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Stability and dynamics of the flow past a
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The flow past a bullet-shaped blunt body moving in a pipe is investigated through
global linear stability analysis (LSA) and direct numerical simulation. A cartography
of the bifurcation curves is provided thanks to LSA, covering the range of parameters
corresponding to Reynolds number Re = [50–110], confinement ratio a/A = [0.01–0.92]
and length-to-diameter ratio L/d = [2–10]. Results show that the first bifurcation is
always a steady bifurcation associated to a non-oscillating eigenmode with azimuthal
wavenumber m = ±1 leading to a steady state with planar symmetry. For weakly confined
cases (a/A < 0.6), the second bifurcation is associated to an oscillating mode with
azimuthal wavenumber m = ±1, as in the unconfined case. On the other hand, for the
strongly confined case (a/A > 0.8), a destabilization of non-oscillating modes with |m| =
2, 3 and a restabilization of the m = ±1 eigenmodes are observed. The aspect ratio L/d
is shown to have a minor influence for weakly confined cases and almost no influence for
strongly confined cases. Direct numerical simulation is subsequently used to characterize
the nonlinear dynamics. The results confirm the steady bifurcation predicted by LSA with
excellent agreement for the threshold Reynolds. For weakly confined cases, the second
bifurcation is a Hopf bifurcation leading to a periodic, planar-symmetric state in qualitative
accordance with LSA predictions. For more confined cases, more complex dynamics is
obtained, including a steady state with |m| = 3 geometry and aperiodic states.

Key words: wakes

1. Introduction

The flow past blunt bodies is a problem of practical importance, with obvious engineering
applications to transport. In such applications it is necessary to estimate and predict the
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lift and drag forces exerted on the body as well as to assert the influence of the geometry
on these forces for a shape optimization procedure. Wake flows in the transitional regime
(with Reynolds numbers of order 102–103) is also a problem of fundamental interest where
global stability theory and bifurcation theory have been particularly successful to explain
complex nonlinear dynamics. The most documented case corresponds to the wake of a
cylindrical body placed perpendicularly to the flow (Bénard 1908; Von Kármán 1912;
Provansal, Mathis & Boyer 1987). This case is characterised by a Hopf bifurcation for
Re ≈ 47 giving rise to the well-known Bénard–Von Kaàrmàn vortex street. Secondary
bifurcations occurring in the range Re ≈ 200 and leading to three-dimensional states have
also been investigated by stability analysis of the periodic solution and bifurcation theory
(Thompson, Hourigan & Sheridan 1996). Among three-dimensional geometries, spheres
and disks have been particularly considered as canonical cases. Linear stability analysis
(LSA) (Natarajan & Acrivos 1993; Meliga, Chomaz & Sipp 2009a) provides a powerful
framework allowing us to tackle this class of problems. This approach predicts that the
first unstable mode is a non-oscillating mode (i.e. with a purely real global eigenvalue)
characterised by azimuthal wavenumbers m = ±1. It leads to a steady state solution with
planar symmetry, the presence of a pair of longitudinal vortices and finally a non-zero lift
force exerted on the body. The LSA study also predicts the onset of a secondary eigenmode
which is oscillating (i.e. a pair of complex conjugated eigenvalues) and also associated to
an azimuthal wavenumber m = 1. Comparisons with direct numerical simulations (DNS)
and application of normal form theory (Fabre, Auguste & Magnaudet 2008; Auguste,
Fabre & Magnaudet 2010) and weakly nonlinear analysis (Meliga et al. 2009a) showed
that this secondary mode is responsible for the onset of an oscillating state which is either
reflection-symmetry preserving (RSP) for spheres and thick disks or reflection-symmetry
breaking for thin disks. Effects of motion of the body have also been considered. First, the
effect of imposed rotation on the wake of a sphere has been analysed. In the case the axis
of rotation is aligned with the flow, rotation breaks the symmetry between m = +1 and
m = −1 modes and modifies the bifurcation scenario leading to the onset of quasi-periodic
states (Pier 2013). In the case the axis is transverse, weak rotation stabilizes the RSP
mode but strong rotation gives rise to a new oscillating mode with a smaller frequency
(Citro et al. 2016; Fabre et al. 2017). Secondly, Tchoufag, Fabre & Magnaudet (2014) have
demonstrated the influence of wake dynamics on the motion of bodies in free movement
submitted to a buoyancy force. In that case, the destabilization of the base flow field may
result in a path deviation of the buoyancy-driven disk or sphere leading to a variety of
states including zig-zag paths, steady-oblique paths, etc.

Another canonical blunt body geometry which was selected by a number of studies
in the literature is the bullet-shaped body, consisting of a half-ellipsoidal nose glued to
a cylindrical blunt rear. It has the advantage of having a shape closer to real industrial
applications such as trains for instance. Experiments performed by Brücker (2001)
revealed a stabilizing effect of the presence of the ellipsoidal nose, in comparison with
the flow past disks. An extensive study presented by Bohorquez et al. (2011) uses three
approaches, DNS, LSA and experiments. This study reveals that the bifurcation sequences
and wake patterns are globally similar to the case of a sphere, and that increasing the
length of the body generally delays the bifurcations towards larger Reynolds numbers. A
base-bleed flow control has also been tested and its stabilizing effect was demonstrated.
The sequence of bifurcations occurring in the wake has been examined by Bury & Jardin
(2012) using DNS, from the laminar axisymmetric wake to the onset of chaotic behaviour.
In Jiménez-González et al. (2014) the effect of spinning this blunt body around its axis
of symmetry is shown to have a stabilizing effect, promoting the second most amplified
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Flow past a bullet-shaped blunt body in a pipe
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Figure 1. Geometry of the axisymmetric blunt body in a pipe.

mode and widening the range of existence of a stable axisymmetric wake. Note that a
series of recent works have also been conducted for the wake of axisymmetric bodies for
much larger ranges of Reynolds number and using a mean-flow based approach (Rigas
et al. 2014, 2015; Rigas, Morgans & Morrison 2017; Callaham et al. 2021), indicating that
linear stability and low-order nonlinear modelling is also relevant in this range.

The present study investigates the effect of confinement on wake dynamics. The effect of
confinement on axisymmetric wakes has already been analysed from a fundamental point
of view by Juniper (2006), who considered local stability analysis of a family of parallel
flow models. Here we focus on the bullet-shaped blunt body (cf. figure 1), a canonical
geometry which can help address many industrial issues experienced in the case of an
object travelling in a confined environment. A good example is a high-speed train passing
through a tunnel, how it enters the tunnel and how the tunnel influences the aerodynamics
of the train (Baron, Mossi & Sibilla 2001; Mok & Yoo 2001; Kwon et al. 2003). The issue
encountered relies more on the pressure wave created by the train nose and its interaction
with the tunnel than the wake itself, but the drag is still of interest. In another study Choi
& Kim (2014) investigated the optimization of the nose shape of the high-speed Korean
subway and the tunnel cross-sectional area influence on the total drag. Of course, with
velocities of several hundred kilometres per hour, the Reynolds numbers are of order 108

and characterisation of nonlinear dynamics in the transitional range may be irrelevant.
The situation changes considering new technologies in train transportation such as an
evacuated tube transportation system where a capsule travels at high velocity in a near
vacuum network of pipes. Numerous studies describe the limitations and opportunities
arising in such configurations (Braun, Sousa & Pekardan 2017; Opgenoord & Caplan
2018; Oh et al. 2019) and highlight differences in aerodynamics compared with standard
trains. The expected operating pressure for such a system is in the range 1–100 Pa, leading
to Reynolds numbers in the range 103–105. Hence, characterisation of dynamics in the
transitional range using a combination of LSA, bifurcation theory and DNS may be
relevant. The identification of non-axisymmetric bifurcations giving rise to a lift force
may be of practical interest in the operation of such devices. Such applications also
operate in the transonic regime so that, for an accurate modelling, compressibility and
rarefied gas effects should also be taken into account. However, as a first approach towards
these problems, it might be interesting to stick to an incompressible flow and target the
effect of confinement regardless of additional effects. Our current investigations on a
slender axisymmetric blunt-based body moving in a tube is inspired by such industrial
applications. In order to pave the way to such complicated problems, the study has been
limited to incompressible flows and to a Reynolds number Re lower than 1500.

The paper is organized as follows. The configuration, the governing equations and
the LSA equations and resolution methods are presented in § 2. Section 3 is devoted
to the characterisation of instability properties thanks to LSA. A parametric study of
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the linearly unstable modes is obtained as a function of the confinement ratio, of the
length-to-diameter ratio and of the Reynolds numbers. Section 4 is dedicated to DNS
and to comparisons with the results of the LSA analysis. Direct numerical simulation
is used to confirm the predictions of LSA regarding the first bifurcation threshold and to
explore the nonlinear behaviour arising away from this threshold. The paper ends with
some concluding remarks. Two appendices have been added, the first one is the analytical
solution of the annular Couette–Poiseuille flow and the last one is the mesh convergence
study.

2. Methodology

2.1. Configuration and parameters
The geometry of the bullet-shaped blunt body moving in a tube and the main geometrical
parameters are shown in figure 1. The body consists of a half-ellipsoid nose glued to a
cylindrical rear. The diameter of the cylinder is referred to as d. The ellipsoid of revolution
is defined by its major axis with ax = 2ay = d and its minor axis which fits with the
cylindrical section by imposing ay = az = d/2.

The diameter of the pipe is noted as D, so that the effect of confinement will be defined
by either a diameter ratio ξ = d/D or an area ratio a/A = ξ2, with a = πd2/4 the frontal
area of the body and A = πD2/4 the area of the tube.

The origin of the frame is taken at the junction between half-spheroidal and cylindrical
parts, so that the body spans from x = −d (nose) to x = L − d (base).

The object moves with a velocity U in the direction −ex and the wall of the pipe is fixed.
Assuming the flow is incompressible and isothermal, the non-dimensional parameters of
this problem are the Reynolds number Re = ρUd/μ, the diameter aspect ratio ξ = d/D
and the length aspect ratio L/d. Here ρ and μ are respectively the constant density and
dynamic viscosity of the fluid. In most cases the parameter L/d will be set to 2, except in
§ 3.3 where the effect of this parameter will be investigated.

The study will be conducted in the frame of reference associated to the body. The
boundaries of the computational domain are given in figure 1. It is limited by, respectively,
an inlet section Sinlet and an outlet section Soutlet. In this frame, the body is fixed, and placed
within an incoming flow U of direction +ex and the tube wall also moves at the same
velocity with respect to the body. Hence, the dimensionless incompressible Navier–Stokes
equations and associated boundary conditions are

∂tu = NS([u, p]) ≡ −u · ∇u − ∇p + 2
Re

∇ · D(u), (2.1a)

∇ · u = 0, (2.1b)

u|Sbody = 0, (2.1c)

u|Sinlet∪Swall = ex, (2.1d)[
−pex + 2

Re
D(u) · ex

]
Soutlet

= 0, (2.1e)

where u is the relative velocity, and D(u) = (∇u + ∇Tu)/2 is the rate-of-strain tensor. The
divergence formulation for the viscous terms is related to the choice of the finite element
method (FEM) to solve the equations.
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Flow past a bullet-shaped blunt body in a pipe

The governing equations are non-dimensionalized by the body velocity U, the fluid
density ρ and the body diameter d. The last boundary condition is written as a no-stress
condition on the outlet section, which is a convenient choice for an outlet condition with
the FEM approach.

2.2. Global LSA

2.2.1. Equations
The global linear stability approach is performed in the line of the now classical approach
described, for instance, in Sipp & Lebedev (2007), Fabre et al. (2018). Within the LSA
framework, the velocity and pressure are decomposed into a base flow and a small
perturbation as

u(r, ϕ, x, t) = ub(r, x) + εû(r, x) eimϕ+λt, p(r, ϕ, x, t) = pb(r, x) + εp̂(r, x) eimϕ+λt.
(2.2a,b)

Here [ub; pp] is the so-called ‘base flow’, namely the solution of the axisymmmetric,
time-independent version of (2.1),

NS([ub, pb]) = 0; ∇ · ub = 0. (2.3a,b)

In (2.2a,b) a small-amplitude perturbation of the base flow is assumed in the form of an
eigenmode [û, p̂] associated to an eigenvalue λ = λr + iλi. The real part of the eigenvalue
is the growth rate. A positive value indicates here an amplification. The imaginary part is a
non-dimensional frequency (time oscillation), which is most conveniently represented by
the Strouhal number St = λi/(2π) thanks to the non-dimensionalization choices. Fourier
decomposition in the azimuthal direction is possible with the axisymmmetric invariance
and an azimuthal wavenumber m ∈ Z can be added in the exponential wave-like part of
the perturbation. Introducing the decomposition (2.2a,b) into the Navier–Stokes equations
and linearizing leads to an eigenvalue problem written as

λû = LNSub([û, p̂]), (2.4a)

∇m · û = 0, (2.4b)

û|Sinlet∪Swall∪Sbody = 0, (2.4c)

where LNSm is the linearized Navier–Stokes operator defined as

LNSm
ub

([û, p̂]) = −ub · ∇mû − û · ∇mub − ∇mp̂ + 2
Re

∇m · Dm(û). (2.5)

Here quantities ∇m and Dm are the gradient and rate-of-strain operators with ∂ϕ( · )
replaced by i × m( · ).

2.2.2. Resolution methods
The resolution methods employed here are essentially similar to those used in recent
papers such as Tchoufag et al. (2014), Fabre et al. (2019), in which stability analysis of
axisymmetric incompressible flows were considered.

Thanks to axisymmetry, the base flow velocity is searched in the cylindrical frame
[ex, er, eϕ] as ub = [ub,x(x, r), ub,r(x, r), 0] so that only two components of velocity
are kept. On the other hand, for eigenmodes, three components of velocity are needed,
i.e. û = [ûx(x, r), ûr(x, r), ûφ(x, r)]. Within this assumption it is enough to consider a
two-dimensional numerical domain (Ω) corresponding to a meridian plane (x, r).
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For both base flow equations and linear stability equations, a FEM is used. For this sake,
the equations are first turned into a weak form by introducing test functions v and q and
a scalar product 〈ϕ1, ϕ2〉 = ∫

Ω
ϕ1 · ϕ2 dΩ . For instance, the weak form of the base flow

(2.5) is written as

∀(v, q), 〈v,NS([ûb, p̂])〉 + 〈q, ∇0 · ûb〉 = 0. (2.6)

An integration by parts of the viscous terms is afterward performed and their derivation
order is reduced. Dirichlet boundary conditions are incorporated by penalization while the
stress-free outlet condition is directly satisfied thanks to integration by parts. The nonlinear
problem is then solved using an iterative Newton method. The developed form of the base
flow equations in cylindrical coordinates and details about the Newton method can be
found, for instance, in Tchoufag et al. (2014), Fabre et al. (2019).

Similarly, the weak form of stability problem yields

∀(v, q), λ〈v, û〉 = 〈v,LNSm
ub

([û, p̂])〉 + 〈q, ∇m · û〉, (2.7)

which after discretization leads to a generalized eigenvalue problem,

λBX̂ = AX̂. (2.8)

A shift-and-invert method is applied to obtain a collection of eigenvalues (typically 10)
located closest to a ‘shift’ value taken as a guess of the searched eigenvalues. As usual
in such approaches, several values of the ‘shift’ were systematically tested to explore the
complex plane and to ensure that no unstable eigenvalue was missed in the study.

The weak form of the stability equations, details about the integration by parts and the
construction of matrices A and B can again be found in Tchoufag et al. (2014), Fabre et al.
(2019).

2.2.3. Numerical implementation
All numerical operations (generation and juniper of a mesh, building of matrix operators,
Newton iteration for the base flow problem and the shift-invert method for eigenvalue
problem) are handled thanks to the finite element software FREEFEM++ (Hecht 2012). The
FEM discretization is built with the classical Taylor–Hood elements for all computations.

First, a triangular mesh is built using the well-known Delaunay–Voronoi algorithm,
and a preliminary base flow and some modes are computed. An adaptive mesh strategy
is adopted in order to ensure convergence of results with respect to mesh refinement, as
it is described in Fabre et al. (2018). Namely, after first computing a base flow and an
adjoint eigenmode, the mesh is adapted to both these fields, and the process is repeated
twice. To demonstrate the efficiency of this method, we report in table 1 the eigenvalues
computed with the adapted mesh and with an even more refined mesh obtained by adapting
to both direct and adjoint modes and subsequently splitting all triangular cells in four. The
results demonstrate that the mesh adaptation method provides converged results with a
very reasonable mesh density and computational cost.

The whole computational chain, including mesh generation, adaptation, loop over
parameters and post-processing, is monitored in the Matlab environment thanks to the
STABFEM suite (Fabre et al. 2018), which is a set of MATLAB/OCTAVE drivers/wrappers
specifically designed to perform such studies. A sample script reproducing a selection of
results from the present study is available through the website of the STABFEM project
(https://stabfem.gitlab.io/StabFem).
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Flow past a bullet-shaped blunt body in a pipe

Mesh λ Nv tc [s]

Adapted 1.1685 + 1.09952i 6936 44
Split 1.1686 + 1.09957i 137374 2139

Table 1. Comparison of results found with a mesh build with the adaptation strategy and a refined one obtained
by splitting. The table reports the number of the leading eigenvalue λ, the number of mesh vertices Nv and the
computational time tc (on a Macbook, 2Ghz, 32Go RAM, single processor) required for computing 10 modes
with the shift-invert strategy, for the set of parameters Re = 320, a/A = 0.75, L/d = 2.

Section L/d a/A Re |m|
III - A 2 0.01, 0.75, 0.81 320, 200–1200 1
III - B 2 0.01–0.92 320–1130, 110–400 1
III - C 2–10 0.01–0.75 110–140–200 1
III - D 2 0.6–0.92 80–1100 2–3

Table 2. Ranges of parameters investigated and corresponding sections of the paper.

2.3. Direct numerical simulations
To validate and to extend the results of the stability analysis, some full DNS are performed
with the open source computational fluid dynamics software package, OpenFOAM�.
Time-varying solutions of the (2.1) are computed with its incompressible finite volume
solver, pimpleFOAM, built with a second-order spatial derivative scheme and an Euler
temporal scheme. A fixed Courant number set to Co = 0.5 ensures the stability of these
schemes. The meshes are built with the cfMesh software provided with OpenFOAM. A
typical mesh and a mesh convergence study are presented in Appendix B. Results and
comparison with LSA are discussed in § 4.

3. Linear stability analysis: results

With the objective of building an exhaustive cartography of instability properties, four
parameters will be varied. The two first ones are geometrical parameters, namely the aspect
ratio L/d and the confinement parameter a/A. The third input parameter is the Reynolds
number and the fourth one is the azimuthal wavenumber m. Table 2 indicates the range
of parameters defined for this study, and the concerned sections. Regarding the azimuthal
wavenumber, it is known for open flows past blunt bodies that the most unstable modes
are found for m = ±1 (Natarajan & Acrivos 1993; Auguste et al. 2010; Jiménez-González
et al. 2014). This fact justifies that our study will primarily focus on this value. Other
values of m are postponed to § 3.4.

3.1. m = ±1 modes for sample values of the section aspect ratio a/A
In this section and the next one we set the length-to-diameter aspect ratio L/d = 2 and we
focus on the effect of the confinement ratio a/A.

3.1.1. Weakly confined flow
A weakly confined case is first considered, corresponding to section aspect ratio a/A =
0.01 (or diameter aspect ratio d/D = 0.1). Figure 2 displays the base flow around the
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Figure 2. Azimuthal vorticity (ωϕ = ∇ × ub · eϕ ≡ ∂xur − ∂rux) and streamlines of the base flow for

Re = 320, L/d = 2, a/A = 0.01.
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Figure 3. Example of a spectrum found with the shift and invert algorithm (Re = 320, L/d = 2,
a/A = 0.01). The 10 eigenvalues closest to the ‘shift’ value indicated in red are computed.

blunt body for a Reynolds number Re = 320. The axisymmetric base flow field exhibits a
standing eddy which has approximately the same length as the body itself. The boundary
layer present on the body surface is made visible through the generation of negative
azimuthal vorticity. Overall, this structure seems to be very similar to that found in
Jiménez-González et al. (2014) for the same object and conditions in an unconfined flow.

For the same base flow, a part of the spectrum found using the LSA approach is shown
in figure 3. It reveals two physical modes, the first one called S1 is non-oscillating (often
referred to as stationary) and unstable (λr > 0). The second one called 01 is oscillating
and damped. The other modes quasi-aligned are some spurious modes of a non-physical
nature and come only from the numerical discretization. Similar results are observed by
Jiménez-González et al. (2014) for a non-spinning object in unconfined space.

In their study, the onset of the first instability (the S1 mode) was detected at a critical
Reynolds number Rec,S1 = 325.2, whereas its value is Rec,S1 = 312.2 in the present study,
leading to less than a four percent difference. It can be concluded that the confinement
produces a small influence over the onset of the first instability in this case.

Figure 4 displays the four most amplified eigenvalues as a function of Re, again for
a/A = 0.01. The first unstable mode appearing is non-oscillating and remains the most
amplified mode over the whole range of Re studied. The second most amplified mode, O1,
becomes unstable at Rec,O1 = 478.3 and Stc = 0.103. This Strouhal value is very close to
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Figure 4. Amplification rate (a) and Strouhal number (b) as a function of the Reynolds number for the first
unstable modes, a/A = 0.01, L/d = 2.

the one found by Bohorquez et al. (2011) who reported St = 0.102. But the latter authors
found a somehow larger value of the critical Reynolds number, namely Rec,O1 = 518.

In addition to the effect of confinement, this gap between critical Reynolds number may
be explained by the fact that the computational domain defined for the stability analysis
included only the cylindrical rear of the body and excluded the nose in Bohorquez et al.
(2011). The critical Reynolds is also notably higher than the one given by the reference
case of a thin disk. The geometry of the nose of the blunt body changes the amount of
vorticity produced at its surface, as pointed out by Brücker (2001), and it is known that this
vorticity production is responsible for triggering the instabilities (Magnaudet & Mougin
2007). Having a profiled nose diminishes such production of vorticity and pushes back the
onset of instabilities to larger Reynolds. For instance, in figure 2 the vorticity intensity for
Re = 320 is |ωϕ| ≈ 10, which is comparable to the intensity observed for a thin disk with
aspect ratio χ = 3 for Re ≈ 150 as studied in Auguste et al. (2010).

Up to here, the main scenario revealed in the present configuration by the LSA is a
first non-oscillating mode S1 amplification followed by an oscillating one O1. It is the
same encountered for all axisymmetric bodies considered in the literature (Natarajan &
Acrivos 1993; Meliga, Chomaz & Sipp 2009b; Tchoufag et al. 2014). When pushing the
Reynolds number towards higher values, two additional modes are found, an oscillating
one and a non-oscillating one termed O2 and S2. These higher modes arise at much larger
Reynolds numbers, in the range Re ∈ [900–1200]. They are less likely to be observed
experimentally or numerically because in such regimes the mean flow is already very far
from the axisymmetric base flow analysed with the linear stability theory. Nevertheless,
when the confinement effect is increased, these higher modes turn out to be relevant in
order to obtain a consistent picture of the bifurcation scenario. Hence, they will be kept in
the analysis and their critical Reynolds Rec,S2 and Rec,O2 will be tracked.

The structures of these modes are illustrated in figure 5. The plots display both
the azimuthal velocity (colours) and pressure (lines) levels in a meridional (x, r)-plane
(left plots) and the axial vorticity levels in a transverse ( y, z)-plane corresponding to
a cut at location x = 2 (right plots). The first unstable mode, S1, has a rather simple
vorticity structure. In the meridional plane, the azimuthal vorticity of the eigenmode is
positive in the region of the shear layer. Recalling that the vorticity of the base flow
shear layer is negative (see figure 2), the effect of the eigenmode is to decrease in
this region the net vortical intensity in the shear layer. Owing to the antisymmetry of
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Figure 5. Eigenmodes found for a/A = 0.01, real parts of the vorticity with iso-levels of pressure. Slices are
defined by x = 2 and r ≤ 2. Results are shown for (a) S1, Re = 320; (b) S2, Re = 1130; (c) O1, Re = 500 and
(d) O2, Re = 950.

m = ±1 modes, the azimuthal vorticity of the eigenmode is negative on the opposite side,
meaning that the shear layer is enhanced. The axial vorticity, on the other hand, reveals
a pair of counter-rotating streamwise vortices, as already noticed for disk and spheres
(Natarajan & Acrivos 1993; Meliga et al. 2009b) and similar blunt bodies in open flow
(Jiménez-González et al. 2014). The S2 mode shows a similar structure with a small
additional pair of counter-rotating vortices in the vicinity of the blunt body rear, and a
more complex pressure field than the S1 mode.

Let us now consider the oscillating modes O1 and O2 displayed in the bottom part of
figure 5. One can observe in an azimuthal plane an alternation of positive and negative
streamwise vorticity, which is the signature of unsteady vortex shedding. A shorter spatial
wake length scale can be seen for the O2 mode, related to its higher shedding frequency
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Figure 6. Azimuthal vorticity and streamlines of the base flow in the moving frame attached to the body for
L/d = 2 and a/A = 0.75. Top, Re = 110, bottom Re = 320.

(i.e. larger St). Note that when observed in a transverse plane, these modes display a
characteristic spiral structure. This does not imply that if these modes are present in a
nonlinear solution a spiral structure will necessarily be observed. Indeed, it is known that
due to the degeneracy associated to mirror symmetry, m = +1 and m = −1 eigenmodes
are mirror images of each other and can lead to two kinds of nonlinear states (Fabre et al.
2008): (i) ‘rotating waves’ corresponding to a pure m = +1 (or m = −1) eigenmodes with
a spiral structure, and (ii) ‘standing waves’ corresponding to superposition of m = 1 and
m = −1 eigenmodes characterized by a symmetry plane.

3.1.2. Confined flow with a/A = 0.75
Let us now consider a more confined flow with a section ratio of a/A = 0.75 or a diameter
ratio of d/D = 0.87. The structure of the base flow and the influence of the tube wall
are displayed in figure 6. Compared with the unconfined or weakly confined flow, the
recirculation length is shorter as the confinement becomes stronger. For Reynolds number
Re = 320, the flow changes direction close to the pipe wall and goes downstream but
without setting a closed recirculation zone attached to the wall, even for large values Re >

320. The presence of separation in this area is accompanied with a production of negative
vorticity. This structure reveals the presence of a confined wall jet. Within the small gap
between the body and pipe walls the flow can be seen as parallel and one may expect the
flow to be well approximated by a parallel-flow solution called ‘annular Couette–Poiseuille
flow.’ This classical solution is reproduced in Appendix A. The theoretical analytical
non-dimensional velocity profile is compared in figure 7 to the actual axial flow profile
extracted from the base flows represented in figure 6. At location x = 0.75 (in the rear part
of the afterbody), the observed velocity profile is indistinguishable from the theoretical
solution, both for Reynolds numbers Re = 110 and 320.

The velocity profile at location x = 1.25, slightly behind the body is also plotted in the
figure. The curves show that the velocity profile turns into an annular jet, affected by some
diffusion, especially for Re = 110.

The curves giving the amplification rate and the Strouhal number vs the Reynolds
number as computed by the linear stability theory are displayed in figure 8, for the base
flow solved with the section aspect ratio a/A = 0.75.

Three branches are found as the Reynolds number varies corresponding to two
non-oscillating (called again S1 and S2) and one oscillating mode. The latter is of a distinct
nature compared with the modes O1 and O2 previously encountered. It is characterized by
a Strouhal number in a lower range, and it is thus called O3. The amplification curves of the
S1 mode follows an inverted parabola: as the Re value increases, the amplification of the
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Figure 7. Axial velocity ux as a function to r for Re = 110 (red) and Re = 320 (blue) at locations x = 0.75
(symbols) and x = 1.25 (dashed lines). Black dotted line: comparison with annular Poiseuille solution.
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Figure 8. Amplification rate λr (a) and Strouhal number (b) vs the Reynolds number for the first unstable
modes, a/A = 0.75. The horizontal range of the figure corresponds to Re ∈ [80–1000].

S1 mode raises, reaches a maximum and decreases. The decreasing S1 branch meets the
rising S2 branch and both branches collide at the Reynolds number Re = 180.4. Above this
value, the collision gives rise to a pair of complex conjugate eigenvalues corresponding to
the O3 oscillating mode. The symmetry of the problem entails that this oscillatory branch
is twofold, for each eigenvalue λ found, λ̄ is also an eigenvalue. The Strouhal number of the
O3 raises strongly after the collision of S1 and S2 from St = 0 to St = 0.1897 at Re = 490
and then slightly decreases.

Figure 9 displays the vortical structure and some iso-pressure contours of the unstable
eigenmodes for different values of the Reynolds number. The S1 and S2 modes exhibit the
same behaviours found for the low confinement configuration, with a negative pressure
zone at the rear of the blunt body followed by a positive pressure one.

Nevertheless, these pressure contours are distorted by the proximity of the pipe wall as
the extrema get closer to the axis of symmetry. The vorticity of these two modes goes
through the same changes and is more important close to the body.

The S1 mode is more active in the recirculation zone whereas for the S2 mode the
azimuthal vorticity is higher in the region where the streamlines of the base flow expand,
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Figure 9. Eigenmodes found for a/A = 0.75, real parts of the streamwise vorticity with iso-levels of
pressure. Results are shown for (a) S1, Re = 110; (b) S2, Re = 117; (c) O3, Re = 200 and (d) O3, Re = 400.

around x = 2.5, suggesting a different instability mechanism. At last, the structure of the
O3 mode seems to be a mix of the S1 and S2 modes. The pattern of the vorticity and the
pressure is very similar to the S1 mode in the recirculation zone. The downstream region
(x > 2) is similar to the same region of the S2 mode but the temporal mode oscillation
results in production of vorticity of alternated sign. For Re = 400, the O3 mode is similar,
the influence of a larger recirculation zone can be noticed. Alternate values of vorticity in
the streamwise direction are still present but they pushed downstream, outside the scope
of the plot. Stronger vorticity is also observable because of an important contraction of the
base flow due to its local reversal.

3.1.3. Strongly confined flow with a/A = 0.81
Consider now an even more strongly confined flow with a section ratio a/A = 0.81 or a
length ratio d/D = 0.9.

The base flow (figure 10) remains very similar to the previous case but the bifurcation
scenario revealed by the LSA approach seems different. Figure 11 displays the computed
amplification rate and Strouhal number of the first three modes as a function of the
Reynolds number. Again, two non-oscillating eigenmodes S1, S2 and an oscillating mode
O3 are found. Here, the S1 mode becomes unstable between Reynolds numbers Rec =
101.1 and Re = 141.1, the amplification rate plot keeps its inverted parabola shape. The
S2 mode is observed as a stable mode up to Re ≈ 150 where a collision with the S1 mode
gives rise to a pair of complex eigenvalues corresponding to the O3 mode. The latter first
arises as a stable mode, and subsequently becomes destabilized through a Hopf bifurcation
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Figure 10. Azimuthal vorticity and streamlines of the base flow in the moving frame attached to the body for
L/d = 2 and a/A = 0.81, Re = 110.
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Figure 11. Amplification rate and Strouhal number for the three modes found for L/d = 2 and a/A = 0.81.
The horizontal range of the figure corresponds to Re ∈ [80–850].

at Re = 166.2. Then, O3 remains the predominant mode over the range of parameters
studied. A stable pocket is present between the appearance of the S1 and O3 modes
where the S1 and S2 branches collide, as they are both stable, forming the O3 branch.
Note that the value of the dimensionless frequency of the O3 mode is twice the value of
the previous case, St = 0.4227 at Re = 550. This fact is not really surprising since the
maximum axial velocity in the jet (as predicted by the annular Couette–Poiseuille solution
given in Appendix A) is about also twice the value of the previous case.

Considering the differences between the present case and the previous one, one
can postulate the existence of an intermediate value of the confinement ratio where
the collision of the S1 and S2 modes and the destabilization of the O3 mode will
occur simultaneously. This situation, characterised by the existence of two simultaneous
neutral modes with zero eigenvalues, corresponds to a codimension-two bifurcation of a
Takens–Bogdanov type. This point will be confirmed in the parametric study of § 3.2.

To end up with characterisation of the a/A = 0.81 case, figure 12 reveals the structure
of the unstable modes S1 and O3. Observations made in the previous subsection for
a/A = 0.75 apply here. We can add that the influence of the confinement is noticeable
in the S1 mode as the maximum of velocity of the base flow is higher compared with
the previous case. The O3 mode also possesses a patch of alternated sign of azimuthal
vorticity exhibiting higher extrema than the previous case, for the same reason cited just
above.

3.2. Cartography of m = ±1 modes in the a/A–Re plane for L/d = 2.
A first exploration of the stability picture has been carried out for some selected values
of a/A. The study is now extended continuously to a larger range of the confinement
parameter with a/A ∈ [0.01, 0.92]. The azimuthal wavenumber of the perturbation and
the length-to-diameter aspect ratio are kept respectively to m = ∓1 and L/d = 2.
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Flow past a bullet-shaped blunt body in a pipe
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Figure 12. Eigenmodes found for a/A = 0.81, real parts of the vorticity with iso-levels of pressure. Slices are
given for x = 2. Results are shown for (a) S1, Re = 140 and (b) O3, Re = 200.

The neutral stability curve for any mode is the location of zero amplification
perturbations. For each value of the ratio a/A, a critical Strouhal number Stc and a
critical Reynolds number are obtained which are the limit of the instability for any mode.
The neutral curves are displayed in figure 13 for the six modes of interest. The map is
built by following the branches in the parameter space with a step in confinement ratio
of Δ(a/A) = 0.001 and/or a Reynolds number increment of ΔRe = 1. A strategy has
been developed to ensure continuous and accurate values of the curve. A first sweep
of the (Re, a/A) plane is initially performed to save computational time. Then thorough
computations are conducted following unstable branches. For each confinement value, Re
is increased in order to find lower and upper bounds of it critical value Rec, and a linear
interpolation is completed to get a more accurate value such as λr(Rec) = 0.

The first important result observed from this figure is about the destabilization of the
axisymmetric base flow. It is always caused by the same S1 mode for all area ratios a/A
in the range 0.01 to 0.92. The loss of axial symmetry always occurs through a stationary
bifurcation.

The deep stability analysis has also revealed the existence, for the secondary modes,
of two different regimes and a transition zone. First, in the weakly confined regime, up to
a/A < 0.7, the secondary dominant mode is the O1 mode, and higher modes (S2, O2) arise
in a much larger range of Reynolds number which makes their physical relevance unlikely.
In addition, the sequence of instabilities with a non-oscillating S1 mode followed by an
oscillating O1 mode is thus the same as observed for other blunt bodies in free-stream flow
(Natarajan & Acrivos 1993; Fabre et al. 2008; Meliga et al. 2009b; Auguste et al. 2010).
The confinement is also found to be destabilizing for both these modes, as the critical
Reynolds thresholds decrease as the confinement ratio a/A grows. Large confinement also
increases the frequency of the oscillating O1 mode, consistent with the fact that the mean
velocity of the annular jet formed past the body increases with the confinement (for a given
flow rate, a decreasing section increases velocity).

A transition regime is observed in the interval 0.7 < a/A < 0.76. The threshold of the
S2 mode first decreases after a/A ≈ 0.6 to approach that of the O1 mode. The latter is
then strongly and abruptly stabilized, and it is no longer found for a/A > 0.72. In the
range 0.72 < a/A < 0.76 the stationary S2 mode becomes the dominant secondary mode.

The strongly confined regime occurs for a/A greater than 0.76. At this regime, the
oscillating modes O1 and O2 are no longer present and new ones (O3, O4) appear with
low or moderate dimensionless frequency. Let us follow in figure 13 the mode evolution
along a vertical line at a/A close to 0.86 and consider the evolution when increasing the
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Figure 13. Neutral curves in the Re − a/A plane, and critical Strouhal number as a function of the confinement
ratio. The body length is kept constant, L/d = 2. The dashed portions of the blue and purple curves are part of
the neutral curves corresponding to restabilization of the S1 and O3 modes.

Reynolds number. It can be seen that the initially stable S1 mode becomes unstable on a
short range of Re, then it is unstable in a larger range of Re, and finally the flow instability
is generated by the appearance of the modes O3 and O4. In a short area, coloured in grey
in the figure, a pocket of stability is found. It can be noticed that the neutral curve of the
O3 mode also displays two turning points close to Rec ≈ 200. So in a narrow range around
a/A = 0.84, the destabilization/restabilization sequence occurs twice as Re is raised. The
complexity of the stability diagram for very strong confinement is a translation of the real
physics complexity in this region with a fast annular wall jet, separated flows and vortical
interactions.

As already discussed, the emergence of the stable pocket is expected to be associated
to a codimension-two bifurcation of Takens–Bogdanov type, where both S1 and S2 modes
are simultaneously neutral. This statement is confirmed in figure 13, as indicated by the
green point with coordinates (a/A, Rec)

O3
TB = (0.769, 161.57) from which the O3 neutral
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Flow past a bullet-shaped blunt body in a pipe

curve emerges. Note that a second Takens–Bogdanov point is observed at coordinates
(a/A, Rec)

O4
TB = (0.91, 143.96). The latter bounds the stable pocket on the other side and

is associated to the emergence of the O4 mode. As indicated in the upper plot, the critical
Strouhal number of O3 and O4 modes is zero at the codimension-two points, as expected
for a Takens–Bogdannov bifurcation. The Strouhal numbers of these modes raise as one
moves away from these points.

3.3. Effect of the L/d aspect ratio
The effect of the length-to-diameter ratio L/d of the blunt body is now investigated keeping
again the restriction to m = ±1 modes. This geometrical parameter is found to modify
the stability properties only in the weakly confined regime at a/A < 0.7 identified above.
Consequently, only the neutral curves of the modes S1, S2, O1 and O2 relevant to this
regime are tracked. The neutral curves of these modes are shown in figure 14 for different
values of L/d = {4 6, 8, 10}. They are compared with the results of the reference case with
L/d = 2 presented in the previous paragraph (in green in figure 14). For low confinement,
a/A < 0.4, the increase of the body length stabilizes the flow as pointed out by Brücker
(2001) in his experiments. He suggests a larger boundary thickness caused by a longer
body is responsible for this stabilizing effect. To verify this argument, figure 15 (left plot)
shows the vorticity at the blunt body surface for different body lengths. On the ellipsoidal
nose (x < 0), the plots are superposed indicating the generation of the same amount of
vorticity. Then, on the cylindrical surface of the blunt body (x < 0), the vorticity reaches
a higher value for short objects. Indeed, a streamline along the body and its recirculation
zone is more curved for short objects, accumulating therefore more vorticity feeding the
separated flow in the rear.

In conclusion, for shorter objects, the recirculation zone generates stronger reverse
velocities (see figure 15, right plot), promoting wake instabilities at lower Reynolds
number compared with the case of longer objects. We can also note that even if the
vorticity intensities are quite different, their sizes do not differ so much.

Back to figure 14, as the area ratio increases, all curves tend to collapse into one, either
the Rec or the Stc. It means that, for a/A > 0.4, the body length does not have influence on
the onset of the four investigated instability modes. This is consistent with the fact that, as
verified in figure 7, once a certain confinement is reached and whatever the length of the
body, the velocity profile is the same and corresponds to the annular Couette–Poiseuille
solution recalled in Appendix A.

3.4. Higher azimuthal wavenumber modes
To complete the parametric study, we now consider eigenmodes with azimuthal
wavenumbers other than ±1. No axisymmetric (m = 0) unstable mode is found, but
numerous unstable modes with |m| > 1 are detected. Most of them occur in ranges of
Reynolds number far above the primary threshold of m = ±1 modes so they are not likely
to be observed in any real flow. Only two modes were detected with a critical Reynolds
number in the same range as m = ±1 modes. Both of them are non-oscillating, with
respectively m = 2, 3 azimuthal wavenumbers, and will be referred to as Sm=2 and Sm=3.
These modes arise in the strongly confined regime a/A > 0.6 where the length of the
body has a negligible effect. In this section we keep the body aspect ratio L/d = 2 but
conclusions given in this paragraph actually hold for all values of L/d.

The structure of these new eigenmodes are illustrated in figure 16. Their geometry is
best understood by looking at the views in a transverse x-plane (plots in the right column).
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Figure 14. Neutral curves of the stationary modes for different body lengths.
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Figure 15. Left, azimuthal vorticity of the base flow at the blunt body surface for Re = 330. Right, axial
velocity downstream the blunt body, the frame has been shifted in order to set the rear of the bodies at the same
location. Only the base flow for L/d = 2 has an unstable mode S1.
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Figure 16. Unstable non-oscillating modes at Re = 200 and a/A = 0.75. Left: z-component of the vorticity
and iso-level of pressure. Right: slice in the transverse plane at x = 2, streamwise component of the vorticity
and iso-levels of pressure, the red circle represents the projection of the base of the blunt body in this plane.

Mode O2 is characterised by the existence of two orthogonal symmetry planes and displays
four main structures of axial vorticity of alternated signs, while mode O3 has three planes
of symmetry and six main vorticity structures. Secondary vorticity structures of opposed
signs are also visible near the symmetry axis. The views in a vertical plane (left column)
give a complementary picture. One can notice that compared with m = ±1 eigenmodes
the present ones are more localized in the close wake and do not extend in the far wake.

The neutral curves in the (Rec, a/A) plane of the modes computed for m = {1,2,3} are
plotted in figure 17 which completes the results of figure 13 with additional azimuthal
wavenumbers. The Strouhal numbers are not displayed because the newly considered
modes are stationary, Stc = 0. For a low confinement, the stationary modes Sm=2 and
Sm=3 have critical Reynolds numbers much higher than the first unstable mode and they
are rather unlikely to be observed in real experiments. However, as the confinement
increases, their critical Reynolds number Rec decreases, and they alternatively become
the second and third mode to be unstable for a/A > 0.7. Interestingly, in this strongly
confined regime, these two modes become unstable for Reynolds number values very close
to those corresponding to restabilization of the S1 mode. Hence, in such ranges they are
the only unstable modes to exist. So non-axisymmetric flow characterised by azimuthal
wavenumber m = 2 or 3 (or a superposition of both) are expected to be observed without
the presence of any m = 1 component in experiments or simulations. Such structures are
characterised by the absence of lift forces exerted on the body, as justified, for instance, in
Tchoufag et al. (2014). Only m = ±1 modes can contribute to a lift force.

4. Exploration of nonlinear dynamics using DNS

In the previous section an exhaustive mapping of the linear stability characteristics of
the flow with respect to the aspect ratios and the Reynolds number has been performed.
In this section the nonlinear dynamics is now explored using DNS. The aim is both to
confirm the LSA predictions regarding the primary instability threshold and to investigate
the nonlinear dynamics arising away from this threshold.
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Figure 17. Critical Reynolds number as a function of the confinement ratio for all modes considered. The
body length is kept constant, L/d = 2.

4.1. Dynamical regimes detected by DNS and comparison with LSA
In the numerical exploration we selected five values of the confinement ratio a/A covering
the different regimes indicated by LSA, and ranges of Re from slightly below the primary
threshold found by LSA to about twice this value. The conducted simulation runs are given
by their coordinates in the parametric plane (Re − a/A) in figure 18.

Five general kinds of solutions are observed and are displayed using different
symbols. The first kind (white squares) is an axially symmetric state corresponding to
a stable configuration with zero lift L, i.e. the lift coefficient C� = L/1/2ρU∞πr2 is
measured lower than 10−4. The second (black squares) is a three-dimensional steady
state characterised by a constant lift and a symmetry plane. This state is noted SS1 as
its structure is a strong indication of the direct effect of a steady |m = ±1 eigenmode. The
third (black circles) is a RSP state. This mode is defined by an oscillatory lift around a
non-zero mean value, the wake still displaying a planar symmetry. Aperiodic behaviours
(black stars) have also been observed. Finally, the fourth kind of solutions (black triangle,
noted SS3) are steady states with a structure characterised by an m = 3 component.

The LSA predictions are reproduced in figure 18 to allow a comparison with DNS
results. The transition from the axisymmetric state and the steady non-axisymmetric state
SS1 revealed by DNS is observed to be well predicted by the marginal stability curve
Rec,S1(a/A), indicating destabilization of the S1 modes. This fully confirms that the
nonlinear state SS1 is effectively directly due to a supercritical nonlinear saturation of
the S1 mode.

On the other hand, in the computed cases, the observed secondary bifurcations (leading
either to a periodic RSP state or to an aperiodic state), does not directly match with
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Figure 18. Neutral curves computed previously using LSA and DNS results represented by the symbols.

any secondary bifurcation curve found by LSA. This is not really surprising, since the
secondary bifurcation occurs along the bifurcated steady state mode (SS) which differs
from the axisymmetric solution used as a base flow for the LSA. However, the nature of
the secondary modes revealed by LSA may still be relevant to fully explain the nonlinear
dynamics, as it will be demonstrated by a deeper exploration of few cases in the next
section.

4.2. Towards nonlinear behaviour, low confinement flow at a/A = 0.39
The temporal evolution of the wake for different Reynolds number and for a fixed area
ratio are now analysed with DNS. Figure 19 displays the Q-criterion for the four Reynolds
numbers Re = 130, 145, 175, 200, with two plots for each case corresponding to the view
in two orthogonal directions.

For Re = 130 (figure 19a), the flow corresponds to the axially symmetric state, in
accordance with the LSA prediction. The wake is axially symmetric and the view is
identical in both orthogonal directions. The structure behind the blunt body is stationary
and it consists of a toroidal recirculation bubble. For Re = 160 (figure 19b), the SS1 steady,
non-axisymmetric state is observed. The loss of axisymmetry results in a tilting of the
toroidal structure attached to the body, the latter expanding in one direction and retracting
in the opposite one.

The next states for Re = 175 and Re = 200 (figure 19c,d) correspond to the RSP
oscillatory state. The toroidal recirculation gets destabilized and hairpin vortices are
periodically advected in the streamwise direction. The interaction between those vortices
and the wall is visible through wall shaped vortices which merge with the hairpin vortices
as they move downstream.

948 A18-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.564


P. Bonnefis, D. Fabre and C. Airiau

(b)

(a)

(c)

(d )

Figure 19. Iso-contour of Q-criterion for a/A = 0.39, two perpendicular views are represented for each case.
From top to bottom, Re = 130, 145, 175, 200.

Up to here, the sequence of bifurcations and the structure of the observed states are
identical to the unconfined case (Bohorquez et al. 2011; Bury & Jardin 2012). The main
difference is that due to confinement, the bifurcations arise at a much lower Reynolds
number value. For instance, Bohorquez et al. (2011) report the first bifurcation for Re =
319 and the second for Re = 413.

Figure 20 displays the time history of the lift and drag coefficients (noted C� and Cd)
characterising forces exerted on the body calculated from DNS, again for a/A = 0.39.

For Re = 130 (case not displayed), the lift converges to a zero value. For all other cases,
after a short transient (not shown), the simulations first seem to converge towards a steady
state with zero lift, approximately in the range t ∈ [30–50]. The later evolution shows
however that this state is not stable, and a phase of linear instability characterised by
exponential growth of both coefficients is seen. In this linear phase the observed behaviour
of the lift coefficient corresponds to a purely exponential growth with non-oscillating
behaviour (≈ eσ t with real σ ). This is a clear signature of the emergence of the
non-oscillating mode S1 which is effectively the only unstable one detected by LSA for
the values of considered Re.
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Figure 20. Lift and drag coefficients from DNS simulations (L/d = 2 and a/A = 0.39) vs dimensionless
time, for (a) Re = 145, (b) Re = 160, (c) Re = 175 and (d) Re = 200.

For Re = 145 (figure 20a) and for Re = 160 (figure 20b), the subsequent nonlinear
evolution is a saturation towards the SS1 steady state with non-zero lift. On the other
hand, for Re = 175 (figure 20c), this steady state seems to be transiently approached by
the solution, but then a second phase of linear instability follows, this time with oscillating
behaviour (≈ eσ t with complex σ ) is observed. This trend is the signature of the existence
of a non-oscillating mode related to the O1 mode. For Re = 175, the saturated state
ultimately observed is the periodic, RSP state characterised by a lift force oscillating
around a non-zero mean value. For Re = 200 (figure 20d), the initial behaviour and
ultimate state are similar, but transient towards the RSP state and displays a low-frequency
modulation which is eventually damped.

The dimensionless frequency spectra of the two oscillating cases are presented in
figure 21. They are performed from the C� signal of figure 20 and the transitional
behaviours have been excluded. It has been verified that the sample is large enough and
does not influence the spectra. Both spectra lead to similar observations. The two peaks can
be interpreted as a fundamental frequency mode and its first harmonic. The amplitude of
the first harmonic is much lower than the fundamental and, therefore, it is not visible to the
naked eye on the signal which is very close to a pure sinusoid. As shown in the table found
in figure 21(c), the influence of the Reynolds number on the Strouhal number St is weak
with this Re range, DNS give a 2 % variation between Re = 175 and 200. This behaviour
is substantiated by the quasi-constant St values found using the LSA for low confinement
(see figure 4b). The St values given by DNS and LSA approaches are comparable even if
a 16 % relative difference is measured between DNS (Re = 200) and LSA at the threshold
(Re = 201.2). The discrepancy between these results can be explained by the fact that the
O1 mode is obtained using an axially symmetric base flow whereas this base flow is no
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DNS (b) 200 0.29196
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Figure 21. Frequency spectra for DNS case L/d = 2, a/A = 0.39, Re = 175 (a), Re = 200 (b) and table of St
values of the higher peaks (DNS) with corresponding Stc for LSA (c).

(b)

(a)

(c)

Figure 22. Iso-contour of Q-criterion for moderately confined cases; two perpendicular views are represented
for each case: (a) a/A = 0.74, Re = 100; (b) a/A = 0.74, Re = 115; (c) a/A = 0.74, Re = 160. For the last
case, instantaneous representations for three different instants are displayed.

longer present in the DNS for Re � 175, the RSP state oscillates around steady state which
is non-axisymmetric.

4.3. Towards nonlinear behaviours, moderately confined cases (a/A = 0.6 and 0.74)
Consider, now, the flow structures revealed by DNS in the range of moderately confined
cases. The beginning of the bifurcation sequence is the same as described in the previous
paragraph. With an initially symmetric state, followed by a steady, non-axisymmetric state.
Figure 22(a,b) displays these two states observed respectively for a/A = 0.74; Re = 100
and a/A = 0.74; Re = 115. Similar structures are obtained for a/A = 0.6 and the same
values of Re and are not displayed.

When raising the Reynolds number to Re = 150 in this range of moderately confined
cases, nonlinearities lead to richer dynamics compared with the previous cases. Consider,
first, the flow obtained for a/A = 0.74 (figure 22c). Although the flow symmetries still
indicate the (RSP) oscillatory state, the flow has a more complex structure than previously
observed. Two main oscillating regions can be seen: the first one is the upper part of
toroidal recirculation, close to the body, where a separated structure periodically appears.
The second one is formed by a more distant structure, a 45◦-inclined protrusion which is
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Figure 23. Characterisation of time-dependent forces exerted on the body for Re = 150, a/A = 0.74: (a) time
history of lift and drag coefficients, and (b) frequency spectrum of the lift coefficient.

advected downstream. Sticking to the case a/A = 0.74, Re = 150, figure 23(a) displays the
time history of the lift and drag coefficients. The lift force shows a temporal modulation
where both a low-frequency component (with dimensionless period of order 7.5) and a
high-frequency component (with a period about 10 times shorter) can be discerned. The
drag coefficient displays similar patterns but the amplitude of oscillations are extremely
small (less than 0, 5 % of the average value).

Although the time series may suggest a quasi-periodic behaviour, analysis of the Fourier
transform of the lift force (figure 23b) indicates that the behaviour is actually strictly
periodic, as demonstrated by the existence of a fundamental frequency, St1 = 0.1308
along with its harmonics. The spectrum also shows that apart form the fundamental,
a high-frequency content is centred around the harmonic number 10, corresponding to
St10 = 1.308. This matches with the high-frequency component detected in the time series
with a period about 10 times shorter compared with the low-frequency component.

Trying to relate these dynamics to the LSA results is a bit puzzling; going back to
figure 13 shows that no unsteady modes exist for a/A = 0.74 since O1 and O2 are only
detected for a/A < 0.73 and the low-frequency O3 mode only arises for a/A > 0.75.
However, again, the results obtained from LSA considering the axisymmmetric base flow
are only indicative here since the bifurcations arise from the steady non-axisymmetric
state. The order of magnitude of the Strouhal number St1 characterising the low-frequency
oscillation is in the same range as the O3 mode which exists for St ≈ 0.1–0.2, suggesting
that the O3 mode actually plays a role in the nonlinear solution given by DNS.

Consider, now, the flow obtained for a/A = 0.6 and Re = 150. The time series of
the exerted forces (figure 24a) show that periodicity is clearly lost and indicate a
chaotic behaviour. This is confirmed by examining the Fourier transform of the lift force
(figure 24b) which now shows a broadband spectrum.

4.4. Towards nonlinear behaviours, high confinement flow at a/A = 0.85
To end up the exploration of nonlinear dynamics, consider now a highly confined case
with a/A = 0.81. The first bifurcation again leads to the steady, non-axisymetric state and
is well explained by the onset of mode S1. On the other hand, when raising the Reynolds
number, the next bifurcation does not lead to time-dependent vortex shedding. Instead, the
flow remains stationary, but it acquires a structure characterised by the shedding of six
vortical structures compared with only two as in the SS1 state, as shown in figure 25(a)
for Re = 150. This structure is a strong indication of the presence of an eigenmode with
azimuthal wavenumber m = 3, and it is in accordance with the LSA results which indeed
predict the existence of the steady mode S3 in the same range of parameters. Plotting
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Figure 24. Characterisation of time-dependent forces exerted on the body for Re = 150, a/A = 0.6: (a) time
history of lift and drag coefficients, and (b) frequency spectrum of lift coefficient.
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Figure 25. Illustration of the wake for a/A = 0.85 and Re = 150. Iso-contour of Q-criterion (a), side and rear
diagonal views. Slices of the dimensionless pressure p∗ = p/(ρU2) in the wake of the body, at x/D = 1.2 (b)
and at x/D = 9 (c).

the pressure in a transverse slice just behind the body in figure 25(b) indeed indicates
a symmetry of order 3 (i.e. 3 symmetry planes). However, this symmetry is not perfect.
Indeed, plotting the pressure in a slice located farther downstream in figure 25(c) rather
demonstrates a symmetry of order one because the region of largest pressure (blue levels)
is slightly displaced towards the left. The presence of a m = 1 component in the flow
also manifests by the existence of a non-zero lift force, as indicated by the time series in
figure 26. This suggest that the observed flow structure actually results from the presence
of both S1 and S3 modes.

5. Summary and discussion

In this study the stability of the wake induced by a bullet-shaped blunt body moving at
constant velocity in moderate and strong confinement conditions has been investigated by
the mean of two different numerical approaches. The first one is the global LSA and it
has been performed on a rather exhaustive set of parameters (geometrical aspect ratios and
Reynolds numbers), more especially the (a/A, Re) plane has been widely explored. One
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Figure 26. Lift and drag coefficient for DNS case L/d = 2, Re = 150 and a/A = 0.85 vs dimensionless time.

of the main conclusions arising from this first study is that the first destabilization of the
axially symmetric is always associated to the stationary mode with azimuthal wavenumber
m = 1. In the low-confinement regime (a/A < 0.6) a sequence similar to the one seen
in the unconfined case is observed, characterised by the successive emergence of two
stationary (S1 and S2) modes and two oscillatory modes (O1 and O2), all with azimuthal
wavenumber m = 1. Increasing the confinement leads to a decrease of the associated
critical Reynolds numbers and an increase of the frequencies of the unsteady mode. The
length of the body also influences the results and tends to delay the instability.

On the other hand, in the highly confined regime (a/A > 0.75), although the primary
mode remains the S1 mode, the next ones to emerge are steady modes associated to
wavenumbers m = 2 and m = 3. This range is also associated to a restabilization of most
m = 1 modes: the oscillating modes O1 and O2 completely disappear, and the primary
stationary mode S1 restabilizes, and new unsteady modes called O3 and O4 characterised
by very low frequencies emerge. Interestingly, between these two latter events, there exists
a range of Reynolds number where all eigenmodes with m = 1 are stable and only unstable
modes with m = 2, 3 are present. Furthermore, in this high-confinement regime the results
become independent upon the length of the body. This is explained by the fact that a
parallel flow of Couette–Poiseuille type establishes within the annular gap between the
body and the wall.

The second part of this paper is a numerical exploration of the nonlinear dynamics. For
this, DNS are performed for various points of the (a/A, Re) plane in order to confront
the linear stability findings with numerical experiments. The results of the DNS agrees
well with the LSA approach close to the first instability threshold as expected. For low
confinement, the bifurcation scenario remains the same as that observed for bullet-shaped
blunt bodies. First the loss of axial symmetry occurs through a stationary bifurcation
implying a non-zero lift, and then an oscillatory behaviour is exhibited via the RSP state.
As the confinement raises, the scenario is no longer valid and other states emerge due
to the wall presence. For instance, aperiodic behaviour can be observed for intermediary
confinement, a/A = 0.6. The nonlinearity effects increase with the confinement as it is
illustrated for the RSP state when the section ratio is a/A = 0.74. This state differs greatly
from the one found for a low confinement: the wake oscillation gathers a large number of
harmonics of the same frequency as it has been demonstrated on spectra of the lift and
drag coefficients.

We conclude this paper with two last remarks. First, the influence of confinement can be
thought of as two ingredients: (i) the effect of the domain restriction by itself and (ii) the
effect of an additional shear associated to the boundary layer at the lateral walls. To check
their respective influence, we conducted a few tests by replacing the boundary condition at
the lateral wall by a ‘slip condition’, hence cancelling the second ingredient. Preliminary
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tests considering the case a/A = 0.75; L/d = 2 lead to contrasted results. On the one hand,
the steady S1 mode is found to be promoted by a slip condition, with a critical Reynolds
detected at ReS1 ≈ 63 compared with 110 with the no-slip condition. On the other hand,
an unsteady mode more akin to the O1 mode is detected to emerge for ReS1 ≈ 200 with
slip condition, in contrast with the fact that this mode vanishes for strong confinement
considering no-slip. A complete exploration of this issue is left for future work.

Finally, it is interesting to compare the observation of global instabilities detected by
LSA with the prediction of local approaches. Juniper (2006) conducted a comprehensive
study of the spatio-temporal stability properties of a family of axisymmetric wake/jets, and
identified the ranges of existence of global instabilities as a function of a co-flow parameter
Λ−1 = (U1 + U2)/(U1 − U2), where U1 and U2 are the characteristic velocities of the
central and peripheral zones, and of a confinement parameter h which in our case can be
identified with D/d − 1. Our own results for the base flow indicate a co-flow parameter of
order Λ−1 ≈ 0.2 in the region located in the near wake (x/d ≈ 1), and the range we have
explored corresponds to a confinement parameter in the range h ∈ [0.05–10]. Considering
figure 12(d) of the aforementioned paper, the flow is locally absolutely unstable in this
whole range. Hence, predictions of local analysis are consistent with the onset of the global
mode. However, as already identified in Bohorquez et al. (2011), spatio-temporal local
analysis only predicts oscillating modes with non-zero λi, so it may only explain the onset
of oscillating modes such as O1, O2, . . . , but not the steady S1 mode which is always the
first to emerge.
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Appendix A. Annular Couette–Poiseuille flow

For strongly confined cases, the flow may be approximated by a parallel flow u = ux(r)ex.
With these assumptions the Navier–Stokes equations written in the body frame can be
reduced to

1
r

∂

∂r

(
r
∂ux

∂r

)
= μ

dp
dx

, (A1)

where the axial pressure gradient can be shown to be constant. The volume flow rate
is given from the product of the front section of diameter D and of the body velocity,
i.e. the external wall velocity uw in the body frame. Let us use, for convenience, the aspect
ratio ξ = d/D, which is lower than 1. The reference length and reference velocity are
respectively set to d/2 and uw. The non-dimensional analytical solution (referred to now
as ux) is easily found by integration, with the help of the no-slip velocity on walls (ux(1) =
0, ux(1/ξ) = 1) and of the conservation of the volume flow rate qv = ξ−2uwπd2/4.
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The solution reads as

ux(r) = ξ2(η2 − 1) − (1 + ξ2) log η

(1 + ξ2) log ξ + 1 − ξ2 , η = 2r
d

, 1 � η � 1/ξ. (A2)

In addition the non-dimensional pressure gradient and the Reynolds number Red/2 are
related to ξ by

ξ2

(1 + ξ2) log ξ + 1 − ξ2 = 1
4Red/2

dp
dx

. (A3)

Obviously we can see that Red/2 = Re/2.

Appendix B. Mesh convergence for DNS simulations

Mesh convergences have been verified to trust the OpenFoam simulations. The output
parameters of the convergence analysis are some global quantities as the time average and
variance of respectively the drag coefficient (Cd, σCd ) and the lift coefficient (C�, σC�

).
The last output quantity is a Strouhal number evaluated in the body wake. Three main
parameters can qualify the mesh quality and they are described in the following.

The first parameter is the number of cells per blunt body diameter nc/D. In this study it
is chosen in {17, 35, 40, 70}. The refinement levels of the boundary layer developed along
the body, referred to as rBL, chosen in {3, 5} is the second parameter. The last parameter is
the resulting number of cells (automatically generated). During the mesh processing, the
cells in contact with a solid wall are divided in layers tangentially to this wall to ensure
a better capture of the boundary layer. The rBL parameter is simply the number of layers
defined by the user.

The lengths of the computational domain have been carefully chosen. The extent of
each mesh in the streamwise direction is 82 × d. The distance between the inlet and
the body nose is set to 20 × d and the distance between the body rear and the outlet is
60 × d. The convergence study has been performed for a Reynolds number of Re = 175.
The parameters and the values of the output quantities are reported in table 3. The mesh
referred to as F is the finest one and the results from simulations are considered as the
reference. Relative errors to the data of the F mesh case are also added in the table. It can
be seen that the values of the drag coefficient Cd and of the Strouhal St are converged for
all meshes, even for mesh A the coarsest one which could be assumed to be of bad quality.
The relative errors are lower than 0.46 % for Cd coefficients and lower than 0.77 for the
non-dimensional frequencies St. The lift coefficient C� can still be considered as converged
for all meshes with a maximal relative error up to 2.3 % for mesh A. Nevertheless, it seems
to be more difficult to reach convergence for the variances of Cd and C�. The explanation
can be found in the very low level of these variances compared with the mean value
of Cd and C� coefficients. It indicates a very low amplitude of the fluctuations and that
numerically some large dense meshes are always required in such a case.

Finally, mesh B (see figure 27) has been selected for the main computations in this paper
because it is the best compromise between numerical accuracy, mesh size and computer
resources.

The variances are quite low for C� and Cd, respectively being 6.8 % and 2 %. For
Reynolds numbers Re other than 175, the number of cells in the boundary layer has been
kept by using the scaling given by the law relative to the laminar boundary layer thickness
and the Reynolds number δBL/d ∝ Re−1/2.
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Mesh ref. Cells (×106) nc/D nBL Cd σCd C� σC�
St

A 0.28 17 5 6.8043 0.013311 0.26079 0.034502 0.28439
0.46 % 30 % 2.3 % 5.6 % 0.77 %

B 1.29 35 3 6.8075 0.010950 0.26237 0.032857 0.28603
0.42 % 6.8 % 1.7 % 2.0 % 0.20 %

C 1.55 35 5 6.8292 0.011845 0.26390 0.034830 0.28711
0.01 % 15 % 1.2 % 7.0 % 0.18 %

D 3.13 40 5 6.8381 0.011418 0.26505 0.034094 0.28813
0.03 % 11 % 0.73 % 5.8 % 0.54 %

E 8.46 70 3 6.8270 0.009906 0.26628 0.031337 0.28617
0.13 % 3.2 % 0.27 % 2.6 % 0.14 %

F 9.50 70 5 6.8381 0.010255 0.26700 0.032210 0.28659
ref. ref. ref. ref. ref.

Table 3. Comparison of global quantities for different meshes (Re = 175, a/A = 0.39, d/D = 0.625,
L/d = 2).

Figure 27. Axial cut-off of the mesh B.
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