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Abstract

The Jinying gold deposit is located in southern Jilin Province in northeast China and is
representative of the large Early Cretaceous gold deposits in this area. To better understand
ore genesis of this deposit, a multi-isotope integrated analysis of U–Pb–Rb–Sr–He–Ar–S
has been carried out. Laser ablation inductively coupled plasma–mass spectrometry
(LA–ICP–MS) dating of zircons from the granodiorite porphyry and dioritic porphyrite in
the study area yields ages of 172.1 ± 1.2 Ma and 122.5 ± 0.8 Ma, suggesting that
corresponding intrusion occurred in the Middle Jurassic and the Early Cretaceous. Rb–Sr
dating of the pyrite yields an isochron age of 120 ± 3Ma, suggesting that gold mineralization
occurred in the Early Cretaceous. The fluid inclusions in pyrite yield 3He/4He ratios
clustered within a small range from 0.08 to 0.13 Ra, 40Ar/36Ar ratios between 331.6 and
351.3, and mantle He in the range of 1.0–1.6%, indicating that the ore-forming fluids
originated from a mixed crustal and mantle source. The in situ S isotopic values of pyrite
vary betweenþ 0.1 ‰ andþ 2.8 ‰, suggesting that the ore-related sulphur came from the
deep magmatic source. Combined with the geological history of the study area, it can be
concluded that the gold mineralization was possibly related to the extensional setting
associated with the rollback of the Palaeo-Pacific Plate.

1. Introduction

Southern Jilin Province, located in the northeastern margin of the North China Craton
(NCC, Fig. 1a), is an important polymetallic metallogenic district that hosts numerous
Ni, Fe, Cu and Au deposits (Fig. 1b), and over 20 large-, medium- and small-scale Au
deposits have been found in this area. For example, the world-famous Jiapigou gold district
contains proven gold reserves of 180 tons or more (Sun et al. 2013; Deng et al. 2014; Zhang
et al. 2021; Chen et al. 2022). With advanced exploration, several gold deposits have been
discovered in southern Jilin Province, including the Songjianghe (Zhang et al. 2019),
Toudaoliuhe (Han et al. 2020), Laosandui and Jinying (known as Banmiaozi) gold deposits.
Thus, this area shows great potential for ore prospecting and has been recognized as an
important gold province in China.

Jinying is a large-scale gold deposit and currently contains 34 t of gold (Chen, 2019). Previous
researches have been focused on the geology (Liu et al. 2009; Su & Zang 2010; Xing et al. 2012;
Li et al. 2015), whole-rock geochemistry (Zhang, 2015; Chen, 2019), ore-forming fluid (Zhang,
2015;Men et al. 2016; Chen, 2019) and geochronology (Zhang, 2015; Chen, 2019). However, the
ore genesis andmineralization time at Jinying deposit remain controversial. For example, Zhang
(2015) argued that Au mineralization occurred at 170 Ma based on the zircon U–Pb age of
granodiorite porphyry, as well as the zircon U–Pb age of 131 Ma for dioritic porphyrite (Chen,
2019). The deposit formed during the subduction of the Palaeo-Pacific Plate (Zhang, 2015) or in
the following extensional setting (Chen, 2019). In addition, the ore-forming fluids originated
from amixture of magmatic water andmeteoric water (Men et al. 2016) or magmatic water with
meteoric water and formation water (Chen, 2019).

In view of the above scientific problems, this work carried out sulphide Rb–Sr and LA–ICP–
MS zircon U–Pb geochronological analyses and He–Ar–S isotopic analyses of the Jinying gold
deposit. We aim to determine the timing of gold mineralization, tectonic setting and sources of
ore-forming materials and fluids, which have important implications for the genesis of the
Jinying gold deposit.
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2. Geological setting

The study area is situated between the Liaonan-Nangrim Block
and Longgang Block separated by the Palaeoproterozoic Liao-Ji
belt (Zhao et al. 2005; Pei et al. 2011, Fig. 1a). The study area
underwent multistage cratonization, Palaeoproterozoic rift-
subduction-collisional events and late Palaeoproterozoic-
Neoproterozoic multistage rifting events that record complicated
geotectonic processes in the Precambrian (Zhai, 2013) and final
closure of the Palaeo-Asian Ocean in the late Palaeozoic-early

Mesozoic as well as overprinted and modified by Palaeo-Pacific
Plate tectonic regimes during the Mesozoic–Cenozoic (Sengör
et al. 1993; Sengör & Natal’in, 1996; Wu et al. 2011).

The exposed oldest strata in the study area are Archaean TTG
rocks, and supracrustal rocks consist of amphibolite, plagiog-
neiss, granulite and magnetite-quartzite. The Palaeoproterozoic
Laoling Group consists of metamorphic conglomerate, quartzite,
phyllite, schist and marble. The Neoproterozoic Qingbaikouan
System mainly consists of feldspathic quartz sandstone, arkose

Figure 1. (Colour online) (a) Tectonic map of the Proterozoic Liao-Ji belt, northeastern margin of the North China Craton (Zhao et al. 2005); (b) geological map of southern Jilin
Province showing the locations of major deposits (Chu et al. 2021).
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and conglomerate. The Jurassic Linzitou and Shiren Formations
consist of andesite, andesitic tuff, rhyolite and glutenite. The
Cretaceous Xiaonangou Formation sediments consist of con-
glomerate and glutenite (Fig. 1b). The Quaternary sediments
consist of clay and gravel (JBGMR, 1988). The fault system in the
study area is dominated by the NE-trending Benxi-Tonghua and
Yalujiang faults (Chu et al. 2021). Igneous rocks in the area
comprise the Late Palaeozoic-Early Mesozoic mafic complex,
alkali-granite and associated mafic rocks, and the Mesozoic
granitic complex (Zhang, 2002). Mesozoic magmatic activity in
the study area can be subdivided into three stages: the Late
Triassic, the Early-Middle Jurassic and Cretaceous (Chu et al.
2021). Multiple stages of magmatic activity and geotectonic
processes formed abundant Au deposits in this area (Sun et al.
2006, 2023; Han et al. 2022).

3. Deposit geology

Proterozoic sediments and metasedimentary rocks are the main
rocks in the Jinying gold deposit, and they were subdivided into
five units: Palaeoproterozoic Zhenzhumen Formation and
Neoproterozoic Diaoyutai, Nanfen, Qiaotou and Wanlong
Formations (Fig. 2). The Zhenzhumen Formation is composed
of dolomite marble and quartz-bearing dolomite marble. The
Diaoyutai Formation occurs in the central and northwest parts of
the deposit and is mainly composed of quartz sandstone and
hematite-bearing quartz sandstone. The Nanfen Formation is
composed of siltstone, micritic limestone and shale. The Qiaotou
Formation occurs in the southeastern part of the deposit and is
mainly composed of quartz sandstone and siltstone. The Wanlong
Formation is mainly exposed in the southeast of the deposit and

Figure 2. (Colour online) Geological map of the Jinying gold deposit.
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consists mainly of laminated limestone. The structures of the
Jinying deposit are dominated by NE- and NW-trending faults,
and the NE-trending faults, which are closely related to
mineralization. Intrusive rocks in the mining area include
granodiorite porphyry and dioritic porphyrite. Granodiorite
porphyry is exposed in the south part of the study area (Fig. 2),
and dioritic porphyrite is exposed in the northeast part of the study
area, as a small-scale rock mass (Fig. 2), but altered dioritic
porphyrite can be seen at depth of drill holes 7, 10, 14, 16 and 30
(Fig. 3, Chen et al. 2020). Nine orebodies have been discovered in
this deposit, and they mainly occur in the silicified breccia zone
near the unconformity between the quartz sandstone and the
silicified dolomitic marble (Fig. 4). They are controlled spatially by
faults of No. F102 and F100 and therefore occur in a bedded shape,
with dip SE at 48°–61°, and an average gold grade of 2.33–13.66 g/t
(Chen, 2019). The ore minerals comprise native gold (Fig. 5a–d),
pyrite (Fig. 5e), marcasite (Fig. 5e), chalcopyrite (Fig. 5f, g),
arsenopyrite, galena, sphalerite, hematite (Fig. 5c, d). Quartz, barite
and sericite constitute the gangue mineral association. The
alteration types are characterized by silicification, baritization,
sericitization, kaolinization and carbonation. The hydrothermal
processes can be divided into four paragenetic stages: quartz-pyrite
stage, quartz-gold-pyrite stage, barite-chalcedony-gold-hematite
stage and pyrite-marcasite stage (Xing et al. 2012).

4. Samples and analytical methods

4.a. Sampling

For zircon U–Pb dating, one granodiorite porphyry sample was
collected from an outcrop in the southern part of the deposit, and
one dioritic porphyrite sample was collected from tunnel 160. For

the He–Ar isotope analysis, five pyrite samples were collected from
tunnel 160. Sixteen pyrite samples were collected from tunnel 365,
of which nine for Rb–Sr isotope analyses and seven for in situ
sulphur isotope analyses.

Granodiorite porphyry is grey in colour, porphyritic texture
and massive structure, and the phenocrysts consist of plagioclase,
quartz, biotite and minor K-feldspar and hornblende. The
plagioclase crystals are platy with lengths varying from 0.5 to
3mm and are characterized by sericitization. The K-feldspar grains
anhedral with lengths varying from 1 to 2 mm. The quartz grains
show anhedral shape with lengths varying from 0.5 to 8 mm. The
matrix is composed of quartz, feldspar and biotite, with minor
accessory magnetite, zircon and apatite (Fig. 5h). Dioritic
porphyrite is grey, porphyritic texture, massive structure, and
the phenocrysts are mainly plagioclase, quartz, biotite and
hornblende. The plagioclase crystals are platy with lengths varying
from 1 to 10mm and are characterized by sericitization. The quartz
grains are xenomorphic with lengths varying from 0.5 to 5 mm.
The biotite is platy with lengths varying from 0.5 to 2 mm and is
characterized by chloritization. The hornblende crystals are
rhombic with lengths varying from 0.5 to 5 mm. The matrix is
composed of quartz, plagioclase and biotite, with minor accessory
magnetite, zircon and apatite (Fig. 5i).

4.b. Analytical methods

4.b.1. Zircon U–Pb dating
Zircon grains were separated using conventional heavy liquid and
magnetic techniques, followed by hand selection under a binocular
microscope. U–Pb isotopic analyses were performed using an
Agilent 7500 mass spectrometer connected to a 193 nm ArF
excimer laser ablation system at the MNR Key Laboratory of

Figure 3. (Colour online) Geological sketchmap
of the Jinying gold deposit (Chen et al. 2020).
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Metallogeny and Mineral Assessment, Institute of Mineral
Resources, Chinese Academy of Geological Sciences (CAGS).
Detailed operating conditions for the laser ablation system, the
LA–ICP–MS instrument and data reduction were described by
Hou et al. (2009). Errors in individual analyses by LA–ICP–MS
are provided at the 1σ level, while errors in pooled ages are noted
at the 95% confidence level. Concordia diagrams and weighted
mean calculations were made using the Isoplot program (Ludwig,
2003).

4.b.2. Rb–Sr isotope analysis
The samples were crushed to a 40–80 mesh size and hand-selected
under a binocular microscope, yielding samples of >99% purity.
Sulphide grains were crushed to a <200 mesh size before analysis
and thenwashed in an ultrasonic bath and dried. Rb and Sr isotopic
analyses were performed on a VG-354 mass spectrometer with five
collectors at the Nantai Geological Testing Institute, Nanjing,
China. The analytical procedures were consistent with those
described by Wang et al. (2007a, 2007b). During analysis, the
reproducibility and accuracy of Sr isotope measurements were
periodically checked by running the NBS987 standard reference
material and laboratory standard La Jolla with a mean 87Sr/86Sr
value of 0.710342 ± 0.000040 (certified value: 0.710340 ±
0.000260) based on the standard 86Sr/88Sr= 0.1194. The accuracy
of the Rb/Sr ratios was better than 1%.

4.b.3. He–Ar isotope analysis
He–Ar isotopic analyses of five pyrite samples were conducted
using a Helix SFT noble gas isotope mass spectrometer at theMNR
Key Laboratory of Metallogeny and Mineral Assessment, Institute
of Mineral Resources, CAGS. The measurement procedure

consisted of crushing, purification and mass spectrometry. All
weighed pyrite samples were measured under high vacuum
conditions for analysis, with n × 10−9 mbar in the crush and
purification system and n × 10−10 mbar in the mass spectrometer
system. The details can be found in Liu et al. (2018).

4.b.4. In situ S isotope
Seven pyrite samples (BMZ6, BMZ7, BMZ8 BMZ9, BMZ10,
BMZ13, BMZ14) for in situ sulphur isotope analyses were analysed
using a laser ablation coupled multicollector inductively coupled
plasma mass spectrometer (LA-MC-ICP–MS) at the MNR Key
Laboratory of Metallogeny and Mineral Assessment, Institute of
Mineral Resources, CAGS. The laser fluence was 5.0 J/cm2, with a
frequency of 4 Hz and spot diameter of 40–50 μm. The ablation
method consisted of single-point ablation with a high-purity
carrier gas. A standard-sample bracketing method (SSB) was
employed to correct for instrumental mass fractionation, cali-
brated via a Balmat pyrite standard (Crowe &Vaughan, 1996), and
the matrix effect was no more than 0.5‰.

5. Results

5.a. LA–ICP–MS zircon U–Pb ages

The zircons are euhedral or subhedral and show oscillatory zoning
(Fig. 6a, b). The results of LA–ICP–MS zircon U–Pb dating are
presented in Table 1. The zircon grains collected from granodiorite
porphyry (BMZ-2) yield 206Pb/238U ages of 170.1–173.9 Ma and
yield a zircon U–Pb concordia age and weighted age of 171.9 ±
0.5 Ma and 172.1 ± 1.2 Ma, respectively (Fig. 7a, b). The zircon
grains collected from dioritic porphyrite (BMZ-5) yield 206Pb/238U
ages of 120.1–2478 Ma (Fig. 7c). A total of 15 zircon grains of

Figure 4. (Colour online) Cross-section showing the geology
along exploration Line 34.
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Figure 5. (Colour online) Photomicrographs of the Jinying gold deposit. (a, b) Gold coexisting with pyrite (reflected light); (c, d) gold coexisting with hematite (c-reflected light,
d-BSE); (e) pyrite coexisting with marcasite (reflected light); (f) chalcopyrite coexisting with pyrite (reflected light); (g) chalcopyrite mineralization (reflected light); (h) granodiorite
porphyry (cross-polarized light); (i) dioritic porphyrite (cross-polarized light). Hem = hematite; Au = gold; Py = pyrite; Mrc = marcasite; Ccp = chalcopyrite;
Bt = biotite; Qtz = quartz; Hb = hornblende; Pl= plagioclase.

Figure 6. Representative CL images of analysed zircons extracted from granodiorite porphyry and dioritic porphyrite in the Jinying gold deposit.
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Table 1. LA-ICP–MS zircon U–Pb dating results of intrusions in the Jinying gold deposit

Sample No. 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

BMZ-2

BMZ-2-1 0.04973 0.00324 0.18471 0.01179 0.02695 0.00036 189.0 147.2 172.1 10.1 171.4 2.3

BMZ-2-2 0.04977 0.00393 0.18561 0.01385 0.02717 0.00065 183.4 183.3 172.9 11.9 172.8 4.1

BMZ-2-3 0.05065 0.00587 0.18654 0.02206 0.02720 0.00089 233.4 238.9 173.7 18.9 173.0 5.6

BMZ-2-4 0.05083 0.00307 0.18677 0.01083 0.02732 0.00045 231.6 140.7 173.9 9.3 173.8 2.8

BMZ-2-5 0.04978 0.00195 0.18618 0.00716 0.02735 0.00028 183.4 86.1 173.4 6.1 173.9 1.8

BMZ-2-6 0.05074 0.00459 0.18357 0.01549 0.02678 0.00061 227.8 213.9 171.1 13.3 170.4 3.8

BMZ-2-7 0.05133 0.00336 0.18550 0.01128 0.02710 0.00052 253.8 150.0 172.8 9.7 172.4 3.3

BMZ-2-8 0.05012 0.00218 0.18277 0.00805 0.02674 0.00033 211.2 100.0 170.4 6.9 170.1 2.0

BMZ-2-9 0.04977 0.00225 0.18511 0.00856 0.02707 0.00033 183.4 105.5 172.4 7.3 172.2 2.1

BMZ-2-10 0.04795 0.00532 0.18350 0.02093 0.02698 0.00055 98.2 240.7 171.1 18.0 171.6 3.5

BMZ-2-11 0.04666 0.00695 0.18437 0.02528 0.02691 0.00042 31.6 322.2 171.8 21.7 171.2 2.6

BMZ-2-12 0.04858 0.00542 0.18313 0.02014 0.02689 0.00039 127.9 244.4 170.8 17.3 171.1 2.5

BMZ-2-13 0.05022 0.00284 0.18508 0.01068 0.02677 0.00043 205.6 126.8 172.4 9.2 170.3 2.7

BMZ-2-14 0.04996 0.00159 0.18659 0.00560 0.02726 0.00026 194.5 74.1 173.7 4.8 173.4 1.6

BMZ-2-15 0.04931 0.00183 0.18441 0.00718 0.02703 0.00031 161.2 91.7 171.9 6.2 171.9 1.9

BMZ-2-16 0.05082 0.00350 0.18451 0.01194 0.02675 0.00053 231.6 159.2 171.9 10.2 170.2 3.3

BMZ-2-17 0.05078 0.00520 0.18712 0.01730 0.02690 0.00072 231.6 218.5 174.2 14.8 171.1 4.5

BMZ-2-18 0.05038 0.00287 0.18519 0.01024 0.02711 0.00039 213.0 131.5 172.5 8.8 172.4 2.5

BMZ-5

BMZ-5-1 0.04948 0.00345 0.12981 0.00778 0.01880 0.00054 168.6 155.5 123.9 7.0 120.1 3.4

BMZ-5-2 0.15902 0.00396 9.92997 0.12566 0.45744 0.01623 2456 42 2428 12 2428 72

BMZ-5-3 0.04815 0.00173 0.12877 0.00468 0.01937 0.00022 105.6 85.2 123.0 4.2 123.7 1.4

BMZ-5-4 0.04879 0.00049 0.12624 0.00135 0.01880 0.00016 200.1 19.4 120.7 1.2 120.1 1.0

BMZ-5-5 0.16590 0.00186 9.72750 0.77906 0.45217 0.04361 2517 19 2409 74 2405 194

BMZ-5-6 0.04855 0.00262 0.12553 0.00668 0.01886 0.00024 127.9 127.8 120.1 6.0 120.5 1.5

BMZ-5-7 0.04815 0.00233 0.13085 0.00886 0.01958 0.00078 105.6 111.1 124.9 8.0 125.0 4.9

BMZ-5-8 0.04824 0.00054 0.12881 0.00162 0.01937 0.00018 109.4 58.3 123.0 1.5 123.7 1.1

BMZ-5-9 0.04909 0.00161 0.12958 0.00423 0.01931 0.00039 153.8 77.8 123.7 3.8 123.3 2.4

BMZ-5-10 0.04889 0.00200 0.12952 0.00537 0.01926 0.00022 142.7 96.3 123.7 4.8 123.0 1.4

BMZ-5-11 0.04838 0.00161 0.13022 0.00434 0.01947 0.00024 116.8 77.8 124.3 3.9 124.3 1.5

(Continued)

G
enesis

of
the

Jinying
gold

deposit,southern
Jilin

Province,N
E
China

1767

https://doi.org/10.1017/S0016756823000705 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0016756823000705


dioritic porphyrite yield 206Pb/238U ages of 120.1–125.0 Ma and
yield a zircon U–Pb concordia age and weighted age of 122.5 ±
0.4 Ma and 122.5 ± 0.8 Ma, respectively (Fig. 7d). The remaining
zircon grains yields ages of 2141–2478 Ma; they are interpreted as
inherited ones.

5.b. Rb–Sr dating

The Rb and Sr concentrations for nine pyrite samples from the
Jinying gold deposit are listed in Table 2. The Rb contents of pyrite
range from 1.268 to 3.519 ppm, and the Sr contents ranging from
1.249 to 104.5 ppm. The 87Rb/86Sr values range from 0.103 to 2.963.
Nine data points yield an imprecise age of 123 ± 29 Ma with an
initial 87Sr/86Sr ratio of 0.7109 ± 0.0007 (n= 9, MSWD= 78;
Fig. 8a), which is considered unreliable. By removing three discrete
points (BM-2, BM-3, and BM-9), the remaining data points yield a
more precise date of 120 ± 3 Ma with an initial 87Sr/86Sr ratio of
0.7108 ± 0.00007 (MSWD = 1.4; Fig. 8b).

5.c. He–Ar isotopes

The He–Ar isotopic results of pyrite samples are presented in
Table 3. The concentrations of 4He and 3He are (27.20–
41.66) × 10−7 cm3STP/g and (41.20–65.91) × 10−14 cm3STP/g,
respectively, and 40Ar ranges from 189.32 × 10−8 cm3STP/g to
336.40 × 10−8 cm3STP/g. The 40Ar/36Ar ratios are 331.6–351.3.
The 3He/4He ratios vary from 1.17 × 10−7 to 1.87 × 10−7. The
R/Ra ratios of the ore-forming fluid from the pyrite samples are
0.08–0.13.

5.d. In situ S isotope compositions

The in situ S isotopic compositions of pyrite are listed in Table 4.
The δ34S values of pyrite have a relatively narrow range fromþ 0.1
‰ toþ 2.8 ‰ (Fig. 9a, b) and an average of 1.6 ‰ (n= 24).

6. Discussion

6.a. Timing of gold mineralization

The volume of dioritic porphyrite increases towards deep levels,
suggesting a considerable flux of dioritic magmas (Chen et al.
2020). At the No. 7 drill hole, the dioritic porphyrite is featured by
sericitization and kaolinization at a depth of 51 metres. On either
side in contact with the gold-bearing silicified breccia, the
mineralized alteration shows a gradual trend of evolution from
strong to weak. Moreover, mineralized altered dioritic porphyrite
breccia was found in drill holes 10, 14, 16 and 30. All these
ideological facts show that the genesis of the gold deposit is closely
related to the dioritic porphyrite. In this study, the Rb–Sr age of
120 ± 3 Ma for pyrite associated with Au mineralization in the ore
vein provides evidence of an Early Cretaceous Au mineralization
age. Zircon U–Pb dating indicates that the crystallization age of the
dioritic porphyrite was 122.5 ± 0.8 Ma, whereas the granodiorite
porphyry yielded a relatively older age of 172.1 ± 1.2 Ma. These
ages indicate that dioritic porphyrite and gold mineralization were
largely synchronous and that mineralization and magmatism
occurred in the Early Cretaceous. The age interpreted for the
Jinying deposit is similar to that of many other magmatic-
hydrothermal ore deposits in eastern Liaoning and southern Jilin.
These include theWulong Au deposit (119 Ma, Zhang et al. 2020),
Xinfang Au deposit (121 Ma, Zhang et al. 2022a), Changfagou Cu
(Au) deposit (116 Ma; Zhang et al. 2017) and Tianhexing Cu (Mo)
deposit (115 Ma; Zhang et al. 2015). The Jinying Au deposit is thusTa
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representative of an important Early Cretaceous gold mineraliza-
tion event in southern Jilin Province.

6.b. Source of sulphur and ore-forming fluids

The δ34S values of pyrite at Jinying show a narrow range from
þ 0.1‰ toþ 2.8‰ (mean= 1.6‰, n= 24), which are consistent
with those from the typical magmatic-hydrothermal deposit
worldwide (0 ± 3 ‰, Ohmoto & Rye 1979) and from magmatic-
hydrothermal Au deposits in the Liaodong Peninsula (e.g.Wulong,
Liu et al. 2019, Zhang et al. 2020; Xinfang, Zhang et al. 2022a).
These data indicate that the sulphur of the Jinying deposit was
derived from a magmatic source.

It is generally recognized that there are three potential sources
of He and Ar isotopes (Turner et al. 1993; Stuart et al. 1995;
Burnard et al. 1999): (1) air-saturated water (ASW, e.g. meteoric
water or seawater) with a 3He/4He ratio of 1Ra=1.4 × 10−6 and a
40Ar/36Ar ratio of 295.5; (2) mantle-derived fluids with 3He/4He
ratios generally of 6–9 Ra and 40Ar/36Ar >40000; and (3) crust-
derived fluids with 3He/4He ratios of 0.01 to 0.05 Ra and 40Ar/36Ar
>45000. The 3He/4He ratios of the pyrite from Jinying range from

0.08 to 0.13 Ra, which are slightly higher than those of
crust-derived fluids. In the plot of 3He vs. 4He (Fig. 10a), all of
the data are located between the crust and mantle helium isotopic
compositions, indicating that the ore-forming fluids of the Jinying
gold deposit were derived from mixed mantle and crustal sources.

For Ar isotopes, the obtained 40Ar/36Ar values of fluid
inclusions range from 331.6 to 351.3 and are slightly higher than
those of ASW (295.5, Fig. 10b). In the 3He/4He (R/Ra) vs. 40Ar/36Ar
diagram (Fig. 10b), all of the data plot between the crustal and
mantle end-members, indicating that the ore-forming fluids might
be a mixture of two end-member fluids. These He–Ar isotope data
are similar to those from the Early Cretaceous magmatic-
hydrothermal Au deposits in the Liaodong. Likewise, the 3He/
4He and 40Ar/36Ar values of pyrite fromWulong range from 0.15–
0.54 R/Ra and 297–315 (Zhang et al. 2020). For the Xinfang gold
deposit, the 3He/4He and 40Ar/36Ar values of pyrite range from
0.14–0.62 R/Ra and 1008–7100 (Zhang et al. 2022a). Moreover, the
proportion of mantle 4He is calculated as Hemantle (%) = (Rsample-
Rcrust)/(Rmantle -Rcrust) × 100%, where R mantle= 8, Rcrust= 0.01 and
R represents the 3He/4He ratios of the fluids in the mantle, crust,
and sample (Tolstikhin, 1978; Kendrick et al. 2001). The calculated

Figure 7. Zircon U–Pb concordia diagrams for samples BMZ-2 (a, b) and BMZ-5 (c, d) from the Jinying gold deposit.
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results indicate a mantle He range of 1.0–1.6%, indicating that the
ore-forming fluids were dominantly crustal fluids with inputs of
minor amounts of mantle fluids.

6.c. Ore genesis and tectonic implications

The sulphur isotopic compositions of pyrite suggested that the
sulphur of the Jinying gold deposit has a magmatic source. Their
He–Ar isotopic compositions suggest that the ore-forming fluids
were derived frommixedmantle and crustal sources. The timing of
gold mineralization is similar to the timing of emplacement of
spatially related dioritic porphyrite in the deposit, implying that
the mineralization was related to the intrusive activity. Based on
the above arguments, it is reasonable to interpret the Jinying gold
deposit is a magmatic-hydrothermal deposit.

The study area is located within the eastern edge of the NCC,
which records the evolution and the final closure of the Palaeo-
Asian Ocean, as well as the overprinting of the Palaeo-Pacific
tectonic regimes during theMesozoic (Sengör et al. 1993; Sengör &
Natal’in, 1996; Li, 2006; Wu et al. 2011; Xu et al. 2013). Multiple
stages and complicated geotectonic processes led to the formation
of abundant magnesite, talcum, boron, lead–zinc and gold deposits
in this area (Shen et al. 2020; Li et al. 2023; Zhang et al. 2023). The

northern margin of the NCC is the most important gold belt in
China, and many previous studies have examined the minerali-
zation age and tectonic setting of gold deposits. The results show
that goldmineralization occurred in the Permian–Triassic, Jurassic
and Early Cretaceous (Li et al. 2018; Zeng et al. 2021; Zhang et al.
2022b; Song et al. 2023; Zhao et al. 2023), formed during closure of
the Palaeo-Asian Ocean, subduction of the Palaeo-Pacific Plate
and an extensional setting associated with rollback of the Palaeo-
Pacific Plate (Zhu et al. 2015; Wu et al. 2019), respectively. In this
study, we determined that magmatism and mineralization at
Jinying occurred during the Early Cretaceous, and the formation of
the deposit likely occurred in an extensional setting controlled by
the rollback of the Palaeo-Pacific Plate. This interpretation is
extensional-related settings, lithospheric thinning and delamina-
tion occurring spatially from west to the east with accompanying
by upwelling asthenospheric mantle. In this case, the hot
asthenospheric mantle provided enough heat to melt the
delaminated lower crust and react with it, producing adakitic
magmas in this area (Chen et al. 2020; Xuan et al. 2022), where
magmatic differentiation formed ore-bearing fluids. The ore-
bearing fluids then ascended along the fault and mixed with
meteoric water or metamorphic water, which was accompanied by
complicated physical and chemical changes that would have led to

Table 2. Rb-Sr isotopic analyses of pyrite from the Jinying gold deposit

Sample no. Mineral Rb (μg/g) Sr (μg/g) 87Rb/86Sr 87Sr/86Sr

BM-8 Pyrite 1.392 8.036 0.5128 0.711742±8

BM-9 Pyrite 2.407 8.953 0.7902 0.712984±13

BM-10 Pyrite 3.519 9.662 1.0750 0.712361±15

BM-11 Pyrite 1.268 1.249 2.9630 0.715893±7

BM-16 Pyrite 1.835 5.578 0.9716 0.712505±9

BM-17 Pyrite 1.602 2.057 2.3080 0.714679±8

BM-18 Pyrite 1.394 2.279 1.8240 0.713943±7

BM-19 Pyrite 3.407 104.5 0.1029 0.710917±9

BM-20 Pyrite 2.816 4.032 2.0510 0.715327±11

Figure 8. Plot of sulphide Rb–Sr isochron for the Jinying gold deposit.
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the deposition of gold and metal sulphides in the structural
breccia belt.

7. Conclusions

(1) Zircons from granodiorite porphyry and dioritic porphyrite
yield U–Pb ages of 172.1 ± 1.2 Ma and 122.5 ± 0.8 Ma,
respectively, and the Rb–Sr isotopic age is 120 ± 3 Ma for
pyrite samples associated with gold, indicating that gold
mineralization and associated magmatism of the Jinying
gold deposit occurred during the Early Cretaceous.

(2) He–Ar isotopic compositions indicate that the ore-forming
fluids mainly originated from a mixture of crustal and
mantle components. In situ S isotope compositions of pyrite
indicate that the ore-related sulphur source was derived
from deep magma.

(3) The Early Cretaceous diagenesis and mineralization formed
in an extensional setting associated with rollback of the
Palaeo-Pacific Plate.
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Table 4. In situ sulphur isotope results of ore minerals in the Jinying gold
deposit

Sample No. Sample description Mineral δ34S (‰)

BMZ6-1 Quartz-pyrite vein Pyrite 1.5

BMZ6-2 Quartz-pyrite vein Pyrite 2.2

BMZ6-3 Quartz-pyrite vein Pyrite 1.9

BMZ7-1 Quartz-pyrite vein Pyrite 2.0

BMZ7-2 Quartz-pyrite vein Pyrite 2.5

BMZ7-3 Quartz-pyrite vein Pyrite 2.8

BMZ8-1 Quartz-pyrite vein Pyrite 2.4

BMZ8-1 Quartz-pyrite vein Pyrite 2.1

BMZ8-1 Quartz-pyrite vein Pyrite 2.5

BMZ9-1 Gold-pyrite ores Pyrite 1.5

BMZ9-2 Gold-pyrite ores Pyrite 1.5

BMZ9-3 Gold-pyrite ores Pyrite 1.9

BMZ10-1 Gold-pyrite ores Pyrite 2.1

BMZ10-1 Gold-pyrite ores Pyrite 0.1

BMZ10-3 Gold-pyrite ores Pyrite 1.5

BMZ13-1 Gold-pyrite ores Pyrite 0.2

BMZ13-2 Gold-pyrite ores Pyrite 0.9

BMZ13-3 Gold-pyrite ores Pyrite 1.5

BMZ14-1 Pyrite-marcasite Pyrite 1.6

BMZ14-2 Pyrite-marcasite Pyrite 2.0

BMZ14-3 Pyrite-marcasite Pyrite 1.6

BMZ14-4 Pyrite-marcasite Pyrite 0.9

BMZ14-5 Pyrite-marcasite Pyrite 0.5

BMZ14-6 Pyrite-marcasite Pyrite 0.5
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