Thus
|7(av — B)| < 1. We introduce

1/2
M= U {\a—aKQXQ}.
1<g<Q1/2 —q<a<q 79 49
(a,q):l

By Dirichlet’s approximation theorem, there exist a € Z and g € N with
(a,9) =1, 1<q¢<X?Q Y% and |r(a—f)—a/q <QY?*(@X?)'. Since
I7(a — B)| <1, one has —g<a<gq. If 7(a—B) &M, then ¢ > Q2. By
Vaughan [12, Lemma 2.2],

Z min{X, [|z7(a - B)|7"} < LQ™/2X2.
||l X

Therefore, we obtain

/ / e > min{X, [er(a—B)| "} dadB

B)EM |z|<X

< LQ™Y?X? / / dadBf < LQT?X72.
Q) Jm(@)

When 7(a — ) € M, we apply the trivial bound to the summation over x
to deduce that

N Y min{X, zr(a—p)|~'} dads
/‘"(Q / QGM lz|< X

<<X2/ / wo) o dB < X2(Q*X2QXH =X %
m@Q) Y (a—prem

The desired conclusion follows from above immediately. 0
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To introduce the next lemma, we define

®(a) = min{X, [laf ™}

For v = (vq,...,v5) € Z5 and G given by (6.1), we write
91(v)

(6.2) 2Gv =
95(v)

LEMMA 6.3. Omne has

(6.3) /m o 5@ da < X0 /0 1 < /m 0@ da)@(w)dv,

where
4
(64) Jy(@)= Y | Y AR)A(z+wvi)e(azgs(v))e(r2)| [T 2(g5(v)a)
vi<x | zl<X j=1
Proof. Let
4 4 9 9
r(y) = Z Z aijyiyi, q(z)= Z Z a; jzizj and
i=1 j=1 i=5 j=5
p(w) =Y > aijwaw;.
i=10 j=10
We set

B = (2aij)1<i<ato<icn  and €= (2a;5)5<i<9,10<j<n-
Then f can be written in the form
Fx)=7(y) +y191(2) + - - + ya94(2) + q(2) + y" Bw + 2" Cw + p(w),

where z=(z1,...,25), y=(1,...,94), w=(wi,...,wy—g). Note that
yI Bw + zT Cw + p(w) vanishes if n = 9. Therefore, one has

S = Y. > M@elenn(@ +- - +yiga(z) + q(2) + 2 Cw))
Sex o

x A(y)A(w)e(a(r(y) +y' Bw +p(w))).
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By Cauchy’s inequality,

(6.5) 1S(a)P< XL 107 (a),
where
4 2
r= 3 | 3 awe(o( Sune +ae)+aow))
1y<X ' 1<z<X =1
1Sw<X

Then we deduce that

T)= > Y Y Az)A(z

ISy <X 1<z1 <X 1<z2<X
I<w<X

< (Z y;9;(2 ) +aq(z1) — Q(Zz)>>e(a(z1 —z5) Cw)
= > > Am)Ae) Y

1<z <X 1<z <X 1<y<X
1<w<X
4
X e(a( Z y;9;(z1 — 22) + q(z1) — q(z2))>e(a(zl —z) Cw).
j=1

By changing variables z; = zo + v, we have

Z Z A(z)A(z+ V) Z

1<z<X  |v|gX 1<y<X
1<v+z<X 1<w<X

( <Zng] )+ a(z +v) — qla )>> (v Cw).

We exchange the summation over z and the summation over v to obtain
4 5
00 7= % (X (oS uum))rm K
<X N 1<y<X j=1 j=1
where

R(v)=c(aq(v)) D ela(vCw))

1<w<X
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and

5

(6.7)  Kjv(a)= > A(zj)A(z; +Uj)€<2042j > :aj+4,k+4vk>-
1<ZJ<X k=1
1-v;<z; <X ~vj

The range of z; in summation (6.7) depends on v;. We first follow the
standard argument (see for example the argument around (15) in [15]) to
remove the dependence on v;. We write

(6.8) Gou()= > e(—2zv)
1<2<X
1—v1<z<X -1

and

(6.9) Koxv(a,7) =Y A(2)A(z +vi)e(azgs(v))e(v2).
|z|<X

Then we deduce from (6.7)—(6.9) that
(6.10) Klv / ]COV a ’Y)QM( )

On substituting (6.10) into (6.6), we obtain

T()= 3 R f[ @ X e(ajilngj(v)))

[v|<X 1Sy<X

x / Koww(0,7)Gon (1) dy

/0 qu )g’cj,v(a)<lz)(€< gng;( )>>

X KO,V(O‘7 7)gv1 (’Y)d’)/

Then we conclude that

4
(6.11)  [T()] < X"L! / S [Kowlas )| [] ®lg;(1)e)®() dy.
j=1

v|<X
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By putting (6.11) into (6.5), one has
4
|S(a)? < X210 6/ Y Kow(as I TT ®(g;(v))@(7) dv.

O |vi<x j=1

Therefore,

1
/ |S(a)|? da < X210 2n=6 / < / Jy (o) da) O () dy.
m(Q) 0 m(Q)

The proof is completed. 0

LEMMA 6.4. Let J,(a) be defined in (6.4). Then one has uniformly for
v €10, 1] that

/ J,(a) da < LPAQ1T/8 XS,
m(Q)

Proof. We deduce by changing variables h = 2G'v that

4
T()= > > A2) z—|—th (azhs)e(yz)| [ @(hje)
|h|<eX |z|<X J=1
(2G)~'heZ5
I(2G)~'h|<X
for some constants c, by, ..., bs depending only on G. We point out that
b1, ..., bs are rational numbers, and we extend the domain of function A(z)

by taking A(x) =0 if x € Q \ N. Then we have

4
Z A(z)A <z + Z bjuj + b5h> e(azh)e(yz)

|2l<X j=1

DY

[u|<cX |h|<cX

4
X H O (uja)
j=1

We first handle the easier case bs = 0. In this case, we can easily obtain a
nontrivial estimate for the summation over h. By Cauchy’s inequality and
Lemma 4.1, one has
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> A2) (z+ZbuJ> (azh)e(y ))2

(=

|h|<eX ' |2|<X
2
< (2¢X +1) A(z + Z bjuj>e(azh)e('yz)
hl<eX ! lzl<X j=1
< X°L* ) min{X, [lzal| 7'},
lz| <X

For a € m(Q), we apply Lemma 4.2 to deduce from above

< L5/2Q_1/2X2.

> A2) <z—|—Zbu]> (azh)e(yz)

l2|<X

2.

|h|<cX

Then for o € m(Q), we obtain

4
Jo(e) < LV2Q72x% N [ @(uja) < LP2Q2 X1,
Ju|<eX j=1

and thereby
(6.12) / J,(a) da < LY¥2Q =52 X8
m(Q)

provided that bs = 0. From now on, we assume bs # 0. Then we have

D

|h|<eX

lk|<c' X
(=1, bjuy)ez
|2 (k=53 byug)|<eX

4
Z A(z)A <z + Z bjuj + b5h> e(azh)e(vyz)
|z]<X Jj=1
(o)

2]<X

https://doi.org/10.1017/nmj.2016.23 Published online by Cambridge University Press



https://doi.org/10.1017/nmj.2016.23

60 L. ZHAO

for some constant ¢’ depending only on by, . .., bs and c. Therefore, one has
4
Z Z A(z)A <z + Z bjuj + b5h> e(azh)e(vz)
lhj<eX ! |z]<X j=1
S S A@AG R ( < Zb uj)>
lk|<d' X ' zI<X

We apply Cauchy’s inequality to deduce that

4
Z Z A(z)A <z + Z bju; + b5h> e(azh)e(vz)

<(2¢X +1)1/2

[h|<eX 7 [2]<X J=1
1/2
x( Z (2)A(z + k)e < < th@)) ) .
|k|<d X ' |2|<X

We apply Cauchy’s inequality again to obtain

1/2
T (@)X +1)PE ()2 ) H@u] > :

[u|<eX j=1

where =, (o) is defined as

2. >

lul<cX |k|<d X
4

X H D (uja)
j=1

By Lemma 4.2,

> A2)A( z+k:< < Zbuj»

|2l<X

J(a) < L2Q72X°%= ()Y,

Therefore, we have

1/2 1/2
/ Jo (@) do < L2Q—2X9/2< / da> < / 2, () da>
m(Q) m(Q) m(Q)

1/2
(6.13) <<L2Q‘1X7/2</ Ev(a)da> .
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Now it suffices to estimate fm(Q) E4(a) da.. We observe

k|<c/X [21|<X |22|<X lu|<ex
x (e, u, 21, 22) da,
where
w(z1, 22, k) = A(21)A(z1 + k)A(22)A(2z2 + k)e(y(z1 — 22))
and

4 4
«
H(a, u, 21, ,22) = e<b5(21 - 22) Z bjUj) H <I>(uja)
j=1 j=1

We exchange the order of summation and integration to conclude that

/ = (a) do
m(Q)

I B e i)

[k|<e'X [z1]<X |z2]<X

X Z II(a, u, 21, 22) do

[u|<eX

<Y Y % ‘/ ( z1—22)/<:>

[k|< X |21|<X |22]<X

X Z (e, u, 21, 29) da

[u|<eX

Y Y Y ‘/ (- n)

|21]|<X |z2|<X |k|< X

X Z (o, u, 21, 22) da|.

[u|<eX
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Then the Cauchy—Schwarz inequality implies

(/ 5 da)2

<LEXE YT Y ) ‘/ (5(21—22)k>

|21]|<X |22|<X |k|< X
2
(6.14) X Z (v, u, 21, 22) da

|u|<cX

Now we apply the method developed by the author [16] to deduce that

>y Y ‘/ < zl—ZQ)k> Y (e, u, 21, 22) da

|21|<X |z2|<X |k|< X lu|<eX

o hiw 2, Z, X (5w m)

(@) |21 1<X |2al<X [k|<d' X

x Y My, z1,2) Y T(=B,ug, 21, 22) da df

lug [<eX lug|<cX

Lok 2| F o)

2

@ |5 <x |Z2\<X Ik|<c' X 5
4
> Il ewa) >, H () da d,
[u|<eX j=1 [ug|<cX j=1
where uy = (u1, ...,us)?T €Z* and ug = (v}, ..., u})T € Z*. Therefore, we

obtain by Lemma 4.2

DI ‘/ ( (z1—22)k> Y (w21, 2) da

[21]<X |z2|<X |k|< X [u|<eX
_1}

Lo b Z
Q) m(Q |21|<X |ZQ‘<X
—1
} da dB.

2

a—p3
bs

min{X, (21 — ZQ)

x (L*Q™*X®)% da dB

< L[2Q 8X17/ / me{ "04[)—55

\ <X

x
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Then we conclude from Lemma 6.2 that

DD ‘/m(@e(;;(a—zg)k> S e, u, 21, 2) da

[21|<X |z2]<X |k|<d X [u|<eX

(6.15) < L°Q 92X 15

2

By (6.14) and (6.15),

(6.16) =, (a) da < LY2Q 794 X,

(@)

T

By substituting (6.16) into (6.13), we obtain
(6.17) / J,(a) da < LP/4Q~1T/8 X8
m(Q)

provided that b5 # 0.
We complete the proof in view of the argument around (6.12) and (6.17).
i

LEMMA 6.5. Omne has

/ |S(Oé)| do < Ln-l—lQ—l/lGXn—Q‘
m(Q)

Proof. By Cauchy’s inequality,

1S(a)| da < do v |S(a)|? da v
m(Q) m(Q) m(Q)

1/2
(6.18) < Qx! ( / 1S(a)? da) .
m(Q)
It follows from Lemmas 6.3-6.4 that
(6.19)

1
/ |S(Oé)|2 dOé<<L2n+1Q_17/8X2n_2/ (I)(’}/) d’}/<<L2n+2Q_17/8X2n_2.
m(Q) 0

We complete the proof by putting (6.19) into (6.18). [

We finish Section 6 by pointing out that Proposition 6.1 follows from
Lemma 6.5 by the dyadic argument.
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87. The Proof of Theorem 1.1

By orthogonality, we have

1+Xx-1
Nf’t(X):/Xl S(a)e(—ta) do.

Recalling the definitions of 9t and m in (2.8) and (2.9), we have

(7.1) Ny (X / S(a)e(—ta) da+/ S(a

In light of Lemma 3.6, to establish the asymptotic formula (1.3), it suffices
to prove

(7.2) / 1S(a)| da < X" 2L K/20,
m

In view of Proposition 6.1 and the work of Liu [9] (see also Remark of
Lemma 4.4), the estimate (7.2) holds if there exists an invertible matrix

Qirgr 0 Qig,gs
B — . .
is,jr -~ Qig,gs
with
’{ilv SR 25} N {j17 s 7]5}‘<1

Next we assume rank(B)<4 for all B=(aj,j)i<ki<s satisfying
{1, ..., i5F N {j1, -, J5}| < 1. This yields rank,g(A) < 4. By Proposition
5.1, we can establish (7.2) again if rank,g(A) < 3. It remains to consider the
case rank,g(A) = 4. Without loss of generality, we assume that rank(C) = 4,

where
ais 616 G177 01,8
C = a5 a26 a7 028
aszs 636 G37 G338
Gq5 Q46 A4,7 A48
Let v; = (a5, - - ., aj,n)T € Z" 4 for 1 <j <n. Then 71, 72, v3 and 74 are

linear independent due to rank(C) = 4. For 5 < k < n, we consider

als -t Qlp

B=| * | eMsnu(Z).
aqs - Q4p
g5 Okgn
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According to our assumption, one has rank(B) < 4. Then we conclude from
above that 7, can be linear represented by 1, 72, 73 and 4. Therefore, one
has rank(H) = 4, where

a5 o Glp
H= ce S Mn7n_4(Z).
Qps5 =+ dnn

We obtain rank(A) < rank(H) + 4 < 8. This is contradictory to the condi-
9.

tion that rank(A) > 9. Therefore, we complete the proof of Theorem 1.1.

REFERENCES

[1] R. C. Baker, Diagonal cubic equations III, Proc. Lond. Math. Soc. (3) 58 (1989),
495-518.
[2] J. Bourgain, A. Gamburd and P. Sarnak, Sieving and expanders, Acad. Sci. Paris
343 (2006), 155-159.
[3] B. Cook and A. Magyar, Diophantine equations in the primes, Invent. Math. 198
(2014), 701-737.
[4] D. R. Heath-Brown, Cubic forms in ten variables, Proc. Lond. Math. Soc. (2) 47
(1983), 225-257.
[5] D.R. Heath-Brown, Cubic forms in 14 variables, Invent. Math. 170 (2007), 199-230.
[6] C. Hooley, On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 32-98.
[7] L. K. Hua, Some results in additive prime number theory, Quart. J. Math. 9 (1938),
60-80.
[8] E. Keil, Translation invariant quadratic forms in dense sets, arXiv:1308.6680.
[9] J. Liu, Integral points on quadrics with prime coordinates, Monatsh. Math. 164
(2011), 439-465.
[10] R. C. Vaughan, On Waring’s problem for cubes, J. Reine Angew. Math. 365 (1986),
122-170.
[11] R. C. Vaughan, On Waring’s problem for cubes II, J. Lond. Math. Soc. (2) 39 (1989),
205-218.
[12] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge University Press,
Cambridge, 1997.
[13] T. D. Wooley, Breaking classical convezity in Waring’s problem: sums of cubes and
quasi-diagonal behaviour, Invent. Math. 12 (1995), 421-451.
[14] T. D. Wooley, Sums of three cubes, Mathematika 47 (2000), 53-61.
[15] T. D. Wooley, The asymptotic formula in Waring’s problem, Internat. Math. Res.
Notices 7 (2012), 1485-1504.
[16] L. Zhao, On the Waring—Goldbach problem for fourth and sizth powers, Proc. Lond.
Math. Soc. (6) 108 (2014), 1593-1622.

School of Mathematics

Hefei University of Technology
Hefei 230009

People’s Republic of China

zhaolilu@gmail.com

https://doi.org/10.1017/nmj.2016.23 Published online by Cambridge University Press


http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
http://www.arxiv.org/abs/1308.6680
mailto:zhaolilu@gmail.com
https://doi.org/10.1017/nmj.2016.23

