A note on generalized Hall planes

N.L. Johnson

We prove that if π is a generalized Hall plane of odd order with associated Baer subplane π_0 then π is a Hall plane if and only if there is a collineation σ of π such that $\pi_0 \sigma \cap \pi_0$ is an affine point.

Generalized Hall planes were introduced by Kirkpatrick in [4]. The author [2] pointed out that such planes of odd order are derivable from translation planes of semi-translation class 1 - 3a. Ostrom further observed that derivable translation planes of class 1 - 3a are semifield planes.

Kirkpatrick [5] has characterized the Hall planes of odd order as those generalized Hall planes with associated Baer subplane π_0 such that every affine line of π_0 is the axis of an involutory homology fixing π_0 .

This note shows that an easy characterization is also available by assuming there is a collineation group which does not fix π_0 .

We shall assume the reader is familiar with "derivation" as developed by Ostrom in [6].

THEOREM. An affine translation plane π of odd square order is a Hall plane if and only if there is a Baer subplane π_0 of π and a group of collineations G such that

(i) G contains a subgroup H which is transitive on $l_{\infty} - l_{\infty} \cap \pi_0$ Received 21 October 1972. This work was partially supported by a grant from the National Science Foundation of the USA. and fixes π_0 pointwise, and

(ii) there is an element σ of G such that $\pi_0\sigma\cap\pi_0$ is an affine point.

Proof. Assume π satisfies (*i*) and (*ii*). By [4], [2], and Ostrom's observation, π is derivable from a semifield plane $\overline{\pi}$ where coordinates are chosen so that π_0 in π is $\{(x, y) \mid x = 0\}$ in $\overline{\pi}$ and $\overline{\pi}$ is a dual translation plane with respect to (∞).

Let $\sigma \in G$ such that $\pi_0 \sigma \cap \pi_0$ is an affine point. By (2.6) [3], the *full* collineation group of π is the group "inherited" from $\overline{\pi}$. That is, σ is also a collineation of $\overline{\pi}$.

The points of π and $\overline{\pi}$ are identical so $(x = 0)\sigma \cap (x = 0)$ is an affine point of $\overline{\pi}$. Hence σ must move (∞) . It is well known that in this situation $\overline{\pi}$ must be desarguesian so that π is a Hall plane by [1].

Conversely, if π is a Hall plane then $\overline{\pi}$ is desarguesian and the $((\infty), x = 0)$ -, ((0), x = 0)-, ((0), y = 0) -central collineations of $\overline{\pi}$ which induce collinations of π satisfy (*i*) and (*ii*).

References

- [1] A.A. Albert, "The finite planes of Ostrom", Bol. Soc. Mat. Mexicana11 (1966), 1-13.
- [2] N.L. Johnson, "A characterization of generalized Hall planes", Bull. Austral. Math. Soc. 6 (1972), 61-67.
- [3] N.L. Johnson, "Collineation groups of derived semifield planes", (to appear).
- [4] P.B. Kirkpatrick, "Generalization of Hall planes of odd order", Bull. Austral. Math. Soc. 4 (1971), 205-209.
- [5] P.B. Kirkpatrick, "A characterization of the Hall planes of odd order", Bull. Austral. Math. Soc. 6 (1972), 407-415.

[6] T.G. Ostrom, "Vector spaces and construction of finite projective planes", Arch. Math. 19 (1968), 1-25.

Department of Mathematics, University of Iowa, Iowa City, Iowa, USA.