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Abstract

This paper concerns the quenching phenomena of a reaction–diffusion equation ut = uxx + 1/(1 − u) in a
one dimensional varying domain [g(t), h(t)], where g(t) and h(t) are two free boundaries evolving by a
Stefan condition. We prove that all solutions will quench regardless of the choice of initial data, and we
also show that the quenching set is a compact subset of the initial occupying domain and that the two free
boundaries remain bounded.
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1. Introduction

The quenching phenomenon has been studied for various types of problems. For
example, in [1, 9, 11], the authors considered the initial-boundary problem

vt = vxx + 1/(1 − v) if − l < x < l, t > 0,
v(t, 0) = v(t, l) = 0 if t > 0,
v(0, x) = 0 if − l ≤ x ≤ l,

(1.1)

where the first equation in (1.1) arises in the study of electric current transients in
polarised ionic conductors (see [9, 11] and references therein for more background).
They established the interesting results given in the following theorem.

Theorem 1.1. There exists a positive constant l0 <
√

2 such that if l > l0, then the
solution of problem (1.1) will quench: that is, there is a finite time T > 0 such that the
solution v satisfies

0 ≤ v(t, x) < 1 for all (t, x) ∈ [0,T ) × [−l, l]

and
lim
t→T
‖v(t, ·)‖L∞([−l,l]) = 1.
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However, if l ≤ l0, then the solution of problem (1.1) cannot quench, even in infinite
time.

It is easy to see that the quenching problem is equivalent to the blow-up problem in
the sense that, by using the transformation w = (1 − v)−1, the first equation in problem
(1.1) takes the form

wt = wxx − 2w2
x/w + w3.

By an argument similar to that in [7], it is easily seen that if the solution v of problem
(1.1) quenches, then w will blow up in finite time. Moreover the quenching time of v
is equal to the blow-up time of w. We can also easily check that the methods in [6, 14],
which are used to study the blow-up problem, will also be useful for the quenching
problem. For other forms of quenching problem, please see [2, 8, 10, 12] and the
references therein.

Recently, to observe precisely the spreading fronts of an invasive species, Du and
Lin [4] used the following free-boundary problem to discuss the spreading of an
invasive species in a new environment:

ut = uxx + u(1 − u) if g(t) < x < h(t), t > 0,
u(t, g(t)) = 0, g′(t) = −µ ux(t, g(t)) if t > 0,
u(t, h(t)) = 0, h′(t) = −µ ux(t, h(t)) if t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x) if − h0 ≤ x ≤ h0,

(1.2)

where x = g(t) and x = h(t) are the free boundaries that represent the spreading fronts
of the species whose density is represented by u(t, x), µ is a given positive constant and
the initial data u0(x) and [−h0, h0] stand for the initial population and initial occupying
interval of the species, respectively (see [4, 13] and the references therein for more
background). Du and Lin [4] proved that problem (1.2) admits a unique time-global
solution (u, g, h), and obtained a spreading–vanishing dichotomy result for (1.2): as
t→∞, either u(t, x)→ 1 and (g∞, h∞) = R, or u(t, x)→ 0 and h∞ − g∞ ≤ π, where

g∞ := lim
t→∞

g(t), h∞ := lim
t→∞

h(t).

Later, Du and Guo [3] extended these conclusions to the problem of higher-space
dimensions with radially symmetric parameters. Du and Lou [5] considered problem
(1.2) with much more general nonlinear terms, and deduced a complete description of
the dynamical behaviour of solutions.

Motivated by these results, we shall consider the quenching phenomena for the
free-boundary problem

ut = uxx + 1/(1 − u) if g(t) < x < h(t), t > 0,
u(t, g(t)) = 0, g′(t) = −µ ux(t, g(t)) if t > 0,
u(t, h(t)) = 0, h′(t) = −µ ux(t, h(t)) if t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x) if − h0 ≤ x ≤ h0,

(1.3)

where the initial function u0 satisfies
u0 ∈ C2([−h0, h0]), u0(±h0) = 0, u′0(h0),−u′0(−h0) < 0, 0 < u0 < 1 in (−h0, h0).

(1.4)
Before proceeding further, we will introduce the following definitions.

https://doi.org/10.1017/S0004972715001549 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001549


112 Quenching of solutions [3]

Definition 1.2. Let Gτ := {(t, x) : 0 < t ≤ τ, g(t) ≤ x ≤ h(t)}. For any given h0 > 0 and
u0 satisfying (1.4), a triple (u, g, h) is defined to be a (classical) solution of (1.3) on
the time-interval [0, τ] for some τ > 0 if it belongs to C1,2(Gτ) ×C1([0, τ]) ×C1([0, τ])
with ‖u‖L∞(Gτ) < 1, and all the identities in (1.3) are satisfied pointwise.

Definition 1.3. A solution (u, g, h) (or simply u) is said to quench if there exists a time
T ∗ called the quenching time with 0 < T ∗ <∞ such that

0 ≤ u(t, x) < 1 for (t, x) ∈ [0,T ∗) × [g(t), h(t)] and lim
t→T ∗
‖u(t, ·)‖L∞([g(t),h(t)]) = 1.

It follows, from Lemma 2.4 below, that the quenching time in Definition 1.3 is well
defined.

The primary purpose of this paper is to explore the influence of free boundaries on
the quenching properties of problem (1.3). Our first main result shows that all solutions
of problem (1.3) must quench regardless of the choice of initial data.

Theorem 1.4. Let h0 > 0 and u0 satisfy (1.4). Then the solution (u, g, h) of problem
(1.3) must quench in a finite time T ∗.

It is easily seen from Theorem 1.4 that problem (1.3) admits no time-global
solutions, and thus we only need to consider the properties of the quenching solutions
in the rest of this paper. Let us denote by T ∗ the quenching time of problem (1.3). By
the Hopf lemma, we can show that the two free-boundary fronts g(t) and h(t) satisfy

g′(t) < 0 < h′(t) for 0 < t < T ∗.

Thus limt→T ∗ g(t) and limt→T ∗ h(t) always exist, and in the subsequent work we define

g∗ := lim
t→T ∗

g(t) and h∗ := lim
t→T ∗

h(t). (1.5)

Let us also introduce the following notation. Given a solution (u, g, h) that quenches at
T ∗ <∞, we define its quenching set by

Q(u0) := {x ∈ [g∗, h∗] : there exist xn → x, tn → T ∗ such that u(tn, xn)→ 1 as n→∞},

where u0 denotes the initial function. Any element of Q(u0) is called a quenching point
of (u, g, h). Clearly, Q(u0) is closed.

It is worth studying the quenching set of (1.3) and the boundedness of g∗ and h∗.
The following theorem shows that the quenching set is a compact subset of the initial
domain [−h0, h0] and the two free boundaries remain bounded.

Theorem 1.5. Let h0 > 0, u0 satisfy (1.4) and T ∗ be the quenching time. Then:

(i) the quenching set Q(u0) is a compact subset of the initial domain [−h0, h0]; and
(ii) there exists a positive constant C <∞ such that h∗, −g∗ ≤ C.

The plan of the paper is the following. Section 2 covers some basic and known
results, which are useful for this research. In Section 3, based on the comparison
principle, we prove Theorems 1.4 and 1.5.
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2. Some basic results
In this section we recall some basic and known results which will play a

fundamental role in this paper. In what follows, we set f (u) := 1/(1 − u) for
convenience. Let Tmax be the maximal existence time of (u, g, h):

Tmax := sup{τ > 0 : ‖u‖L∞([0,t]×[g(t),h(t)]) < 1 and g(t) > −∞, h(t) <∞ for all t ∈ [0, τ)}.

It is easy to check that f ∈ C2 when t ∈ (0, Tmax), and thus some of the proofs here
are omitted or only sketched, since they are similar to those of [4, 5]. Firstly, the
comparison principle suitable for our needs is stated in the following lemma.

Lemma 2.1. Suppose for some T ∈ (0,∞), g, h ∈ C1([0, T ]), u ∈ C(DT ) ∩ C1,2(DT )
satisfying ‖u‖L∞(DT ) < 1, with DT = {(t, x) ∈ R2 : 0 < t ≤ T , g(t) < x < h(t)}, and

ut ≥ uxx + f (u) if 0 < t ≤ T , g(t) < x < h(t),
u = 0, g′(t) ≤ −µux if 0 < t ≤ T , x = g(t),
u = 0, h

′
(t) ≥ −µux if 0 < t ≤ T , x = h(t).

If [−h0, h0] ⊆ [g(0), h(0)] and u0(x) ≤ u(0, x) in [−h0, h0], then the solution (u, g, h) of
problem (1.3) satisfies

[g(t), h(t)] ⊆ [g(t), h(t)] for t ∈ (0,T ],
u(t, x) ≤ u(t, x) for (t, x) ∈ (0,T ] × [g(t), h(t)].

Remark 2.2. Note that f (0) > 0 in our problem which is very different from the case
in [4]. However, Lemma 2.1 can be proved by an argument similar to that in [4].
The function u, or the triple (u, g, h), in Lemma 2.1, is often called a supersolution
of problem (1.3). A subsolution can be defined analogously by reversing all the
inequalities. We also have corresponding comparison results for subsolutions.

Next, we present the local existence and uniqueness result for problem (1.3).

Theorem 2.3. For any given h0 > 0, any u0 satisfying (1.4) and any α ∈ (0, 1), there is
a τ > 0 such that problem (1.3) admits a unique solution

(u, g, h) ∈ C(1+α)/2,1+α(Gτ) ×C1+α/2([0, τ]) ×C1+α/2([0, τ]),

with
‖u‖L∞(Gτ) < 1,

where Gτ :=
{
(t, x) : t ∈ (0, τ], x ∈ [g(t), h(t)]

}
, and τ only depends on h0, α and

‖u0‖C2([−h0,h0]).

Proof. The main idea of the proof is to change problem (1.3) into the equivalent
fixed-boundary problem, define a complete metric space and construct a contraction
mapping on this space. Then we can prove the theorem by using the contraction
mapping theorem. Since f ∈ C2 when t ∈ (0, Tmax), the proof of the theorem follows
the same argument as in [4] and we omit the details here. As in [4], by applying
the Schauder estimates to the equivalent fixed-boundary problem used in the proof,
additional regularity for u can be obtained: namely, u ∈ C1+α/2,2+α(Gτ). �
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The following lemma gives a general boundedness result for g′(t) and h′(t).

Lemma 2.4. Assume that (u, g, h) is a solution of problem (1.3) defined for t ∈ [0, T̂ ) for
some T̂ ∈ (0,∞), and there exists 0 < C1 < 1 such that

u(t, x) ≤ C1 for all (t, x) ∈ [0, T̂ ) × [g(t), h(t)].

Then there exists C2, depending on C1 but independent of T̂ , such that

−g′(t), h′(t) ∈ (0,C2] for t ∈ (0, T̂ ).

Moreover, the solution can be extended to some interval (0, τ) with τ > T̂ .

Proof. Construct the auxiliary function

w(t, x) := C1[2L(h(t) − x) − L2(h(t) − x)2]

over the domain

ΩL =: {(t, x) : 0 < t < T̂ , h(t) − L−1 < x < h(t)},

where L := max{h−1
0 , (2C1(1 − C1))−1/2, 4‖u0‖C1([−h0,h0])/(3C1)}. Following the proof

of [4, Lemma 2.2],

h′(t) = −µux(t, h(t)) ≤ −µwx(t, h(t)) = 2LC1µ := C2 for t ∈ [0, T̂ ).

Similarly, one can deduce that g′(t) ≥ −C2 for t ∈ [0, T̂ ).
Now fix δ0 ∈ (0, T̂ ). By a standard Lp estimate, the Sobolev embedding theorem

and the Hölder estimates for the parabolic equation, there exists a constant C3 > 0
depending only on δ0, T̂ , L, C1 and C2 such that

‖u(t, ·)‖C2+α([g(t),h(t)]) ≤ C3 for t ∈ [δ0, T̂ ).

Since 0 ≤ u(t, x) ≤ C1 < 1 for (t, x) ∈ [0, T̂ ) × [g(t), h(t)], it then follows from the proof
of Theorem 2.3 that there exists a t0 > 0 depending only on C1, C2 and C3 such that
the solution of problem (1.3) with initial time T̂ − t0 can be extended uniquely to the
time T̂ + t0. This completes the proof of the lemma. �

The above lemma implies that the solution of problem (1.3) can be extended as long
as u remains smaller than one. In particular, the free boundaries remain bounded as
long as u is less than one. Therefore we have the following result.

Corollary 2.5. Suppose that the solution (u, g, h) of problem (1.3) is defined on some
maximal interval (0,Tmax) and Tmax <∞. Then (u,g,h) must quench and the quenching
time satisfies T ∗ = Tmax.

Proof. We will use an indirect argument and assume that Tmax <∞ and (u, g, h) does
not quench. Then there exists a constant 0 < C̃ < 1 such that

u(t, x) ≤ C̃ for (t, x) ∈ (0,Tmax) × [g(t), h(t)].

By Lemma 2.4, u can be extended beyond Tmax, which is in contradiction to the
definition of Tmax. �
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3. Quenching phenomenon

In this section, we study the profiles of the solution of problem (1.3) and prove
Theorems 1.4 and 1.5.

3.1. Quenching of solutions. This subsection covers the proof of Theorem 1.4,
which is based on the comparison principle and some well-known results. Let Tmax be
the maximal existence time of (u, g, h).

Proof of Theorem 1.4. Define the auxiliary function f (u) := um(1 − u) with m = 1/2.
There exists a small constant 0 < ε0 ≤ 1/12 such that, for any 0 < ε ≤ ε0, the equation
f (u) = f (ε) has roots ε and 1 − a(ε) with 0 < a(ε) < 1 − ε and a(ε)→ 0 as ε → 0.
Define fε(u) := f (u + ε) − f (ε). It is easily checked that fε ∈ C2([0,∞)), f ′ε (0) = f ′(ε) > 0, fε(u)↗ f (u) as ε → 0,

fε(0) = fε(1 − a(ε) − ε) = 0, fε(u) > 0 for u ∈ (0, 1 − a(ε) − ε).

For any given h0 > 0, since limε→0 f ′ε (0) =∞, no matter how small h0 is, we can find
ε∗ ∈ (0, ε0] sufficiently small such that h0 ≥ π/(2

√
f ′ε∗(0)). Then the solution (u∗, g∗, h∗)

of problem (1.3) with f (·) = fε∗(·) satisfies

− lim
t→∞

g∗(t) = lim
t→∞

h∗(t) =∞.

Thus there exists a constant T1 <∞ such that

h∗(T1) − g∗(T1) ≥ 2l0,

where l0 is given in Theorem 1.1.
Noting that fε∗(s) < f (s) for s ∈ [0, 1), then applying the comparison principle,

[g∗(t), h∗(t)] ⊆ (g(t), h(t)) for 0 < t < Tmax.

It follows, from Corollary 2.5, that if Tmax ≤ T1, then the solution (u, g, h) must
quench. If Tmax > T1, there exists σ > 0 sufficiently small such that T1 < T̃ < Tmax
and h(T̃ ) − g(T̃ ) > 2l0 with T̃ := T1 + σ. Theorem 1.1 implies that the solution u
of problem (1.1) with l = (h(T̃ ) − g(T̃ ))/2 quenches. By the comparison principle,
(u, g, h) must quench in this case and Tmax < ∞ since u is a subsolution of
problem (1.3). Therefore all solutions of problem (1.3) will quench. The proof of
the theorem is complete. �

Remark 3.1. From the proof, we see that all solutions of problem (1.3) will quench for
any initial function u0 satisfying (1.4), and thus there exist no time-global solutions.

In the rest of this subsection, we show some properties of solutions of (1.3) which
will be used in the next subsection. We use T ∗ to denote the quenching time of (u,g,h).

Lemma 3.2. Let (u, g, h) be a solution of problem (1.3) with u0 satisfying (1.4). Then

−2h0 < g(t) + h(t) < 2h0 for t ∈ [0,T ∗),
ux(t, x) > 0 > ux(t, y) for t ∈ [0,T ∗), x ∈ [g(t),−h0] and y ∈ [h0, h(t)].

Proof. The proof is similar to that of [5, Lemma 2.8] and we omit the details here. �
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3.2. Quenching set. In this subsection we study the quenching set and the
boundedness of g∗ and h∗ (where g∗ and h∗ are defined by (1.5)) and prove
Theorem 1.5.

Proof of Theorem 1.5. We prove this theorem in two steps.

Step 1. Q(u0) is a compact subset of [−h0, h0].
Let us first use an indirect argument to prove that

(h0, h∗) * Q(u0).

Suppose, by way of contradiction, that there exists h1 ∈ (h0, h∗) such that h1 ∈ Q(u0).
As ux < 0 in (0, T ∗) × [h0, h(t)], then [h0, h1] ⊆ Q(u0). Recalling that h′(t) > 0 for
0 < t < T ∗, we can find a unique t1 ∈ (0,T ∗) such that

h(t1) = h1.

By an argument similar to that in [7, 14], construct the auxiliary function

V(t, x) = ux(t, x) + p(x) for (t, x) ∈ [t1,T ∗) × [h0, h1],

where p(x) := ε sin(π(x − h0)/(h1 − h0)) for sufficiently small ε > 0. By direct
computation,

Vt − Vxx − f ′(u)V = −p(x)[(1 − u)−2 − π2/(h1 − h0)2] for (t, x) ∈ [t1,T ∗) × [h0, h1].

Since [h0, h1] ⊆ Q(u0), we can find a T1 ∈ (t1,T ∗) such that, if t ≥ T1, then

(1 − u)−2 − π2/(h1 − h0)2 > 0 in [h0, h1],

which implies that, for (t, x) ∈ [T1,T ∗) × [h0, h1],

Vt − Vxx − f ′(u)V < 0.

Moreover, for this T1, we can find ε > 0 small enough such that V(T1, x) ≤ 0 in [h0,h1],
since ux < 0 in [h0, h1]. It is clear that

V(t, h0) = ux(t, h0) < 0 and V(t, h1) = ux(t, h1) < 0 for T1 < t < T ∗.

Therefore, by the comparison principle, for (t, x) ∈ [T1,T ∗) × [h0, h1],

−ux ≥ ε sin(π(x − h0)/(h1 − h0)).

Integrating with respect to x from h0 to y for any h0 < y ≤ h1,

u(t, h0) − u(t, y) ≥
∫ y

h0

ε sin(π(x − h0)/(h1 − h0)) dx. (3.1)

As t↗ T ∗, the left-hand side of (3.1) tends to zero, but the right-hand side of (3.1)
remains positive, which is a contraction. Thus (h0, h∗) * Q(u0).
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By a similar argument, (g∗,−h0) * Q(u0). Clearly (−∞, g∗] ∪ [h∗,∞) * Q(u0), and
hence Q(u0) ⊆ [−h0, h0]. Since Q(u0) is a closed set, Q(u0) is a compact subset of
[−h0, h0] and the proof of Step 1 is complete.

Step 2. We claim that g∗ and h∗ are bounded.
In fact, it follows from Step 1 that Q(u0) ⊆ [−h0, h0], and so

M̃ := lim sup
t↑T ∗

u(t, h(t̃)) < 1,

where we set t̃ := T ∗/4. Thus, there exists 0 < ε < t̃ sufficiently small that

u(t, h(t̃)) ≤ M̃ + (1 − M̃)/2 := M1 for T ∗ − ε ≤ t < T ∗.

Choose
M := max

{
sup

t∈[t̃,T ∗−ε]
u(t, h(t̃)),M1

}
.

Then M < 1 and, thanks to Lemma 3.2,

u(t, x) ≤ M for (t, x) ∈ [t̃,T ∗) × [h(t̃), h(t)].

Let us construct the auxiliary function

ū(t, x) = M[2K(h(t) − x) − K2(h(t) − x)2]

over the region D := {(t, x) : 2t̃ < t < T ∗, h(t) − K−1 < x < h(t)}, where

K := max{(h(2t̃) − h(t̃))−1, (2M(1 − M))−1/2, 4‖u(2t̃, ·)‖C1([h0,h(2t̃)])/(3M)}.

It is easy to check that

u(t, x) ≤ M and ū(t, x) ≤ M for (t, x) ∈ D ⊆ [t̃,T ∗) × [h(t̃), h(t)].

Moreover, by the definition of ū we see that for 2t̃ < t < T ∗,

ū(t, h(t) − K−1) = M ≥ u(t, h(t) − K−1), ū(t, h(t)) = 0 = u(t, h(t)).

It is easy to see from the definition of K that, for (t, x) ∈ D,

ūt − ūxx ≥ 2MK2 ≥ f (ū).

Then, following the same argument as in [4], we obtain

u(2t̃, x) ≤ ū(2t̃, x) for x ∈ [h(2t̃) − K−1, h(2t̃)].

Hence the comparison principle yields

u(t, x) ≤ ū(t, x) for (t, x) ∈ D,

which implies that

h′(t) = −µux(t, h(t)) ≤ 2µKM := M2 for t ∈ [2t̃,T ∗),

and then
h∗ = lim

t→T ∗
h(t) ≤ max{−g(T ∗/2), h(T ∗/2)} + M2T ∗/2 := C.

In a similar way, we can prove −g∗ ≤ C. Thus Step 2 is finished and the proof of the
theorem is complete. �
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From Theorem 1.5, one can easily deduce the following result.

Corollary 3.3. Let h0 > 0, u0 satisfy (1.4) and g∗ and h∗ be defined by (1.5). Assume
that w(t, x) is the solution of

wt = wxx + 1/(1 − w) if g∗ < x < h∗, t > 0,
w(t, g∗) = w(t, h∗) = 0 if t > 0,
w(0, x) = w0(x) if g∗ ≤ x ≤ h∗,

with w0(x) ∈ C2([g∗, h∗]) satisfying w0(x) ≥ 0 in [g∗, h∗] and w0(x) ≥ u0(x) for x in
[−h0, h0]. Then w(t, x) must quench.

Proof. It is easy to check that w(t, x) is a supersolution of problem (1.3), and hence

w(t, x) ≥ u(t, x) in (0,T ∗w) × [g(t), h(t)] and T ∗w ≤ T ∗ <∞,

where (0, T ∗w) is the maximal interval of w. Since 1 is a singular point of 1/(1 − w), it
is easy to see that w must quench in time T ∗w, as desired. The proof is complete. �

The following lemma shows that if the initial function u0 is even and decreasing,
then the quenching set is {0} and the two free boundaries remain bounded.

Lemma 3.4. Suppose h0 > 0, u0 satisfies (1.4) and

u0 is even and u′0(x) < 0 in (0, h0]. (3.2)

Then Q(u0) = {0} and h∗ = −g∗ are bounded.

Proof. Thanks to the condition (3.2), by Lemma 3.2 and a simple moving plane
consideration, we can firstly deduce that

−g(t) = h(t), ux(t, 0) = 0 for 0 < t < T ∗

and
ux(t, x) < 0 < ux(t, y) for 0 < t < T ∗, 0 < x ≤ h(t), g(t) ≤ y < 0.

Next, we claim that (0, h0) * Q(u0). If not, then we can assume that there exists
x0 ∈ (0, h0) such that x0 ∈ Q(u0). It is then clear that, for any θ ∈ (0, x0), we have
[θ, x0] ⊆ Q(u0), since ux < 0 in (0,T ∗) × (0, h(t)].

Construct the auxiliary function

G(t, x) = ux(t, x) + b(x) for (t, x) ∈ (0,T ∗) × [θ, x0],

where b(x) := ε sin(π(x − θ)/(x0 − θ)) for small ε > 0. Arguing as in the proof of
Theorem 1.5 we reach a contradiction, which implies that (0, h0) * Q(u0), since
θ ∈ (0, x0) is arbitrary. Recalling that, for (t, x) ∈ (0,T ∗) × (0, h(t)],

ux(t, x) < 0 and u(t, x) = 0,

we see that (0,∞) * Q(u0). Similarly, (−∞, 0) * Q(u0), therefore

Q(u0) = {0}.

This, together with the proof of Theorem 1.5, gives the conclusion that h∗ = −g∗ are
bounded, which completes the proof of the lemma. �
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In the rest of this subsection, under some additional assumptions on the initial datum
u0, we show that ut will blow up in time T ∗.

Lemma 3.5. Suppose h0 > 0, u0 satisfies (1.4) and

u′′0 + f (u0) ≥ 0 in [−h0, h0]. (3.3)

Then
lim
t→T ∗

sup
x∈[g(t),h(t)]

ut(t, x) =∞.

Proof. The proof is based on the ideas of [6, 10]. The condition (3.3) enables us to
apply the strong maximum principle to deduce that

ut > 0 in (0,T ∗) × (g(t), h(t)).

For any η ∈ (0, T ∗), there exists a constant k1 > 0 such that ut > k1 on the parabolic
boundary of (η, T ∗) × [g(η), h(η)]. Since we have proved that Q(u0) ⊆ [−h0, h0],
there exists a constant 0 < k2 < 1 such that u < k2 on the parabolic boundary of
(η,T ∗) × [g(η), h(η)].

Construct the auxiliary function

W(t, x) := ut − δ f (u) in [η,T ∗) × [g(η), h(η)],

where δ is a constant to be determined later. Direct calculations yield

Wt −Wxx − f ′(u)W = δ f ′′(u)u2
x ≥ 0 for (t, x) ∈ [η,T ∗) × [g(η), h(η)].

Choose 0 < δ < k1(1 − k2). Then, on the parabolic boundary of (η,T ∗) × [g(η), h(η)],

W(t, x) = ut − δ f (u) > 0.

It then follows, from the comparison principle, that

W(t, x) ≥ 0 in [η,T ∗) × [g(η), h(η)],

which implies that
lim
t→T ∗

sup
x∈[g(t),h(t)]

ut(t, x) ≥ δ lim
u→1

f (u) =∞.

Hence the desired result follows. �

Remark 3.6. From Lemmas 3.4 and 3.5, we see that if the initial function u0 satisfies
(1.4), (3.2) and (3.3), then

0 ≤ u(t, x) < 1 for t ∈ [0,T ∗], x ∈ [g(t), 0) ∪ (0, h(t)]

and
lim
t→T ∗

u(t, 0) = 1 and lim
t→T ∗

ut(t, 0) =∞.
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