A FUNCTION WHICH TRANSFORMS CERTAIN GRAPHS INTO STRAIGHT LINES FOR SIMULTANEOUS SOLUTION

BY

LAURENCE P. MAHER, JR,

Abstract

A function M is defined which maps the plane onto a square region in such a way that the planar graphs \ln, $\exp , \boldsymbol{X},-\boldsymbol{X}, 1 / X$, and all compositions formed from them are transformed into straight lines. One can then solve for their intersections. It also provides a natural definition for the repeated composition of \ln with itself t times, where t can be a non-integer.

An infinite exponential (inf exp) means a sequence of the form
 base e inf \exp is one in which each a_{n} is e or e^{-1}. Since $E(e, e, e, \ldots) \rightarrow \infty$ we know $E\left(e^{-1}, e, e, e, \ldots\right) \rightarrow 0$. This allows any base e inf exp of the form $E\left(a_{1}, \ldots, a_{n}, e^{-1}, e, e, e, \ldots\right)$ to be replaced by a base e finite exponential $E\left(a_{1}, \ldots, a_{n}, 0\right)$. In the finite case it makes no difference whether a_{n} is e or e^{-1}; so every base e fin $\exp E\left(a_{1}, \ldots, a_{n-1}, a_{n}, 0\right)$ has two base $e \inf \exp$ representations $E\left(a_{1}, \ldots, a_{n-1}, e, e^{-1}, e, e, e, \ldots\right)$ and $E\left(a_{1}, \ldots, a_{n-1}, e^{-1}, e^{-1}\right.$, e, e, e, \ldots) which differ only in the nth element.

Theorem 1. If $x>0$ and x is not a base e fin exp, then x has exactly one base e inf exp representation.

We define $N(x)=e^{-x}, \quad E^{0}(x)=x, \quad E^{1}(x)=\exp (x), \quad E^{2}(x)=\exp \circ \exp (x)$, $E^{3}(x)=\exp \circ \exp \circ \exp (x), \ldots$, and shorten $N \circ E^{n}$ to $N E^{n}$.

Proof. If $0<x<1$ there is an x_{1} between 0 and 1 and a nonnegative integer n_{1} (also denoted by $n 1$ or $n, 1$) such that $x=N E^{n 1}\left(x_{1}\right)$. Recursion gives a sequence x_{1}, x_{2}, \ldots, each between 0 and 1 , and a sequence of nonnegative integers n_{1}, n_{2}, \ldots such that

$$
x=N E^{n 1}\left(x_{1}\right)=N E^{n 1} \circ N E^{n 2}\left(x_{2}\right)=N E^{n 1} \circ N E^{n 2} \circ N e^{n 3}\left(x_{3}\right)=\cdots .
$$

[^0]Now x is interior to each of the intervals $[0,1],\left[N E^{n 1}(1), N E^{n 1}(0)\right],\left[N E^{n 1}\right.$ 。 $\left.N E^{n 2}(0), N E^{n 1} \circ N E^{n 2}(1)\right],\left[N E^{n 1} \circ N E^{n 2} \circ N E^{n 3}(1), N E^{n 1} \circ N E^{n 2} \circ N E^{n 3}(0)\right], \ldots$ because $0<x_{i}<1$, and the composition function $N E^{n 1} \circ N E^{n 2} \circ \cdots \circ N E^{n i}$ is increasing/decreasing if the number of iterations of N is even/odd. Moreover, this sequence of intervals is nested because of the fact that $\left[N E^{n}(1), N E^{n}(0)\right] \subseteq$ $[0,1]$ for each n, and the just-mentioned increasing/decreasing property.

These interval lengths $\rightarrow 0$. As proof we show it for the even-numbered intervals. If i is even, the i th interval has length $\|\left[N E^{n 1} \circ N E^{n 2} \circ \cdots \circ N E^{n i}(1)-\right.$ $\left.N E^{n 1} \circ N E^{n 2} \circ \cdots \circ N E^{n i}(0)\right] /[1-0] \mid$ which, by the mean value theorem, is $\left.\mid N E^{n 1} \circ N E^{n 2} \circ \ldots \circ N E^{n i}\right]^{\prime}\left(\xi_{i}\right) \mid$ for some ξ_{i} in [0, 1]. Grouping the composition by two's and using the chain rule gives

$$
\begin{aligned}
& \mid\left[N E^{n 1} \circ N E^{n 2}\right]^{\prime}\left(N E^{n 3} \circ \cdots \circ N E^{n i}\left(\xi_{i}\right)\right) \\
& \cdot\left[N E^{n 3} \circ N E^{n 4}\right]^{\prime}\left(N E^{n 5} \circ \cdots \circ N E^{n i}\left(\xi_{i}\right)\right) \cdot \cdots \\
& \cdots \cdot\left[N E^{n, i-1} \circ N E^{n i}\right]^{\prime}\left(\xi_{i}\right) \mid \\
& =\left|\left[N E^{n 1} \circ N E^{n 2}\right]^{\prime}\left(\xi_{2}\right)\right| \cdot\left|\left[N E^{n 3} \circ N E^{n 4}\right]^{\prime}\left(\xi_{4}\right)\right| \cdot \cdots \cdot\left|\left[N E^{n, i-1} \circ N E^{n i}\right]^{\prime}\left(\xi_{i}\right)\right|,
\end{aligned}
$$

where $\xi_{2}, \xi_{4}, \ldots, \xi_{i}$ are all >0. This product is $\leq\left(4 / e^{2}\right)^{i / 2}$ because the $i / 2$ factors can each be shown to be $\leq 4 / e^{2}$ as follows.

$$
\begin{aligned}
\left|\left[N E^{n}\right]^{\prime}(\xi)\right|= & \left|\left[-N E^{n} \cdot E^{n} \cdot E^{n-1} \cdot \cdots \cdot E^{1}\right](\xi)\right| \\
= & {\left[\left(E^{n} \cdot E^{n} / E^{n+1}\right) \cdot\left(E^{n-1} \cdot E^{n-1} / E^{n}\right) \cdot \cdots \cdot\left(E^{1} \cdot E^{1} / E^{2}\right) \cdot 1 / E^{1}\right](\xi) } \\
= & {\left[X^{2} / E^{1}\right]\left(E^{n}(\xi)\right) \cdot\left[X^{2} / E^{1}\right]\left(E^{n-1}(\xi)\right) \cdots \cdots \cdot\left[X^{2} / E^{1}\right](E(\xi)) \cdot N(\xi) } \\
& \leq\left(4 / e^{2}\right) \cdot\left(4 / e^{2}\right) \cdot \cdots \cdot\left(4 / e^{2}\right) \cdot 1=\left(4 / e^{2}\right)^{n}
\end{aligned}
$$

because $4 / e^{2}$ is the maximum x^{2} / e^{x} when $x \geq 0$. Therefore

$$
\begin{aligned}
\left|\left[N E^{n, k-1} \circ N E^{n, k}\right]^{\prime}\left(\xi_{k}\right)\right|= & \left|\left[N E^{n, k-1}\right]^{\prime}\left(N E^{n, k}\left(\xi_{k}\right)\right)\right| \cdot\left|\left[N E^{n, k}\right]^{\prime}\left(\xi_{k}\right)\right| \\
& \leq\left(4 / e^{2}\right)^{n, k-1} \cdot\left(4 / e^{2}\right)^{n, k} \leq 4 / e^{2}
\end{aligned}
$$

provided that $n_{k-1}+n_{k}>0$.
In case $n_{k-1}+n_{k}=0$, then $\left|\left[N E^{0} \circ N E^{0}\right]^{\prime}\left(\xi_{k}\right)\right|=\left|[N \circ N]^{\prime}\left(\xi_{k}\right)\right| \leq 1 / e<4 / e^{2}$, because $1 / e$ is the maximum of $[N \circ N]^{\prime}$ when $x \geq 0$. Since each of the $i / 2$ factors is $\leq 4 / e^{2}$, the i th interval has length $\leq\left(4 / e^{2}\right)^{i / 2}$, and this approaches 0 as $i \rightarrow \infty$.

Since the nested intervals close down on x, their end points $0,1, N E^{n 1}(0)$, $N E^{n 1}(1), N E^{n 1} \circ N E^{n 2}(0), \ldots$ form a subsequence of a unique base $e \inf \exp$ converging to x.

If $x>1$ then $x=E^{n}\left(x^{*}\right)$ for an x^{*} in $(0,1)$ and $x=E^{n}$ (inf \exp for x^{*}).

Theorem 2. Every base e inf exp converges except $E(e, e, e, \ldots)$.
Proof. If $E\left(a_{1}, a_{2}, \ldots\right)$ is of the form $E\left(a_{1}, \ldots, a_{n}, e^{-1}, e, e, e, \ldots\right)$, the limit is $E\left(a_{1}, \ldots, a_{n-1}, 0\right)$. If it is not of this form, certain terms of $E\left(a_{1}, a_{2}, \ldots\right)$ are
end points in a unique sequence of nested intervals closing down on one number, as was seen above.

Definition 1. Let m denote the function such that, for each real number x and base e inf exp representation $E\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ for e^{x},

$$
m(x)=\sum_{j=0}^{\infty}\left[2^{-j} \prod_{i=0}^{i} \ln \left(a_{i}\right)\right]
$$

For example, if e^{x} is $E\left(e, e, e^{-1}, e, e^{-1}, e, e^{-1}, \ldots\right)$ then $m(x)=$ $1+2^{-1}-2^{-2}-2^{-3}+2^{-4}+2^{-5}-2^{-6}-\ldots$, or $6 / 5$. If x is a fin exp, e^{x} has two representations, $E\left(a_{0}, \ldots, a_{k}, e, e^{-1}, e, e, e, \ldots\right)$ and $E\left(a_{0}, \ldots, a_{k}, e^{-1}, e^{-1}, e, e\right.$, e, \ldots), but this causes no ambiguity because $\sum_{j=k+1}^{\infty}\left[2^{-i} \prod_{i=0}^{i} \ln \left(a_{i}\right)\right]$ is zero in both cases.

Theorem 3. m has domain $(-\infty, \infty)$, range ($-2,2$), and is increasing and continuous.

Proof. That m has domain $(-\infty, \infty)$ is clear from Theorem 1 and Def. 1. m has range $(-2,2)$ because this is the set of all sums of series of the form $S_{0}+S_{1} / 2+S_{2} / 4+S_{3} / 8+\cdots$ where each S_{i} is ± 1 and not all S_{i} are alike. Each such series determines an $a_{0}, a_{1}, a_{2}, \ldots$ (let $\prod_{i=0}^{i} \ln a_{i}=S_{j}$) for a base $e \inf \exp$ which, by Theorem 2 , converges. ± 2 is not in m 's range because $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ would be $e^{ \pm 1}, e, e, e, \ldots$ and x would be the divergent $\pm E(e, e, e, \ldots)$.

Now we show that m is increasing. Suppose $a<b$ and $e^{a}=E\left(a_{0}, a_{1}, \ldots\right)$ and $e^{b}=E\left(b_{0}, b_{1}, \ldots\right)$. Then $a_{i} \neq b_{i}$ for some i, otherwise $E\left(a_{0}, a_{1}, \ldots\right)$ would have two limits: e^{a} and e^{b}. Let k denote the lowest such i. Now $E\left(a_{0}, \ldots, a_{k-1}, t\right)$ is a function of t which is increasing/decreasing if the number of iterations of e^{-1} is even/odd. Let p denote this number of iterations. When p is even or zero we have $a_{k}=e^{-1}, \quad b_{k}=e$, and $E\left(a_{0}, \ldots, a_{k-1}, e^{-1}, a_{k+1}, \ldots\right)=e^{a} \leq E\left(a_{0}, \ldots\right.$, $\left.a_{k-1}, 1\right) \leq e^{b}=E\left(a_{0}, \ldots, a_{k-1}, e, b_{k+1}, \ldots\right)$, because the alternative is that $a_{k}=e, b_{k}=e^{-1}, e^{a} \geq e^{b}$, and $a \nless b$. Therefore

$$
\begin{aligned}
& m(a)=\left[\sum_{j=0}^{k-1}\left(2^{-j} \prod_{i=0}^{j} \ln a_{i}\right)\right]-2^{-k}+\sum_{j=k+1}^{\infty}\left(2^{-j} \prod_{i=0}^{j} \ln a_{i}\right) \\
&<\left[\sum_{j=0}^{k-1}\left(2^{-j} \prod_{i=0}^{j} \ln a_{i}\right)\right]+2^{-k}+\sum_{j=k+1}^{\infty}\left(2^{-j} \prod_{i=0}^{j} \ln b_{i}\right)=m(b)
\end{aligned}
$$

Equality is impossible because we could not have the equations $\sum_{j=k+1}^{\infty}\left(2^{-i} \prod_{i=0}^{j} \ln a_{i}\right)=2^{-k}$ and $\sum_{j=k+1}^{\infty}\left(2^{-j} \prod_{i=0}^{i} \ln b_{i}\right)=-2^{-k}$ both true; it would mean that $\left(a_{k+1}, a_{k+2}, \ldots\right)=\left(e^{-1}, e, e, e, \ldots\right)$ and $\left(b_{k+1}, b_{k+2}, \ldots\right)=$ $\left(e^{-1}, e, e, e, \ldots\right.$) are both true and $e^{a}=e^{b}$. If p is odd then $a_{k}=e$ and $b_{k}=e^{-1}$, and $m(a)<m(b)$ can be shown by modifying the above argument to suit the odd case. m is continuous because it increases and maps $R \times R$ onto ($-2,2$).

Theorem 4. If $x \in\{$ fin $\exp \}$ then $m^{\prime}(x)=\infty$; this set is dense in R.
Proof. If x is a fin \exp, there is a function $E\left(a_{1}, \ldots, a_{k}, t\right)$ such that $x=E\left(a_{1}, \ldots, a_{k}, 0\right)$. Denote this function by $A_{k}(t)$. For $m^{\prime}(x)$ to exist it is necessary that

$$
\begin{aligned}
m^{\prime}(x) & =\operatorname{limit}_{n \rightarrow \infty}\left[m\left(A_{k} \circ N E^{n}(0)\right)-m\left(A_{k}(0)\right)\right] /\left[A_{k} \circ N E^{n}(0)-A_{k}(0)\right] \\
& =\operatorname{limit}_{n \rightarrow \infty} \pm 2^{-k-n} /\left[A_{k} \circ N E^{n}(0)-A_{k}(0)\right] \\
& =\operatorname{limit}_{n \rightarrow \infty}\left[\pm e^{(-k-n) \ln 2} / N E^{n}(0)\right] \cdot\left[N E^{n}(0)-0\right] /\left[A_{k} \circ N E^{n}(0)-A_{k}(0)\right] \\
& =\operatorname{limit}_{n \rightarrow \infty} \pm e^{-k} \cdot \exp \left(E^{n}(0)-n \cdot \ln 2\right) \cdot 1 / A_{k}^{\prime}(0)= \pm e^{-k} \exp (\infty) / A_{k}^{\prime}(0)=\infty .
\end{aligned}
$$

Lastly, $\{f \operatorname{in} \exp \}$ is dense in R because every $x \in R$ is the limit of a sequence of fin exps: its inf exp representation.

Theorem 5.
(i) $m(-x)=-m(x)$,
(ii) $m(1 / x)=-m(x) \pm 2$ if x is positive/negative,
(iii) $m\left(E^{n}(x)\right)=2^{-n} m(x)+2-2^{-n+1}$, and
(iv) $m\left(\ln ^{n}(x)\right)=2^{n} m(x)+2-2^{n+1}$.

Proof. (i) If $e^{x}=E\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ then $e^{-x}=E\left(a_{0}^{-1}, a_{1}, a_{2}, \ldots\right)$ and $m(-x)$ is obtained by reversing all signs in the series for $m(x)$.
(ii) $e^{1 / x}=E\left(a_{0}, a_{1}^{-1}, a_{2}, \ldots\right)$. Adding the equations

$$
m(x)=\ln a_{0}+\sum_{j=1}^{\infty}\left[2^{-i} \prod_{i=0}^{j} \ln a_{i}\right]
$$

and

$$
m(1 / x)=\ln a_{0}-\sum_{j=1}^{\infty}\left[2^{-i} \prod_{i=0}^{j} \ln a_{i}\right]
$$

gives $m(x)+m(1 / x)=2 \cdot \ln a_{0}$. But $\ln a_{0}= \pm 1$ if $x>0 / x<0$.
(iii) $\exp \left(E^{n}(x)\right)=E\left(e, e, \ldots, e, a_{0}, a_{1}, a_{2}, \ldots\right)$, and

$$
\begin{aligned}
& m\left(E^{n}(x)\right)=1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-1}}+\sum_{i=0}^{\infty}\left[2^{-j-n} \prod_{i=0}^{i} \ln a_{i}\right] \\
&=\left[1-2^{-n}\right] /\left[1-\frac{1}{2}\right]+2^{-n} \sum_{j=0}^{\infty}\left[2^{-i} \prod_{i=0}^{j} \ln a_{i}\right]=2-2^{-n+1}+2^{-n} m(x)
\end{aligned}
$$

(iv) We let $E^{n}(x)=y$ and $x=\ln ^{n} y$ and substitute into (iii).

Definition 2. Let M denote the function such that $M(x, y)=(m(x), m(y))$ for each ordered real-number pair (x, y).

Then M is a $1-1$ mapping of $R \times R$ onto $(-2,2) \times(-2,2)$. For each planar graph G let G_{M} denote its M image in $(-2,2) \times(-2,2)$. Then $M(x, G(x))$ is both $\left(m(x), G_{M}(m(x))\right.$) and $(m(x), m(G(x)))$; so $G_{M}(m(x))=m(G(x))$. The
planar graph $\ln ^{n}$ has an M image which is that part of the line $Y=$ $2^{n} X+2-2^{n+1} \quad$ lying in $(-2,2) \times(-2,2)$, because $\quad M\left(w, \ln ^{n} w\right)=$ ($m(w), 2^{n} m(w)+2-2^{n+1}$) by Theorem 5-iv. Similarly, $X,-X, 1 / X$, and E^{n} have M images on the lines $Y=X, Y=-X, Y=-X \pm 2$ if $x>0 / x<0$, and $Y=2^{-n} X+2-2^{-n+1}$, respectively.

Theorem 6. If $G_{1}, G_{2}, \ldots, G_{p}$ is any finite sequence of functions selected, with repetition allowed, from the set $\left\{X,-X, 1 / X, E^{1}, \ln , E^{2}, \ln ^{2}, E^{3}, \ln ^{3}, \ldots\right\}$, then the composition function $G_{1} \circ G_{2} \circ \cdots \circ G_{p}$, if it exists, has an M image which is either a straight line or a finite set of linear intervals in the space $(-2,2) \times$ $(-2,2)$.

Proof. If F and G are any two planar graphs whose M images are straight lines, say $a_{f} X+b_{f}$ and $a_{g} X+b_{g}$, and if $F \circ G$ exists, then

$$
\begin{aligned}
M(x, F \circ G(x)) & =(m(x), m(F \circ G(x)))=\left(m(x), F_{M}(m(G(x)))\right) \\
& =\left(m(x), F_{M} \circ G_{M}(m(x))\right)=\left(m(x),\left[a_{f} X+b_{f}\right] \circ\left[a_{\mathrm{g}} X+b_{\mathrm{g}}\right](m(x))\right) \\
& =\left(m(x), a_{f} a_{\mathrm{g}} m(x)+a_{f} b_{\mathrm{g}}+b_{f}\right) .
\end{aligned}
$$

So $[F \circ G]_{M}$ lies on the line $a_{f} a_{g} X+a_{f} b_{g}+b_{f}$. By induction, any finite multiplecomposition $F \circ G \circ H \circ \cdots$ of members of $\left\{X,-X, 1 / X, E^{1}, \ln , E^{2}, \ln ^{2}, \ldots\right\}$ has an M image which is linear, or linear intervals.

Using $\ln ^{-n}$ and $\ln ^{0}$ for E^{n} and X, Theorem 5 suggests a generalization of $\ln ^{n}$.
Definition 3. If $t \in R$ let $\ln ^{t}$ mean the planar graph such that $m\left(\ln ^{t}(x)\right)=$ $2^{t} m(x)+2-2^{t+1}$ for each $x \in R$ such that $m(x)>2-2^{-t+2}$.

Then $\ln ^{t}$ means the graph whose M image is that subinterval of the straight line with slope 2^{t} and y-intercept $2-2^{t+1}$ which lies within the space $(-2,2) \times$ $(-2,2)$.

Example. Evaluating $\ln ^{3 / 2}(e), \quad m\left(\ln ^{3 / 2}(e)\right)=2^{3 / 2} m(e)+2-2^{1+3 / 2}=(\sqrt{ } 8)\left(\frac{3}{2}\right)+$ $2-\sqrt{ } 32=0.5858$. Therefore $\ln ^{3 / 2}(e)=m^{-1}(0.5858)$.

Tables of the m function are available from the author.
Theorem 7. If t and u are real numbers then $\ln ^{t} \circ \ln ^{u}=\ln ^{t+u}$.
Proof. If $x \in R$ and $\ln ^{t} \circ \ln ^{u}(x)$ exists, then

$$
\begin{aligned}
m\left(\ln ^{t} \circ \ln ^{u}(x)\right) & =\left[\ln ^{t}\right]_{M}\left(m\left(\ln ^{u}(x)\right)\right)=\left[\ln ^{t}\right]_{M}{ }^{\circ}\left[\ln ^{u}\right]_{M}(m(x)) \\
& =\left[2^{t} X+2-2^{t+1}\right] \circ\left[2^{u} X+2-2^{u+1}\right](m(x)) \\
& =2^{t+u} m(x)+2-2^{t+u+1}=m\left(\ln ^{t+u}(x)\right) .
\end{aligned}
$$

References

1. D. F. Barrow, Infinite exponentials, Amer. Math. Monthly 43 (1936), 150-160.
2. M. B. Prestrud, Hierarchic algebra, Notices Amer. Math. Soc. 8 (1961), 270.
3. Donald L. Shell, On the convergence of infinite exponentials, Proc. Amer. Math. Soc. 13 (1962), 678-681.
4. W. J. Thron, Convergence of infinite exponentials with complex elements, Proc. Amer. Math. Soc. 8 (1957), 1040-1043.

Department of Mathematics
North Texas State University
Denton, Texas 76203

[^0]: Subject Classifications: Primary; 40A99 sequences, series, summability-convergence and divergence of infinite limiting processes-miscellaneous. Secondary; 41A30 Approximations and expansions-approximations by other special function classes.

 Key words and phrases: Infinite exponential representation, Base e infinite exponential, Repeated-composition function, The m function, The M function, Planar graphs' intersection points, Ordered commutative group of $\ln ^{t}$ graphs.

 Received by the editors July 25, 1975 and, in revised form, December 1, 1977 and January 3, 1979.

