THE QUENCHING OF SOLUTIONS OF A REACTION-DIFFUSION EQUATION WITH FREE BOUNDARIES

NINGKUI SUN

(Received 6 October 2015; accepted 2 November 2015; first published online 22 January 2016)

Abstract

This paper concerns the quenching phenomena of a reaction-diffusion equation $u_{t}=u_{x x}+1 /(1-u)$ in a one dimensional varying domain $[g(t), h(t)]$, where $g(t)$ and $h(t)$ are two free boundaries evolving by a Stefan condition. We prove that all solutions will quench regardless of the choice of initial data, and we also show that the quenching set is a compact subset of the initial occupying domain and that the two free boundaries remain bounded.

2010 Mathematics subject classification: primary 35K55; secondary 35R35, 35B99.
Keywords and phrases: reaction-diffusion equation, quenching, free-boundary problem.

1. Introduction

The quenching phenomenon has been studied for various types of problems. For example, in $[1,9,11]$, the authors considered the initial-boundary problem

$$
\begin{cases}v_{t}=v_{x x}+1 /(1-v) & \text { if }-l<x<l, t>0, \tag{1.1}\\ v(t, 0)=v(t, l)=0 & \text { if } t>0, \\ v(0, x)=0 & \text { if }-l \leq x \leq l,\end{cases}
$$

where the first equation in (1.1) arises in the study of electric current transients in polarised ionic conductors (see $[9,11]$ and references therein for more background). They established the interesting results given in the following theorem.

Theorem 1.1. There exists a positive constant $l_{0}<\sqrt{2}$ such that if $l>l_{0}$, then the solution of problem (1.1) will quench: that is, there is a finite time $T>0$ such that the solution v satisfies

$$
0 \leq v(t, x)<1 \quad \text { for all }(t, x) \in[0, T) \times[-l, l]
$$

and

$$
\lim _{t \rightarrow T}\|v(t, \cdot)\|_{L^{\infty}([-l, l])}=1 .
$$

[^0]However, if $l \leq l_{0}$, then the solution of problem (1.1) cannot quench, even in infinite time.

It is easy to see that the quenching problem is equivalent to the blow-up problem in the sense that, by using the transformation $w=(1-v)^{-1}$, the first equation in problem (1.1) takes the form

$$
w_{t}=w_{x x}-2 w_{x}^{2} / w+w^{3} .
$$

By an argument similar to that in [7], it is easily seen that if the solution v of problem (1.1) quenches, then w will blow up in finite time. Moreover the quenching time of v is equal to the blow-up time of w. We can also easily check that the methods in [6, 14], which are used to study the blow-up problem, will also be useful for the quenching problem. For other forms of quenching problem, please see [2, 8, 10, 12] and the references therein.

Recently, to observe precisely the spreading fronts of an invasive species, Du and Lin [4] used the following free-boundary problem to discuss the spreading of an invasive species in a new environment:

$$
\begin{cases}u_{t}=u_{x x}+u(1-u) & \text { if } g(t)<x<h(t), t>0, \tag{1.2}\\ u(t, g(t))=0, g^{\prime}(t)=-\mu u_{x}(t, g(t)) & \text { if } t>0, \\ u(t, h(t))=0, h^{\prime}(t)=-\mu u_{x}(t, h(t)) & \text { if } t>0, \\ -g(0)=h(0)=h_{0}, \quad u(0, x)=u_{0}(x) & \text { if }-h_{0} \leq x \leq h_{0},\end{cases}
$$

where $x=g(t)$ and $x=h(t)$ are the free boundaries that represent the spreading fronts of the species whose density is represented by $u(t, x), \mu$ is a given positive constant and the initial data $u_{0}(x)$ and $\left[-h_{0}, h_{0}\right]$ stand for the initial population and initial occupying interval of the species, respectively (see $[4,13]$ and the references therein for more background). Du and Lin [4] proved that problem (1.2) admits a unique time-global solution (u, g, h), and obtained a spreading-vanishing dichotomy result for (1.2): as $t \rightarrow \infty$, either $u(t, x) \rightarrow 1$ and $\left(g_{\infty}, h_{\infty}\right)=\mathbb{R}$, or $u(t, x) \rightarrow 0$ and $h_{\infty}-g_{\infty} \leq \pi$, where

$$
g_{\infty}:=\lim _{t \rightarrow \infty} g(t), \quad h_{\infty}:=\lim _{t \rightarrow \infty} h(t) .
$$

Later, Du and Guo [3] extended these conclusions to the problem of higher-space dimensions with radially symmetric parameters. Du and Lou [5] considered problem (1.2) with much more general nonlinear terms, and deduced a complete description of the dynamical behaviour of solutions.

Motivated by these results, we shall consider the quenching phenomena for the free-boundary problem

$$
\begin{cases}u_{t}=u_{x x}+1 /(1-u) & \text { if } g(t)<x<h(t), t>0, \tag{1.3}\\ u(t, g(t))=0, g^{\prime}(t)=-\mu u_{x}(t, g(t)) & \text { if } t>0, \\ u(t, h(t))=0, h^{\prime}(t)=-\mu u_{x}(t, h(t)) & \text { if } t>0, \\ -g(0)=h(0)=h_{0}, \quad u(0, x)=u_{0}(x) & \text { if }-h_{0} \leq x \leq h_{0},\end{cases}
$$

where the initial function u_{0} satisfies
$u_{0} \in C^{2}\left(\left[-h_{0}, h_{0}\right]\right), \quad u_{0}\left(\pm h_{0}\right)=0, \quad u_{0}^{\prime}\left(h_{0}\right),-u_{0}^{\prime}\left(-h_{0}\right)<0, \quad 0<u_{0}<1 \quad$ in $\left(-h_{0}, h_{0}\right)$.
Before proceeding further, we will introduce the following definitions.

Definition 1.2. Let $G_{\tau}:=\{(t, x): 0<t \leq \tau, g(t) \leq x \leq h(t)\}$. For any given $h_{0}>0$ and u_{0} satisfying (1.4), a triple (u, g, h) is defined to be a (classical) solution of (1.3) on the time-interval $[0, \tau]$ for some $\tau>0$ if it belongs to $C^{1,2}\left(G_{\tau}\right) \times C^{1}([0, \tau]) \times C^{1}([0, \tau])$ with $\|u\|_{L^{\infty}\left(\overline{G_{\tau}}\right)}<1$, and all the identities in (1.3) are satisfied pointwise.
Defintition 1.3. A solution (u, g, h) (or simply u) is said to quench if there exists a time T^{*} called the quenching time with $0<T^{*}<\infty$ such that

$$
0 \leq u(t, x)<1 \quad \text { for }(t, x) \in\left[0, T^{*}\right) \times[g(t), h(t)] \quad \text { and } \quad \lim _{t \rightarrow T^{*}}\|u(t, \cdot)\|_{L^{\infty}([g(t), h(t)])}=1
$$

It follows, from Lemma 2.4 below, that the quenching time in Definition 1.3 is well defined.

The primary purpose of this paper is to explore the influence of free boundaries on the quenching properties of problem (1.3). Our first main result shows that all solutions of problem (1.3) must quench regardless of the choice of initial data.

Theorem 1.4. Let $h_{0}>0$ and u_{0} satisfy (1.4). Then the solution (u, g, h) of problem (1.3) must quench in a finite time T^{*}.

It is easily seen from Theorem 1.4 that problem (1.3) admits no time-global solutions, and thus we only need to consider the properties of the quenching solutions in the rest of this paper. Let us denote by T^{*} the quenching time of problem (1.3). By the Hopf lemma, we can show that the two free-boundary fronts $g(t)$ and $h(t)$ satisfy

$$
g^{\prime}(t)<0<h^{\prime}(t) \quad \text { for } 0<t<T^{*} .
$$

Thus $\lim _{t \rightarrow T^{*}} g(t)$ and $\lim _{t \rightarrow T^{*}} h(t)$ always exist, and in the subsequent work we define

$$
\begin{equation*}
g^{*}:=\lim _{t \rightarrow T^{*}} g(t) \quad \text { and } \quad h^{*}:=\lim _{t \rightarrow T^{*}} h(t) \tag{1.5}
\end{equation*}
$$

Let us also introduce the following notation. Given a solution (u, g, h) that quenches at $T^{*}<\infty$, we define its quenching set by
$Q\left(u_{0}\right):=\left\{x \in\left[g^{*}, h^{*}\right]:\right.$ there exist $x_{n} \rightarrow x, t_{n} \rightarrow T^{*}$ such that $u\left(t_{n}, x_{n}\right) \rightarrow 1$ as $\left.n \rightarrow \infty\right\}$, where u_{0} denotes the initial function. Any element of $Q\left(u_{0}\right)$ is called a quenching point of (u, g, h). Clearly, $Q\left(u_{0}\right)$ is closed.

It is worth studying the quenching set of (1.3) and the boundedness of g^{*} and h^{*}. The following theorem shows that the quenching set is a compact subset of the initial domain $\left[-h_{0}, h_{0}\right]$ and the two free boundaries remain bounded.

Theorem 1.5. Let $h_{0}>0, u_{0}$ satisfy (1.4) and T^{*} be the quenching time. Then:
(i) the quenching set $Q\left(u_{0}\right)$ is a compact subset of the initial domain $\left[-h_{0}, h_{0}\right]$; and
(ii) there exists a positive constant $C<\infty$ such that $h^{*},-g^{*} \leq C$.

The plan of the paper is the following. Section 2 covers some basic and known results, which are useful for this research. In Section 3, based on the comparison principle, we prove Theorems 1.4 and 1.5.

2. Some basic results

In this section we recall some basic and known results which will play a fundamental role in this paper. In what follows, we set $f(u):=1 /(1-u)$ for convenience. Let $T_{\max }$ be the maximal existence time of (u, g, h) :
$T_{\text {max }}:=\sup \left\{\tau>0:\|u\|_{L^{\infty}([0, t] \times[g(t), h(t)])}<1\right.$ and $g(t)>-\infty, h(t)<\infty$ for all $\left.t \in[0, \tau)\right\}$.
It is easy to check that $f \in C^{2}$ when $t \in\left(0, T_{\max }\right)$, and thus some of the proofs here are omitted or only sketched, since they are similar to those of [4, 5]. Firstly, the comparison principle suitable for our needs is stated in the following lemma.
Lemma 2.1. Suppose for some $\bar{T} \in(0, \infty)$, $\bar{g}, \bar{h} \in C^{1}([0, \bar{T}]), \bar{u} \in C\left(\overline{D_{\bar{T}}}\right) \cap C^{1,2}\left(D_{\bar{T}}\right)$ satisfying $\|\bar{u}\|_{L^{\infty}\left(\overline{D_{\bar{T}}}\right)}<1$, with $D_{\bar{T}}=\left\{(t, x) \in \mathbb{R}^{2}: 0<t \leq \bar{T}, \bar{g}(t)<x<\bar{h}(t)\right\}$, and

$$
\left\{\begin{array}{l}
\bar{u}_{t} \geq \bar{u}_{x x}+f(\bar{u}) \quad \text { if } 0<t \leq \bar{T}, \bar{g}(t)<x<\bar{h}(t), \\
\bar{u}=0, \quad \bar{g}^{\prime}(t) \leq-\mu \bar{u}_{x} \text { if } 0<t \leq \bar{T}, \quad x=\bar{g}(t), \\
\bar{u}=0, \quad \bar{h}^{\prime}(t) \geq-\mu \bar{u}_{x} \text { if } 0<t \leq \bar{T}, \quad x=\bar{h}(t) .
\end{array}\right.
$$

If $\left[-h_{0}, h_{0}\right] \subseteq[\bar{g}(0), \bar{h}(0)]$ and $u_{0}(x) \leq \bar{u}(0, x)$ in $\left[-h_{0}, h_{0}\right]$, then the solution (u, g, h) of problem (1.3) satisfies

$$
\begin{array}{r}
{[g(t), h(t)] \subseteq[\bar{g}(t), \bar{h}(t)] \quad \text { for } t \in(0, \bar{T}],} \\
u(t, x) \leq \bar{u}(t, x) \quad \text { for }(t, x) \in(0, \bar{T}] \times[g(t), h(t)] .
\end{array}
$$

Remark 2.2. Note that $f(0)>0$ in our problem which is very different from the case in [4]. However, Lemma 2.1 can be proved by an argument similar to that in [4]. The function \bar{u}, or the triple $(\bar{u}, \bar{g}, \bar{h})$, in Lemma 2.1, is often called a supersolution of problem (1.3). A subsolution can be defined analogously by reversing all the inequalities. We also have corresponding comparison results for subsolutions.

Next, we present the local existence and uniqueness result for problem (1.3).
Theorem 2.3. For any given $h_{0}>0$, any u_{0} satisfying (1.4) and any $\alpha \in(0,1)$, there is $a \tau>0$ such that problem (1.3) admits a unique solution

$$
(u, g, h) \in C^{(1+\alpha) / 2,1+\alpha}\left(\overline{G_{\tau}}\right) \times C^{1+\alpha / 2}([0, \tau]) \times C^{1+\alpha / 2}([0, \tau]),
$$

with

$$
\|u\|_{L^{\infty}\left(\overline{G_{\tau}}\right)}<1,
$$

where $G_{\tau}:=\{(t, x): t \in(0, \tau], x \in[g(t), h(t)]\}$, and τ only depends on h_{0}, α and $\left\|u_{0}\right\|_{C^{2}\left(\left[-h_{0}, h_{0}\right]\right)}$.

Proof. The main idea of the proof is to change problem (1.3) into the equivalent fixed-boundary problem, define a complete metric space and construct a contraction mapping on this space. Then we can prove the theorem by using the contraction mapping theorem. Since $f \in C^{2}$ when $t \in\left(0, T_{\max }\right)$, the proof of the theorem follows the same argument as in [4] and we omit the details here. As in [4], by applying the Schauder estimates to the equivalent fixed-boundary problem used in the proof, additional regularity for u can be obtained: namely, $u \in C^{1+\alpha / 2,2+\alpha}\left(G_{\tau}\right)$.

The following lemma gives a general boundedness result for $g^{\prime}(t)$ and $h^{\prime}(t)$.
Lemma 2.4. Assume that (u, g, h) is a solution of problem (1.3) defined for $t \in[0, \hat{T})$ for some $\hat{T} \in(0, \infty)$, and there exists $0<C_{1}<1$ such that

$$
u(t, x) \leq C_{1} \quad \text { for all }(t, x) \in[0, \hat{T}) \times[g(t), h(t)]
$$

Then there exists C_{2}, depending on C_{1} but independent of \hat{T}, such that

$$
-g^{\prime}(t), h^{\prime}(t) \in\left(0, C_{2}\right] \quad \text { for } t \in(0, \hat{T})
$$

Moreover, the solution can be extended to some interval $(0, \tau)$ with $\tau>\hat{T}$.
Proof. Construct the auxiliary function

$$
w(t, x):=C_{1}\left[2 L(h(t)-x)-L^{2}(h(t)-x)^{2}\right]
$$

over the domain

$$
\Omega_{L}=:\left\{(t, x): 0<t<\hat{T}, h(t)-L^{-1}<x<h(t)\right\},
$$

where $L:=\max \left\{h_{0}^{-1},\left(2 C_{1}\left(1-C_{1}\right)\right)^{-1 / 2}, 4\left\|u_{0}\right\|_{C^{1}\left(\left[-h_{0}, h_{0}\right]\right)} /\left(3 C_{1}\right)\right\}$. Following the proof of [4, Lemma 2.2],

$$
h^{\prime}(t)=-\mu u_{x}(t, h(t)) \leq-\mu w_{x}(t, h(t))=2 L C_{1} \mu:=C_{2} \quad \text { for } t \in[0, \hat{T}) .
$$

Similarly, one can deduce that $g^{\prime}(t) \geq-C_{2}$ for $t \in[0, \hat{T})$.
Now fix $\delta_{0} \in(0, \hat{T})$. By a standard L^{p} estimate, the Sobolev embedding theorem and the Hölder estimates for the parabolic equation, there exists a constant $C_{3}>0$ depending only on $\delta_{0}, \hat{T}, L, C_{1}$ and C_{2} such that

$$
\|u(t, \cdot)\|_{C^{2+\alpha}([g(t), h(t)])} \leq C_{3} \quad \text { for } t \in\left[\delta_{0}, \hat{T}\right)
$$

Since $0 \leq u(t, x) \leq C_{1}<1$ for $(t, x) \in[0, \hat{T}) \times[g(t), h(t)]$, it then follows from the proof of Theorem 2.3 that there exists a $t_{0}>0$ depending only on C_{1}, C_{2} and C_{3} such that the solution of problem (1.3) with initial time $\hat{T}-t_{0}$ can be extended uniquely to the time $\hat{T}+t_{0}$. This completes the proof of the lemma.

The above lemma implies that the solution of problem (1.3) can be extended as long as u remains smaller than one. In particular, the free boundaries remain bounded as long as u is less than one. Therefore we have the following result.

Corollary 2.5. Suppose that the solution (u, g, h) of problem (1.3) is defined on some maximal interval $\left(0, T_{\max }\right)$ and $T_{\max }<\infty$. Then (u, g, h) must quench and the quenching time satisfies $T^{*}=T_{\max }$.

Proof. We will use an indirect argument and assume that $T_{\max }<\infty$ and (u, g, h) does not quench. Then there exists a constant $0<\tilde{C}<1$ such that

$$
u(t, x) \leq \tilde{C} \quad \text { for }(t, x) \in\left(0, T_{\max }\right) \times[g(t), h(t)]
$$

By Lemma 2.4, u can be extended beyond $T_{\max }$, which is in contradiction to the definition of $T_{\text {max }}$.

3. Quenching phenomenon

In this section, we study the profiles of the solution of problem (1.3) and prove Theorems 1.4 and 1.5.
3.1. Quenching of solutions. This subsection covers the proof of Theorem 1.4, which is based on the comparison principle and some well-known results. Let $T_{\max }$ be the maximal existence time of (u, g, h).

Proof of Theorem 1.4. Define the auxiliary function $f(u):=u^{m}(1-u)$ with $m=1 / 2$. There exists a small constant $0<\epsilon_{0} \leq 1 / 12$ such that, for any $0<\epsilon \leq \epsilon_{0}$, the equation $f(u)=f(\epsilon)$ has roots ϵ and $1-a(\epsilon)$ with $0<a(\epsilon)<1-\epsilon$ and $a(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. $\overline{\mathrm{D}}$ efine $\bar{f}_{\epsilon}(u):=\underline{f}(u+\epsilon)-\underline{f}(\epsilon)$. It is easily checked that

$$
\left\{\begin{array}{l}
f_{\epsilon} \in C^{2}([0, \infty)), \quad f_{\epsilon}^{\prime}(0)=f^{\prime}(\epsilon)>0, \quad f_{\epsilon}(u) \nearrow \underline{f(u)} \text { as } \epsilon \rightarrow 0, \\
f_{\epsilon}(0)=f_{\epsilon}(1-a(\epsilon)-\epsilon)=0, \quad f_{\epsilon}(u)>0 \quad \text { for } u \in(0,1-a(\epsilon)-\epsilon) .
\end{array}\right.
$$

For any given $h_{0}>0$, since $\lim _{\epsilon \rightarrow 0} f_{\epsilon}^{\prime}(0)=\infty$, no matter how small h_{0} is, we can find $\epsilon^{*} \in\left(0, \epsilon_{0}\right]$ sufficiently small such that $h_{0} \geq \pi /\left(2 \sqrt{f_{\epsilon^{*}}^{\prime}(0)}\right)$. Then the solution $\left(u_{*}, g_{*}, h_{*}\right)$ of problem (1.3) with $f(\cdot)=f_{\epsilon^{*}}(\cdot)$ satisfies

$$
-\lim _{t \rightarrow \infty} g_{*}(t)=\lim _{t \rightarrow \infty} h_{*}(t)=\infty .
$$

Thus there exists a constant $T_{1}<\infty$ such that

$$
h_{*}\left(T_{1}\right)-g_{*}\left(T_{1}\right) \geq 2 l_{0},
$$

where l_{0} is given in Theorem 1.1.
Noting that $f_{\epsilon^{*}}(s)<f(s)$ for $s \in[0,1)$, then applying the comparison principle,

$$
\left[g_{*}(t), h_{*}(t)\right] \subseteq(g(t), h(t)) \quad \text { for } 0<t<T_{\max } .
$$

It follows, from Corollary 2.5 , that if $T_{\max } \leq T_{1}$, then the solution (u, g, h) must quench. If $T_{\max }>T_{1}$, there exists $\sigma>0$ sufficiently small such that $T_{1}<\tilde{T}<T_{\max }$ and $h(\tilde{T})-g(\tilde{T})>2 l_{0}$ with $\tilde{T}:=T_{1}+\sigma$. Theorem 1.1 implies that the solution \underline{u} of problem (1.1) with $l=(h(\tilde{T})-g(\tilde{T})) / 2$ quenches. By the comparison principle, (u, g, h) must quench in this case and $T_{\max }<\infty$ since \underline{u} is a subsolution of problem (1.3). Therefore all solutions of problem (1.3) will quench. The proof of the theorem is complete.

Remark 3.1. From the proof, we see that all solutions of problem (1.3) will quench for any initial function u_{0} satisfying (1.4), and thus there exist no time-global solutions.

In the rest of this subsection, we show some properties of solutions of (1.3) which will be used in the next subsection. We use T^{*} to denote the quenching time of (u, g, h).
Lemma 3.2. Let (u, g, h) be a solution of problem (1.3) with u_{0} satisfying (1.4). Then

$$
\begin{aligned}
& -2 h_{0}<g(t)+h(t)<2 h_{0} \text { for } t \in\left[0, T^{*}\right), \\
& \quad u_{x}(t, x)>0>u_{x}(t, y) \text { for } t \in\left[0, T^{*}\right), x \in\left[g(t),-h_{0}\right] \text { and } y \in\left[h_{0}, h(t)\right] .
\end{aligned}
$$

Proof. The proof is similar to that of [5, Lemma 2.8] and we omit the details here.
3.2. Quenching set. In this subsection we study the quenching set and the boundedness of g^{*} and h^{*} (where g^{*} and h^{*} are defined by (1.5)) and prove Theorem 1.5.

Proof of Theorem 1.5. We prove this theorem in two steps.
Step 1. $Q\left(u_{0}\right)$ is a compact subset of $\left[-h_{0}, h_{0}\right]$.
Let us first use an indirect argument to prove that

$$
\left(h_{0}, h^{*}\right) \nsubseteq Q\left(u_{0}\right) .
$$

Suppose, by way of contradiction, that there exists $h_{1} \in\left(h_{0}, h^{*}\right)$ such that $h_{1} \in Q\left(u_{0}\right)$. As $u_{x}<0$ in $\left(0, T^{*}\right) \times\left[h_{0}, h(t)\right]$, then $\left[h_{0}, h_{1}\right] \subseteq Q\left(u_{0}\right)$. Recalling that $h^{\prime}(t)>0$ for $0<t<T^{*}$, we can find a unique $t_{1} \in\left(0, T^{*}\right)$ such that

$$
h\left(t_{1}\right)=h_{1} .
$$

By an argument similar to that in [7, 14], construct the auxiliary function

$$
V(t, x)=u_{x}(t, x)+p(x) \quad \text { for }(t, x) \in\left[t_{1}, T^{*}\right) \times\left[h_{0}, h_{1}\right],
$$

where $p(x):=\varepsilon \sin \left(\pi\left(x-h_{0}\right) /\left(h_{1}-h_{0}\right)\right)$ for sufficiently small $\varepsilon>0$. By direct computation,

$$
V_{t}-V_{x x}-f^{\prime}(u) V=-p(x)\left[(1-u)^{-2}-\pi^{2} /\left(h_{1}-h_{0}\right)^{2}\right] \quad \text { for }(t, x) \in\left[t_{1}, T^{*}\right) \times\left[h_{0}, h_{1}\right] .
$$

Since $\left[h_{0}, h_{1}\right] \subseteq Q\left(u_{0}\right)$, we can find a $T_{1} \in\left(t_{1}, T^{*}\right)$ such that, if $t \geq T_{1}$, then

$$
(1-u)^{-2}-\pi^{2} /\left(h_{1}-h_{0}\right)^{2}>0 \quad \text { in }\left[h_{0}, h_{1}\right],
$$

which implies that, for $(t, x) \in\left[T_{1}, T^{*}\right) \times\left[h_{0}, h_{1}\right]$,

$$
V_{t}-V_{x x}-f^{\prime}(u) V<0 .
$$

Moreover, for this T_{1}, we can find $\varepsilon>0$ small enough such that $V\left(T_{1}, x\right) \leq 0$ in $\left[h_{0}, h_{1}\right]$, since $u_{x}<0$ in [h_{0}, h_{1}]. It is clear that

$$
V\left(t, h_{0}\right)=u_{x}\left(t, h_{0}\right)<0 \quad \text { and } \quad V\left(t, h_{1}\right)=u_{x}\left(t, h_{1}\right)<0 \quad \text { for } T_{1}<t<T^{*} .
$$

Therefore, by the comparison principle, for $(t, x) \in\left[T_{1}, T^{*}\right) \times\left[h_{0}, h_{1}\right]$,

$$
-u_{x} \geq \varepsilon \sin \left(\pi\left(x-h_{0}\right) /\left(h_{1}-h_{0}\right)\right) .
$$

Integrating with respect to x from h_{0} to y for any $h_{0}<y \leq h_{1}$,

$$
\begin{equation*}
u\left(t, h_{0}\right)-u(t, y) \geq \int_{h_{0}}^{y} \varepsilon \sin \left(\pi\left(x-h_{0}\right) /\left(h_{1}-h_{0}\right)\right) d x . \tag{3.1}
\end{equation*}
$$

As $t \nearrow T^{*}$, the left-hand side of (3.1) tends to zero, but the right-hand side of (3.1) remains positive, which is a contraction. Thus $\left(h_{0}, h^{*}\right) \nsubseteq Q\left(u_{0}\right)$.

By a similar argument, $\left(g^{*},-h_{0}\right) \nsubseteq Q\left(u_{0}\right)$. Clearly $\left(-\infty, g^{*}\right] \cup\left[h^{*}, \infty\right) \nsubseteq Q\left(u_{0}\right)$, and hence $Q\left(u_{0}\right) \subseteq\left[-h_{0}, h_{0}\right]$. Since $Q\left(u_{0}\right)$ is a closed set, $Q\left(u_{0}\right)$ is a compact subset of [$-h_{0}, h_{0}$] and the proof of Step 1 is complete.
Step 2. We claim that g^{*} and h^{*} are bounded.
In fact, it follows from Step 1 that $Q\left(u_{0}\right) \subseteq\left[-h_{0}, h_{0}\right]$, and so

$$
\tilde{M}:=\limsup _{t \uparrow T^{*}} u(t, h(\tilde{t}))<1,
$$

where we set $\tilde{t}:=T^{*} / 4$. Thus, there exists $0<\epsilon<\tilde{t}$ sufficiently small that

$$
u(t, h(\tilde{t})) \leq \tilde{M}+(1-\tilde{M}) / 2:=M_{1} \quad \text { for } T^{*}-\epsilon \leq t<T^{*}
$$

Choose

$$
M:=\max \left\{\sup _{t \in\left[\tilde{t}, T^{*}-\epsilon\right]} u(t, h(\tilde{t})), M_{1}\right\} .
$$

Then $M<1$ and, thanks to Lemma 3.2,

$$
u(t, x) \leq M \quad \text { for }(t, x) \in\left[\tilde{t}, T^{*}\right) \times[h(\tilde{t}), h(t)] .
$$

Let us construct the auxiliary function

$$
\bar{u}(t, x)=M\left[2 K(h(t)-x)-K^{2}(h(t)-x)^{2}\right]
$$

over the region $D:=\left\{(t, x): 2 \tilde{t}<t<T^{*}, h(t)-K^{-1}<x<h(t)\right\}$, where

$$
K:=\max \left\{(h(2 \tilde{t})-h(\tilde{t}))^{-1},(2 M(1-M))^{-1 / 2}, 4\|u(2 \tilde{t}, \cdot)\|_{C^{1}\left(\left[h_{0}, h(2 \tilde{t}]\right)\right.} /(3 M)\right\}
$$

It is easy to check that

$$
u(t, x) \leq M \quad \text { and } \quad \bar{u}(t, x) \leq M \quad \text { for }(t, x) \in D \subseteq\left[\tilde{t}, T^{*}\right) \times[h(\tilde{t}), h(t)]
$$

Moreover, by the definition of \bar{u} we see that for $2 \tilde{t}<t<T^{*}$,

$$
\bar{u}\left(t, h(t)-K^{-1}\right)=M \geq u\left(t, h(t)-K^{-1}\right), \quad \bar{u}(t, h(t))=0=u(t, h(t)) .
$$

It is easy to see from the definition of K that, for $(t, x) \in D$,

$$
\bar{u}_{t}-\bar{u}_{x x} \geq 2 M K^{2} \geq f(\bar{u}) .
$$

Then, following the same argument as in [4], we obtain

$$
u(2 \tilde{t}, x) \leq \bar{u}(2 \tilde{t}, x) \quad \text { for } x \in\left[h(2 \tilde{t})-K^{-1}, h(2 \tilde{t})\right] .
$$

Hence the comparison principle yields

$$
u(t, x) \leq \bar{u}(t, x) \quad \text { for }(t, x) \in D
$$

which implies that

$$
h^{\prime}(t)=-\mu u_{x}(t, h(t)) \leq 2 \mu K M:=M_{2} \quad \text { for } t \in\left[2 \tilde{t}, T^{*}\right),
$$

and then

$$
h^{*}=\lim _{t \rightarrow T^{*}} h(t) \leq \max \left\{-g\left(T^{*} / 2\right), h\left(T^{*} / 2\right)\right\}+M_{2} T^{*} / 2:=C .
$$

In a similar way, we can prove $-g^{*} \leq C$. Thus Step 2 is finished and the proof of the theorem is complete.

From Theorem 1.5, one can easily deduce the following result.
Corollary 3.3. Let $h_{0}>0, u_{0}$ satisfy (1.4) and g^{*} and h^{*} be defined by (1.5). Assume that $w(t, x)$ is the solution of

$$
\left\{\begin{array}{l}
w_{t}=w_{x x}+1 /(1-w) \text { if } g^{*}<x<h^{*}, t>0, \\
w\left(t, g^{*}\right)=w\left(t, h^{*}\right)=0 \text { if } t>0, \\
w(0, x)=w_{0}(x) \quad \text { if } g^{*} \leq x \leq h^{*},
\end{array}\right.
$$

with $w_{0}(x) \in C^{2}\left(\left[g^{*}, h^{*}\right]\right)$ satisfying $w_{0}(x) \geq 0$ in $\left[g^{*}, h^{*}\right]$ and $w_{0}(x) \geq u_{0}(x)$ for x in $\left[-h_{0}, h_{0}\right]$. Then $w(t, x)$ must quench.
Proof. It is easy to check that $w(t, x)$ is a supersolution of problem (1.3), and hence

$$
w(t, x) \geq u(t, x) \quad \text { in }\left(0, T_{w}^{*}\right) \times[g(t), h(t)] \text { and } T_{w}^{*} \leq T^{*}<\infty,
$$

where $\left(0, T_{w}^{*}\right)$ is the maximal interval of w. Since 1 is a singular point of $1 /(1-w)$, it is easy to see that w must quench in time T_{w}^{*}, as desired. The proof is complete.

The following lemma shows that if the initial function u_{0} is even and decreasing, then the quenching set is $\{0\}$ and the two free boundaries remain bounded.

Lemma 3.4. Suppose $h_{0}>0, u_{0}$ satisfies (1.4) and

$$
\begin{equation*}
u_{0} \text { is even and } u_{0}^{\prime}(x)<0 \text { in }\left(0, h_{0}\right] . \tag{3.2}
\end{equation*}
$$

Then $Q\left(u_{0}\right)=\{0\}$ and $h^{*}=-g^{*}$ are bounded.
Proof. Thanks to the condition (3.2), by Lemma 3.2 and a simple moving plane consideration, we can firstly deduce that

$$
-g(t)=h(t), \quad u_{x}(t, 0)=0 \quad \text { for } 0<t<T^{*}
$$

and

$$
u_{x}(t, x)<0<u_{x}(t, y) \quad \text { for } 0<t<T^{*}, \quad 0<x \leq h(t), g(t) \leq y<0 .
$$

Next, we claim that $\left(0, h_{0}\right) \nsubseteq Q\left(u_{0}\right)$. If not, then we can assume that there exists $x_{0} \in\left(0, h_{0}\right)$ such that $x_{0} \in Q\left(u_{0}\right)$. It is then clear that, for any $\theta \in\left(0, x_{0}\right)$, we have $\left[\theta, x_{0}\right] \subseteq Q\left(u_{0}\right)$, since $u_{x}<0$ in $\left(0, T^{*}\right) \times(0, h(t)]$.

Construct the auxiliary function

$$
G(t, x)=u_{x}(t, x)+b(x) \quad \text { for }(t, x) \in\left(0, T^{*}\right) \times\left[\theta, x_{0}\right]
$$

where $b(x):=\varepsilon \sin \left(\pi(x-\theta) /\left(x_{0}-\theta\right)\right)$ for small $\varepsilon>0$. Arguing as in the proof of Theorem 1.5 we reach a contradiction, which implies that $\left(0, h_{0}\right) \nsubseteq Q\left(u_{0}\right)$, since $\theta \in\left(0, x_{0}\right)$ is arbitrary. Recalling that, for $(t, x) \in\left(0, T^{*}\right) \times(0, h(t)]$,

$$
u_{x}(t, x)<0 \quad \text { and } \quad u(t, x)=0
$$

we see that $(0, \infty) \nsubseteq Q\left(u_{0}\right)$. Similarly, $(-\infty, 0) \nsubseteq Q\left(u_{0}\right)$, therefore

$$
Q\left(u_{0}\right)=\{0\} .
$$

This, together with the proof of Theorem 1.5, gives the conclusion that $h^{*}=-g^{*}$ are bounded, which completes the proof of the lemma.

In the rest of this subsection, under some additional assumptions on the initial datum u_{0}, we show that u_{t} will blow up in time T^{*}.

Lemma 3.5. Suppose $h_{0}>0, u_{0}$ satisfies (1.4) and

$$
\begin{equation*}
u_{0}^{\prime \prime}+f\left(u_{0}\right) \geq 0 \quad \text { in }\left[-h_{0}, h_{0}\right] . \tag{3.3}
\end{equation*}
$$

Then

$$
\lim _{t \rightarrow T^{*}} \sup _{x \in[g(t), h(t)]} u_{t}(t, x)=\infty .
$$

Proof. The proof is based on the ideas of $[6,10]$. The condition (3.3) enables us to apply the strong maximum principle to deduce that

$$
u_{t}>0 \quad \text { in }\left(0, T^{*}\right) \times(g(t), h(t)) .
$$

For any $\eta \in\left(0, T^{*}\right)$, there exists a constant $k_{1}>0$ such that $u_{t}>k_{1}$ on the parabolic boundary of $\left(\eta, T^{*}\right) \times[g(\eta), h(\eta)]$. Since we have proved that $Q\left(u_{0}\right) \subseteq\left[-h_{0}, h_{0}\right]$, there exists a constant $0<k_{2}<1$ such that $u<k_{2}$ on the parabolic boundary of $\left(\eta, T^{*}\right) \times[g(\eta), h(\eta)]$.

Construct the auxiliary function

$$
W(t, x):=u_{t}-\delta f(u) \quad \text { in }\left[\eta, T^{*}\right) \times[g(\eta), h(\eta)],
$$

where δ is a constant to be determined later. Direct calculations yield

$$
W_{t}-W_{x x}-f^{\prime}(u) W=\delta f^{\prime \prime}(u) u_{x}^{2} \geq 0 \quad \text { for }(t, x) \in\left[\eta, T^{*}\right) \times[g(\eta), h(\eta)] .
$$

Choose $0<\delta<k_{1}\left(1-k_{2}\right)$. Then, on the parabolic boundary of $\left(\eta, T^{*}\right) \times[g(\eta), h(\eta)]$,

$$
W(t, x)=u_{t}-\delta f(u)>0 .
$$

It then follows, from the comparison principle, that

$$
W(t, x) \geq 0 \quad \text { in }\left[\eta, T^{*}\right) \times[g(\eta), h(\eta)],
$$

which implies that

$$
\lim _{t \rightarrow T^{*}} \sup _{x \in[g(t), h(t)]} u_{t}(t, x) \geq \delta \lim _{u \rightarrow 1} f(u)=\infty .
$$

Hence the desired result follows.
Remark 3.6. From Lemmas 3.4 and 3.5, we see that if the initial function u_{0} satisfies (1.4), (3.2) and (3.3), then

$$
0 \leq u(t, x)<1 \quad \text { for } t \in\left[0, T^{*}\right], x \in[g(t), 0) \cup(0, h(t)]
$$

and

$$
\lim _{t \rightarrow T^{*}} u(t, 0)=1 \quad \text { and } \quad \lim _{t \rightarrow T^{*}} u_{t}(t, 0)=\infty .
$$

References

[1] A. Acker and W. Walter, 'On the global existence of solutions of parabolic differential equations with a singular nonlinear term', Nonlinear Anal. 2 (1978), 499-505.
[2] C. Y. Chan and Hans G. Kaper, 'Quenching for semilinear singular parabolic problems', SIAM J. Math. Anal. 20 (1989), 558-566.
[3] Y. Du and Z. M. Guo, 'Spreading-vanishing dichotomy in a diffusion logistic model with a free boundary, II', J. Differential Equations 250 (2011), 4336-4366.
[4] Y. Du and Z. G. Lin, 'Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary', SIAM J. Math. Anal. 42 (2010), 377-405.
[5] Y. Du and B. D. Lou, 'Spreading and vanishing in nonlinear diffusion problems with free boundaries', J. Eur. Math. Soc. 17 (2015), 2673-2724.
[6] A. Friedman and B. Mcleod, 'Blow-up of positive solutions of semilinear heat equations', Indiana Univ. Math. J. 34 (1985), 425-447.
[7] J.-S. Guo, 'On the quenching behavior of the solution of a semilinear parabolic equation', J. Math. Anal. Appl. 151 (1990), 58-79.
[8] J.-S. Guo and B. Hu, 'Quenching problem for a singular semilinear heat equation', Nonlinear Anal. 30 (1997), 905-910.
[9] H. Kawarada, 'On solutions of initial-boundary problem for $u_{t}=u_{x x}+1 /(1-u)$ ', Publ. RIMS, Kyoto Univ. 10 (1975), 729-736.
[10] L. Ke and S. Ning, 'Quenching for degenerate parabolic equations', Nonlinear Anal. 34 (1998), 1123-1135.
[11] H. A. Levine and J. T. Montgomery, 'The quenching of solutions of some nonlinear parabolic equations', SIAM J. Math. Anal. 11 (1980), 842-847.
[12] M. Montenegro, 'Complete quenching for singular parabolic equations', J. Math. Anal. Appl. 384 (2011), 591-596.
[13] L. I. Rubinstein, The Stefan Problem (American Mathematical Society, Providence, RI, 1971).
[14] N. K. Sun, 'Blow-up and asymptotic behavior of solutions for reaction-diffusion equations with free boundaries', J. Math. Anal. Appl. 428 (2015), 838-854.

NINGKUI SUN, Department of Mathematics, Tongji University, Shanghai 200092, China e-mail: sunnk1987@163.com

[^0]: This research was partly supported by the NSFC (11271285).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

