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A note on generalized Hall planes

N.L. Johnson

We prove that i f IT is a generalized Hall plane of odd order
with associated Baer subplane TT. then i i s a Hall plane i f

and only i f there is a collineation a of IT such that

•UQO n TT is an affine point.

Generalized Hall planes were introduced by Kirkpatrick in [4] . The

author [2] pointed out that such planes of odd order are derivable from

translation planes of semi-translation class 1 - 3a . Ostrom further

observed that derivable translation planes of class 1 - 3a are semifield

planes.

Kirkpatrick [5] has characterized the Hall planes of odd order as

those generalized Hall planes with associated Baer subplane TT such that

every affine l ine of ir. i s the axis of an involutory homology fixing

This note shows that an easy characterization is also available by

assuming there is a collineation group which does not fix TTQ .

We shall assume the reader is familiar with "derivation" as developed

by Ostrom in [63.

THEOREM. An affine translation plane v of odd square order is a

Hall plane if and only if there is a Baer subplane IT. of IT and a group

of oollineations G such that

(i) G contains a subgroup H which is transitive on l^ - lm n TT
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and fixea ir pointwiee, and

(ii) there is an element a of G such that TT a n ir ie an

affine point.

Proof. Assume IT sat isf ies (i) and (ii). By [ 4 ] , [ 2 ] , and Ostrom's
observation, TT i s derivable from a semifield plane TT where coordinates
are chosen so that ir. in rr is {(x, y) \ x = 0} in TT and it i s a

dual t ransla t ion plane with respect to (°°) .

Let a € G such that vQc n TrQ is an affine'point. By (2.6) [ 3 ] ,

the full collineation group of TT is the group "inherited" from TT . That

i s , a is also a collineation of TT .

The points of IT and TT are identical so (x = 0)o n (x = 0) i s an

affine point of IT . Hence a must move (») . I t i s well known that in

th i s situation, TT must be desarguesian so that IT is a Hall plane by [ / ] .

Conversely, i f TT is a Hall plane then v is desarguesian and the

((<»), x = o ] - , ((0) , a; = o ) - , ((0), y = o) -central collineations of TT

which induce coll inations of TT satisfy (i) and (ii).
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