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Abstract

Let l<p<oo,p^2 and let K be any complex Hilbert space. We prove that every isometry
T of H"{K) onto itself is of the form

(TF)(z) = U(F o <j>{z)) • (d<f>/dz)l/p (F e H"(K), \z\ < 1),

where U is a unitary operator on K and </> is a conformal map of the unit disc onto itself.
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1. Introduction

Let D be the open unit disc in the complex plane and let E be any complex
Banach space. Then the Banach space HP{E), 1 < p < oo, consists of all
F:D-^E such that (F, e*) belongs to the Hardy class Hp for all e* e E*,
and the norm of F is given by

\W\\P = rUm | ± J** \\F(rei6)\\p dd\ if 1 < p < oo,

||f||00 = esssup||F(2)||.

A complex Banach space E is said to have the analytic Radon-Nikodym
property, if for each F e H"(E), F(e'e) = l i m r _ r F(re'e) exists almost
everywhere (for more detail see [1] and [4]). (It is known that the L -spaces,
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24 Pei-Kee Lin [2]

1 < p < oo, have the analytic Radon-Nikodym property.) If E has the
analytic Radon-Nikodym property and if F e HP(E), then the norm of F
is

1 f »~,je^Pdd\ if i < p < oo 5

0<<K2n

The linear isometries of Hp were first studied by deLeeuw, Rudin, and
Wermer [6]. They proved that if T is a surjective isometry on Hl (respec-
tively, H°°), then there are a conformal map <f> of the unit disk onto itself
and a unimodular complex number b such that

Tf=b- (d<f>/dz) -fo(f> (respectively, Tf=b-fo<j>).

Later, F. Forelli [7] extended this result to Hp for p ^ 2 . He proved that

THEOREM A. If p ^ 2 and J/ T is a linear isometry of Hp onto Hp,
then there is a conformal map (f> of the unit disk onto itself and a unimodular
complex number b such that

Tf=b-{d<t>ldz)XlP-faJ>.

The isometries of the vector valued Hp function spaces were studied by
M. Cambern. He [2] showed that if AT is a complex Hilbert space and if T
is a surjective isometry on H°°(K), then there are a conformal map 4> of
the unit disc onto itself and a unitary operator U on K such that for any
FeH°°(K) and any zeD,

Recently, M. Cambern and K. Jarosz [3] proved a similar result holds on
Hl (K) if K is a finite dimensional complex Hilbert space. In this article,
we extend this result to HP(K), 1 < p < oo. The main result of this article
is the following theorem.

MAIN THEOREM. Let I < p < oo, p ^ 2, and let K be any complex
Hilbert space. If T: HP(K) —• HP(K) is a surjective isometry, then there
exist a unitary operator U on K, and a conformal map <p from the disc onto
the disc such that

(TF)(z) = U(F o 4>(z)) • (d<t>/dz)l/p(z) (F e H"(K), \z\ < 1).
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Let 4> be a conformal map of the unit disk onto itself, and let U be a
unitary operator on a complex Hilbert space K. If

TF(z) = U(F o 0(z)) • (d<l>/dz)l/p(z)

for all F e H"{K), then T satisfies the following conditions.

(a) If (elte2) = 0, then (T{fex){ei6), T(ge2)(e
ie)) = 0 a.e. for all

f,geH".
(a) If (eite2) =0, then (T{znex){eie), T(zme2)(e'e)) = 0 a.e. for all

n, m > 0 .
(b) \(T(fe)(eie), T(ge)(eie))\ = \\T(fe)(ew)\\-\\T(ge)(eie)\\ a.e. (that

is T{fe)(e'e) and T(ge){e'e) are linearly dependent a.e.) for all
eeK and f,geHp.

(b') |<r(z"e)(<>'e), r(zme)(e'e)>| = \\T(zne)(eie)\\ • \\T(zme)(eie)\\ a.e.
for all eeK and «, m > 0

(c) For any e e AT, there is e' e K such that r ( i / p e ) = Hpe . More-
over, if T(Hpex) = Hpe^, T(i/Pe2) = Hpe4, and (c, ,e2) = 0, then
(«3,«4> = 0.

Clearly, (a) implies (a'), (b) implies (b'), and (c) implies (a) and (b). Since
{z": n > 0} spans Hp, (a) implies (a) and (b') implies (b). By Theorem
A, one can show that if T is a surjective isometry on HP(K) which satisfies
(c), then T satisfies the conclusion of the Main Theorem (see Section 3).
Hence, we only need to show every surjective isometry on HP(K) satisfies
(c). However, we do not know any direct proof. In Section 2, we establish
the following proposition.

PROPOSITION 1. Suppose that 1 < p < oo, and p ^ 2. If K is a complex
Hilbert space and if T is a linear isometry of HP(K) onto HP(K), then T
satisfies (a').

If 1 < p < 2, we provide a direct proof of Proposition 1. But we do not
know whether there is a direct proof if 2 < p < oo. In this case, we first show
that T satisfies (b'), and then use (b) to prove Proposition 1. In Section 3,
we use the conclusion of Proposition 1 to show that every surjective isometry
on HP(K) satisfies (c), and then give the proof of the Main Theorem.

2. The proof of Proposition 1

In this section, we will assume that (i) 1 < p < oo and p ^ 2, (ii) K is a
complex Hilbert space, and (iii) T is a surjective isometry of HP{K) onto
itself. Before proving Proposition 1, we need the following fact.
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FACT 1. Suppose that 1 < p < 2. If f{, f2 are any two positive functions
in If such that f2 > 0 a.e. and ||/,||p = 1 = ||/2||p , then

In fl(t~\
dt> 1.

2* Jo f}-frp(t)

Moreover, equality holds if and only if /J = f2 a.e.
PROOF OF PROPOSITION 1 WHEN 1 < p < 2. Let ex and e2 be any two

nonzero vectors in K. If \\re2\\ < | |e, | | , then

||*, + reixe2f = (||ei||
2 + r2||^2||

2 + r{e~ix(ex, e2) + eix(e2, ex))f
2

( \Pl2

= ||*,H' 1 + -r-,{r\\e2t + (e-x(ex, e2) +e'x(e2, *,)))

= WeAfT

{ ) I k i \ r ( \ \ 2 \ \ ^ ( , , e2) + eix(e2, ex)))
j,

7=0 V J

and so

r2n

(*) „„ d]
_A^/p/2\/j\/2A2;-2/.

^ ^ - l ; )\2l)\l j "
y=o /=o v 7 v y v 7

This implies

~2.
I

Let F = T{zmex) and G = r (z"e 2 ) . Then ||F(<r)|| # 0 a.e. By Fatou's
Lemma and the Fubini Theorem,
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n C JQ * T iQ 2 U — 2 iO n 4 iff IB 2

-f— / \\F(e )|| \\G(e )|| H =—||F(e )|| \(F(e ),G(e ))| a0

< liminf —Ly / * / * ||^(^'e) + reteG(e'8)||J' - ^ ( ^ j f r f j c r f e
r-.o 4rz7r Jo Jo

= liminf—}-y / " " / • " ujr^W) + r ^ G ( e ' e ) | | p - \\F(eW)\\p dddx
r^o 4r re Jo Jo

,. . r I I .. m ix n

r -o

But IIFH, = \\zmex\\p = 1 = I I ^ H , = ||G||p . By Fact 1, we have \\F(ei6)\\ =

\\G(ew)\\ a.e. and (F(ew), G(ei6)} = 0 a.e.
Now, we assume 2 < p < oo, and we need the following lemma.

LEMMA 2. Let m / n, and let e be any nonzero element in K. If F =
T{zme) and G=T{z"e), then \\F(ei8)\\ = \\G{ew)\\ a.e., and

\{F{eie),G{eie))\ = \\F{eie)\\-\\G{eiB)\\ a.e.

PROOF. By (*), there exists A > 0 such that for any two nonzero vectors
ex and e2 in K,

ii I J C n P ii I I P j ^ i 2 1 . u p — 2 | , , , 2

|k,+re ^21| - |kj dx <Ar |k,|| |k2||

whenever IkJI > 2r\\e2\\. On the other hand, if |kj| | < 2r||e2||, then

±f*\\e1+retxe2r-\\elfdx<(3r.

So

2;rr2 Jo
reixG(eie)\f -\\F(eW)\\dx

\\G(eie)\\p)
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for all 0 < r < 1. By the dominated convergence theorem,

/•—0 4r n Jo Jo

= Urn - 4 - j / " * / " * l l ^ ( ^ ) + re/JCG(e''e)||p - \\F{ei6)\\p dddx
r-»o 4r rc io ./o

= lim / /
4 2 2 J Jo

,• 1 / / i .

-hm—5-^- / / 1
r^O4r2n2Jo Jo

This implies

/ ijc+i(n—m)8,p . j Jn V

, G(eW))\2dd.

By Holder inequality, we have \\F(ew)\\ = \\G(eie)\\ a.e. and

\(G(eie),F(eie))\ = \\F(ei9)\\2 a.e.

PROOF OF PROPOSITION 1 WHEN 2 < p < oo. By Lemma 2, for any
e e K, T{zme){eie) and T{z"e)(ew) are linearly dependent for almost
all 0 e [0, 2n]. Since {zn: n > 0} spans / / p , for any e e K and any
f,g€Hp, T{fe){eid) and T(ge)(ew) are linear dependent for almost all
6 e [0, 2n]. Hence, for each e e K\{0} , T\Hpe induces an isometry from
Hp into Lp . By the proof of [7, Theorem 1], there is a function he such
that

(1) \he{eid)\ = 1 a.e.,
(2) for each n e N, T(zne) = hn

eT{\De).
Clearly, if he = he>, then he = hae+pe, for all a J e C .

(1) Let e, e be any two unit elements in K. We claim that he = hg,.
Since

hJ(\De) + he, T{\De') = T(ze + ze') = he+e, T(lD(e + e')),
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and

heT{\De) + ihe,T{\De) = T(ze + ize) = he+ie,T(\D(e + ie')),

for almost all 6 e [0, In] we have

+ he(e
ie)he,(e

w)(T(lDe)(eW),T(lDe')(eie))

+ he,(e
ie)he(e

w)(T(lDe')(ei6),T(lDe)(eie))

= | |r(l^)(ew)| | 2 + | | r (V')(e") | | 2 + (T(lDe)(eW), T(lDe')(eW))

+ (T(lDe')(eie),T(lDe)(eie))

and

\\T(lDe)(eie)\\2 + \\T(lDe')(eie)\\2

- ihe(e
ie)he,(e

w)(T(lDe)(ew), T(lDe')(ew))

+ ihe.{eie)he(e
ie)(T(lDe')(e"), T{\De){eie))

= \\T(lDe)(ei8)\\2 + | | r ( l ^ ' ) ( ^ ) | | 2 - i(T(lDe)(ew), T(lDe')(eW))

+ i{T(lDe')(eie),T(lDe)(eW)).

So

(T(lDe)(ew), T(lDe')(ew)) = he{ei6)he,{eie){T{\De){eW), T{\De'){ei6)).

Replacing e by e + re for some r 6 R if necessary, we may assume that

(T{\De){eie),T{\De'){ei6))t0 a.e.

Therefore, he = he> a.e., and if F e HP(K), then T(z"F) = h"T{F).
(2) Since T is an onto mapping, there is F e HP(K) such that T(F) =

\De. So T(zF) = he\De and he e H°° .
(3) By (2) there exist two inner functions h and h' such that for any g e

H°° and F e HP{K), T{gF) = goh-T(F) and T~1{gF) = goh'-T~l(F).
From TT~\F) = F = T~XT{F), we find

goh'ohF = gF = gohoh'-F.

So hoh' = I = h'oh and h is a conformal map of the unit disk onto itself.
(4) Since h is an onto conformal mapping, for any / € H°° there is

g e H°° such that / = g o h . Hence, if e, e are any two unit vectors in K,
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and g is any function in H°° , then we have

^ [* \f{ei6)\P\\T{\De){ei6)\\p dd

\\p= WfT{\De)\\p
p =

= \\T(ge')\\p
p = \\fT(lDe')\\p

= ^ [K \f{eie)\P\\T{\De'){eie)\\p dd.

Since {\g\:geH°°} spans real L°°, \\T(lDe)(e'e)\\ = \\T(lDe')(ew)\\ a.e.
(5) Now, suppose that (e, e) = 0. Then there exists a measure zero

subset A of [0, 2n] such that if 0 £ A and a e Q, then

\\cosaT(lDe)(eie) + smaT(lDe')(eW)\\ = \\T(lDe)(ew)\\.

By continuity,

\\cosaT(lDe)(eie) + sinaT(lDe')(eW)\\ = \\T(lDe)(eW)\\

whenever a e R and 6 £ A . So we have (T(lDe)(ew), T(lDe')(ew)) = 0.
•

REMARK 1. Let T: HP(K) -> HP(K) be an onto isometry. If ex and
e2 are linearly independent, then T(fei)(e'e) and T(fe2)(e'e) are linearly
independent for almost for 6 .

3. Proof of Theorem

Before proving the Main Theorem, we need another lemma.

LEMMA 3. For any unit vector e in K, there exists a unit vector e such
that T{Hpe) = Hpe .

PROOF. Let {e : j e J} be an orthonormal basis of K. For any unit
vector e e K, there exist Fj e T{Hpe^), such that lDe = X);-€/ •?} • Clearly,
Fj — 0 except for countably many j . Hence, we may assume that / is

countable and FJe'6) 's are orthogonal. So for any 8 e [0, 2n], we have

( i ) Z j
t e

(") E ; e ^
(1) For each j G J, (Fj(e'e), e) is an analytic function and for any

0e[O,27i]
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1 =
J€J

So (Fj(el ),e) is a non-negative constant function for each j e J.

(2) If (Fk{ew),e) = 0

1 < El = 1.

The second inequality holds if and only if Fk ^ 0. So we must have Fk = 0

if (Fk(e'e),e)=0.
(3) Let e be a nonzero element in K and A; be a fixed element in / .

We claim that if there exists an / e Hp such that m{0: \\T(fek)(e
w) -

e'\\ < 1/H} > 0 for every n e N, then \De e T(Hpek). With loss of
generality, we may assume ||e'|| = 1. Since there exist F- € T(Hpej) such
that J2j£j Fj = ^De> > ^ Proposition 1, there exists a measurable set A such
that

(iii) m(^) = 0,
(iv) if 6 $ A, then {Fj(ew):j 6 / } (respectively {T(fek)(e

ie)} u

j ^ k}) is orthogonal.
Hence, if 6 £ A, then there exist l > a > 0 , £>€C and z , y e AT which
satisfy

(v) < z , e ' '
(vi) Ffc(^

be +y.
So we have

= ae' + z, = (1 - a)e ' - z , and T{fek){e>e) =

= 0 ,

- 0.

If \\be' + y - e'\\ < l / « , then \b\>l-l/n, \\y\\ < 1/n ,

||z|| > (« - 1)(1 - a), a ( l - a) = ||z| |2 > (n - 1)2(1 - a) 2 .

So we have a > [n — l)2/n2. But (Fk,e') is a constant function, so
<ffc, e') = 1. By (1) and (2), F ; = 0 for all j ^ i , and Fk = \.
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Suppose that there exist e\, e'2e K and fx, f2£ H" such that

m{e:\\T{fxe)(eW)-e'x\\<l/n}>0

(respectively, m{6: \\T(f2e)(ew) - e'2\\ < 1/n} > 0) for all n e N. By (3),
lDe[ and \De2 are in T(H"e). But T~l is a surjective isometry from
H"(K) onto H"(K). By Remark 1, e\ and e2 are linearly dependent. And
we have proved the lemma.

PROOF OF THEOREM. Let e be any unit vector in K. By Lemma 3, there
exists a unit vector e such that T(fe) = (T{fe), e')e . We define the
operator (it may not be linear) U by U(ce) = ce for all c e C.

By Lemma 3, the restriction of T to Hpex is a surjective isometry from
Hpex into HpU{ex). Hence, there exist a conformal map (f>x of the disc
onto itself, and a unimodular complex number bx such that T(fex) = bx •
(d(t>l/dz)l/p • fo(j)l • U(ex). (Replacing U{ex) by bxU(ex), we may assume
that bx = 1.) If e2 is any other vector in K, then there exist a conformal
map 02 of the disc onto itself, and a unimodular complex number b2 such
that T(fe2) = b2 • (d(f>2/dz)l/p • f o <j>2 • U(e2). We claim that <j>2 = <j>x.
Clearly, this is true if ex and e2 are linearly dependent. So we may assume
that ex and e2 are linearly independent. By Lemma 3,

(d<t>x/dzfp-fo<l>x • U(ex) + b2 • {d<t>2ldz)xlpfo<l>2 • U(e2)

= T{f{ex + e2)) = (T{f{ex + ea)), C/ ( ^ ± S _ ) ) U ( ^ +

Since C/(e,) and t/(e2) are linearly independent (by Remark 1), we have
{d<j>x/dz)l/pfo<j>x and (d(t>2/dz)l/pfo<f>2 are linearly dependent. Let / = 1.
Then we have (d<j)2/dz) = dx(d<j>xldz) or 02 = dx<j>x+d2 for some dx, d2e
C. But </>j and </>2 are conformal maps from the unit disc onto itself. This
implies \dx\ = 1 and d2 = 0. Let / = z + 1. We have {d<j>xldz)llp((j)x + 1)
and dx(d<f)l/dz)1/p(dx(l)x + 1) are linearly dependent. But (j>x # 1. So rf,
must be 1.

Replace U{ce2) by 62 • c • U(e2). Then we have T(fe) = {d4>xldz)Vp •
fo<f)x- U{e) for any f &HP and ||e|| = 1. Hence, for any a, b eC

(d<t>x/dz)l/p • a • U{ex) + {d<j>xldz)xlp • b • U(e2)

l/p= T(aex + be2) = (d<f>x/dz)l/p • (\\aex + be2\\) • U

= (d<f>l/dz)l/p-U(aex+be2).

This implies that U is a linear isometry. Since T is an onto mapping, U
must be an onto mapping. So U is a unitary operator.
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