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The steady behaviour of a rarefied gas around a rotating sphere is studied numerically
on the basis of the linearised ellipsoidal statistical model of the Boltzmann equation,
also known as the ES model, and the Maxwell diffuse–specular boundary condition.
It is demonstrated numerically that the normal derivative of the circumferential
component of the flow velocity and that of the heat flux diverge on the boundary
with a rate s−1/2, where s is the normal distance from the boundary. Further, it is
demonstrated that the diverging term is proportional to the magnitude of the jump
discontinuity of the velocity distribution function on the boundary, which originates
from the mismatch of the incoming and outgoing data on the boundary. The moment
of force exerted on the sphere is also obtained for a wide range of the Knudsen
number and for various values of the accommodation coefficient.
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1. Introduction
In this paper we consider a steady flow of a rarefied gas induced around a rotating

sphere in an unbounded domain. The problem is one of the most fundamental
external flow problems in fluid mechanics and in rarefied gas dynamics, whose
practical applications can be sought in aerosol sciences and/or in vacuum engineering.
In this paper, we revisit this classical problem (Loyalka 1992) and carry out precise
numerical analysis on the basis of the ellipsoidal statistical model of the Boltzmann
equation (the ES model) and the Maxwell diffuse–specular boundary condition.

Our motivation for the present study is twofold. The first is related to the Magnus
effect in a rarefied gas. That is, when there is a flow over a rotating sphere, the sphere
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6 S. Taguchi, K. Saito and S. Takata

experiences a lift known as the Magnus force (see e.g. Rubinow & Keller 1961). Our
interest is to understand and clarify the Magnus force acting on a rotating sphere in
a slow rarefied gas flow, for which the present analysis plays an important role. This
will be treated in a forthcoming paper.

The second motivation on which we will focus in the present paper is based on
recent theoretical works (Takata & Taguchi 2017; Takata et al. 2016b) on singular
behaviours of macroscopic quantities of rarefied gases (or the moments of the velocity
distribution function (VDF)). In rarefied gases, there are two main mechanisms
underlying the determination of the behaviour of the gas, namely the molecular
(ballistic) transport and collisions (scattering). The effect of the ballistic transport is
most highlighted when the gas is in contact with a convex body or boundary. In
general, there is a mismatch of the incoming and outgoing data of the unknown
(i.e. VDF) on a point on the boundary for the molecular velocity tangent to the
boundary, if the boundary is convex or flat. In the case where the boundary is
convex, this mismatch, or the discontinuity in VDF, propagates into the gas along
the characteristics of the transport equation, causing a singularity in the behaviour of
the macroscopic quantities on the boundary (Takata & Taguchi 2017). More precisely,
the normal derivative of the macroscopic quantities diverges in approaching the
boundary with diverging rate s−1/n, where s is the normal distance from the boundary
and n (n > 2) is the degree of the dominant terms of the polynomial that locally
approximates the boundary.

A spherical body is a typical convex body and the flow around a rotating sphere
is subject to this singular behaviour. However, this aspect has not been considered
in previous studies. A further investigation is still necessary in order to clarify the
detailed flow features, including not only the flow velocity and the shear stress,
but also the heat flow in the gas. In this paper, we will do this numerically. In
particular, we will show that the most rapidly diverging term in the macroscopic
quantities is proportional to the magnitude of the jump discontinuity of the VDF
on the boundary. This complements previous work (Takata & Taguchi 2017) and
clearly demonstrates the connection between the jump magnitude and the predicted
singularity. The Maxwell boundary condition plays an ingenious role for this purpose.
We also note that the present issue has a close connection to the S layer (Sone 1973;
Sone & Takata 1992) in the situation where the Knudsen number is small.

Incidentally, when the boundary is of a smooth concave shape or plane, the
characteristics tangent to the boundary do not enter the gas region. In these cases,
a weaker singularity was shown to occur (Takata & Funagane 2011; Takata &
Taguchi 2017), that is, the normal derivative of the macroscopic quantities diverges
in approaching the boundary with diverging rate ln s.

The rest of the paper is organised as follows. After the formulation (§ 2), the
reduction of the problem is carried out in § 3. Section 4 summarises analytical results
for the cases of large and small Knudsen numbers. Section 5 shows the numerical
results, followed by discussions (§ 6). Conclusions are drawn in § 7.

2. Formulation
2.1. Problem and basic assumptions

Let us consider a monatomic ideal gas around a sphere with radius L rotating about a
fixed axis passing through the centre with constant angular velocity Ω∗. We introduce
the space rectangular coordinate system Lxi (or Lx) in such a way that the origin
is located at the centre of the sphere and that the x1 axis is taken to be the axis
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A rarefied gas flow around a rotating sphere 7

of revolution of the sphere. At far distance from the sphere, the state of the gas
is the resting equilibrium state with density ρ∞ and temperature T∞. The (uniform)
temperature of the sphere is supposed to be the same as that of the gas at infinity.
We investigate the steady behaviour of the gas induced around the sphere, under the
following basic assumptions.

(i) The behaviour of the gas is described by the ellipsoidal statistical model (Holway
1966; Andries et al. 2000), which we call the ES model, of the Boltzmann
equation.

(ii) The gas molecules are reflected on the sphere surface according to the Maxwell
diffuse–specular boundary condition (Sone 2007).

(iii) The angular velocity of the sphere is sufficiently small, i.e. |Ω∗|L/(2RT∞)1/2� 1,
and the equation and boundary condition can be linearised around the reference
equilibrium state at rest. Here, R is the specific gas constant (i.e. the Boltzmann
constant divided by the mass of a molecule).

We further assume that the state of the sphere surface is homogeneous and therefore
the accommodation coefficient of the surface, denoted by α, is a constant independent
of the position on the surface. In the present study, we assume that the temperature
of the sphere is uniform and is the same as that of the gas at infinity. A justification
of this assumption is given in appendix A.

2.2. Basic equations

Let us introduce the molecular velocity (2RT∞)1/2ζi (or (2RT∞)1/2ζ ) and the VDF of
the gas molecules ρ∞(2RT∞)−3/2(1 + φ(x, ζ ))E, where E = E(ζi) = π−3/2 exp(−ζ 2

j ).
We also denote by ρ∞(1 + ω(x)) the density, by (2RT∞)1/2ui(x) the flow velocity,
by T∞(1+ τ(x)) the temperature, by p∞(1+ P(x)) the pressures, by p∞(δij + Pij(x))
the stress tensor and by p∞(2RT∞)1/2Qi(x) the heat-flow vector of the gas. Here,
δij is the Kronecker delta and p∞ = Rρ∞T∞. In the following, we also use the
spherical coordinate system (Lr, θ, ϕ) with its polar direction directed to the x1
axis. The corresponding components of the molecular velocity are denoted by
(2RT∞)1/2(ζr, ζθ , ζϕ). A similar convention will be used throughout the paper for
vectors and tensors (e.g. (ur, uθ , uϕ) etc.).

The linearised ES equation for the present steady problem reads

ζj
∂φ

∂xj
=

1
k
LES
[φ], (2.1)

LES
[φ] =−φ +ω+ 2ζjuj +

(
ζ 2

j −
3
2

)
τ + ν

(
ζiζj −

ζ 2
k

3
δij

)
Pij, (2.2)

ω= 〈φ〉, ui = 〈ζiφ〉, τ = 2
3

〈(
ζ 2

j −
3
2

)
φ
〉
, Pij = 2〈ζiζjφ〉, (2.3a−d)

where LES is the linearised collision operator for the ES model with the so-called
relaxation parameter ν ∈ [−1/2, 1),

〈g(ζi)〉 =

∫
gE dζ , (2.4)

and k is defined by

k=
√

π

2
Kn=

√
π

2
`∞

L
=
(2RT∞)1/2

Acρ∞L
. (2.5)
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8 S. Taguchi, K. Saito and S. Takata

Here, Kn is the Knudsen number with `∞ being the mean free path of the gas
molecules in the equilibrium state at rest with temperature T∞ and density ρ∞, and
Ac is a constant such that Acρ∞ is the collision frequency at the reference state. In
(2.4), dζ = dζ1 dζ2 dζ3 and the domain of integration is the whole space of ζ .

The Maxwell diffuse–specular boundary condition (or the Maxwell condition for
short) on the sphere is written as

φ = (1− α)φ(xi, ζi − 2ζrni)

+α

(
−2
√

π

∫
ζr<0

ζrφE dζ + 2Ωζϕ sin θ
)
, ζr > 0, (r= 1), (2.6)

where ni is the unit normal vector on the surface of the sphere pointed to the gas,
ζr = ζini, Ω =Ω∗L/(2RT∞)1/2 and α ∈ [0, 1] is the accommodation coefficient. When
α= 1, the specular reflection part of the condition (2.6) is absent and the condition is
known as the diffuse reflection condition. The Maxwell boundary condition is a model,
originally introduced by Maxwell, in which the molecules arriving at the boundary
are reflected diffusely with probability α and specularly with probability 1− α. This
model is the well-known gas–surface interaction model which can represent in a
simplest way the non-perfect accommodation with the boundary of the reflected
molecules. The simple combination of diffuse and specular reflections plays a key
role in the subsequent discussions because it allows us to control the magnitude of
the discontinuity in the VDF on the boundary by changing the parameter α (the
specular part produces no discontinuity on the boundary). Other models such as the
Cercignani–Lampis model (Cercignani 1988) do not represent the specular boundary
and therefore are inadequate for the present purpose of quantifying the relation
between the discontinuity and the diverging term in the macroscopic quantities. It
is also expected that, though the Maxwell condition is unable to reproduce some
physical details of actual molecular scatterings, a global property like the torque
acting on the sphere is well represented by this model.

On the other hand, the state of the gas approaches the equilibrium state at rest with
density ρ∞ and temperature T∞ (and pressure p∞) at infinity. Therefore, we have

φ→ 0 (r→∞). (2.7)

The pressure and the heat-flow vector are defined by

P= 2
3 〈ζ

2
j φ〉 =ω+ τ , Qi =

〈
ζi
(
ζ 2

j −
5
2

)
φ
〉
. (2.8a,b)

If we set ν = 0 in the (linearised) ES collision operator (2.2), we obtain the well-
known linearised BGK collision operator (Bhatnagar, Gross & Krook 1954; Welander
1954; Sone 2007):

LES
→LBGK, (ν→ 0), (2.9)

LBGK
[φ] =−φ +ω+ 2ζjuj +

(
ζ 2

j −
3
2

)
τ , (2.10)

where ω, ui and τ are still defined in (2.3).
When the state of the gas is close to the local equilibrium, the ES model yields the

following viscosity µ∞ and thermal conductivity λ∞ in the reference state:

µ∞ =

√
π

2
p∞(2RT∞)−1/2`∞

1− ν
, (2.11)

λ∞ =
5
√

π

4
p∞(2RT∞)−1/2R`∞. (2.12)
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A rarefied gas flow around a rotating sphere 9

Consequently, the corresponding Prandtl number for the ES model, defined by the
ratio of the kinematic viscosity to the thermal diffusivity, is given by

Pr=
5R
2
µ∞

λ∞
=

1
1− ν

, (2.13)

which is monotonically increasing in ν ∈ [−1/2, 1). The Prandtl number for a
monatomic gas is close to 2/3 both experimentally and theoretically (it is exactly 2/3
for pseudo-Maxwell molecules). As seen from (2.13), the ES model yields Pr= 2/3
by specifying the value ν = −1/2. This means that the ES model has an ability to
match both the viscosity and the thermal conductivity simultaneously to experimental
data for monatomic gases, while tuning the mean free path. However, this favourable
property is less important in the present linearised problem, because, as shown below
(§ 2.3), the temperature of the gas is uniform and therefore the thermal conduction is
irrelevant (note that the heat flux does not vanish in the gas though the temperature
is uniform). Also, for the reason explained at the end of § 5, ν (or Pr) is considered
as a free parameter and will not be specialised to ν = −1/2 (or Pr = 2/3) in this
study.

In the original (nonlinear) ES model, the Boltzmann collision term is replaced by
a relaxation operator, which is computationally more tractable. It can be viewed as
an extension of the BGK model (for which ν = 0), and has an advantage over other
similar models in that the Boltzmann H theorem has been proved for −1/2 6 ν < 1
(Andries et al. 2000). The modification of the original Boltzmann collision operator
may lose some details of the two-body collision mechanics involved in the original
collision kernel but retains the important basic properties. Moreover, it has been
shown in various flow problems that the adjustment of the mean free path in terms
of viscosity or thermal conductivity in accordance with the problem and the quantity
under consideration is required to have quantitatively a good agreement between the
BGK model and the Boltzmann equation. Various extensions of the ES model have
also been proposed in the context of gas mixtures (Brull 2015) and polyatomic gases
(Andries et al. 2000).

2.3. Similarity solution
The following similarity solution is compatible for the present problem:

φ =ΩζϕφS(r, ζr, ζ ) sin θ, (2.14)

where ζ = (ζ 2
i )

1/2
= (ζ 2

r + ζ
2
θ + ζ

2
ϕ )

1/2. With this similarity solution, the problem is
reduced to the following spatially one-dimensional problem for φS:

ζr
∂φS

∂r
+
ζ 2
− ζ 2

r

r
∂φS

∂ζr
−
ζr

r
φS =

1
k
LES

1 [φS], (2.15)

φS(1, ζr, ζ )= (1− α)φS(1,−ζr, ζ )+ 2α, ζr > 0, (2.16)
φS→ 0 (r→∞), (2.17)

where
LES
[ζϕφS] = ζϕLES

1 [φS] = ζϕ(−φS + 2ũϕ + 2νζrP̃rϕ), (2.18)

ũϕ = 1
2 〈(ζ

2
− ζ 2

r )φS〉, P̃rϕ = 〈ζr(ζ
2
− ζ 2

r )φS〉. (2.19a,b)
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10 S. Taguchi, K. Saito and S. Takata

Substituting (2.14) into (2.3) and (2.8), we find that the macroscopic quantities take
the following forms:

uϕ =Ω ũϕ(r) sin θ, (2.20a)

Prϕ =ΩP̃rϕ(r) sin θ, (2.20b)

Qϕ =ΩQ̃ϕ(r) sin θ, (2.20c)

and ω = ur = uθ = τ = P= Prr = Prθ = Pθθ = Pθϕ = Pϕϕ = Qr = Qθ = 0. Here, ũϕ and
P̃rϕ are given by (2.19), and

Q̃ϕ =
1
2

〈
(ζ 2
− ζ 2

r )
(
ζ 2
−

5
2

)
φS
〉
. (2.21)

Corresponding to (2.9), we have

LES
1 →LBGK

1 (ν→ 0), (2.22)

LBGK
1 [φS] =−φS + 2ũϕ. (2.23)

Multiplying (2.1) by ζiE and integrating the result with respect to ζ yield ∂Pij/∂xj=

0, from which one can show that d(r3P̃rϕ)/dr= 0, or equivalently

r3P̃rϕ = const. (2.24)

Therefore, r3P̃rϕ is a conserved quantity of the problem. In § 3, this property plays
a crucial role in finding a conversion relation between the ES and BGK models (see
also, e.g. Cercignani 1988; Takata, Hattori & Hasebe 2016a, and references therein).

If we denote by p∞L3(M, 0, 0) the moment of force (torque) acting on the sphere,
M is given by

M =−
∫
|x|=1

ε1jkxjPk`n` dS, (2.25)

where εijk is the Eddington epsilon and dS is the surface element on the sphere. By
the use of (2.20b), it is further simplified to

M =− 8
3πΩP̃rϕ(r= 1). (2.26)

Thus, if we express M as
M =ΩhM, (2.27)

hM = hM(k, Pr, α) is given by

hM =−
8
3πP̃rϕ(r= 1)=− 8

3πr3P̃rϕ(r), (2.28)

where (2.24) has been used for the second equality. Note that dimensionless torque hM
depends not only on k and Pr (or ν), but also on α through the boundary condition;
hence, the functional dependency is hM = hM(k, Pr, α). One of our interests is to
construct hM(k, Pr, α) for the ES model for a wide range of the parameter space.

No net force acts on the sphere in the present problem.
In our formulation, the problem has been linearised about the reference equilibrium

state at rest under the condition of slow rotation, i.e. |Ω| = |Ω∗|L/(2RT∞)1/2 � 1.
Since the domain is unbounded, it is important to determine the range of r in which
the linearisation is valid. In this problem, the perturbed VDF φ decays like r−2 as r→
∞ when k<∞. Consequently, the nonlinear term remains smaller than the transport
term (i.e. the left-hand side of (2.1)) as r is increased, implying that the linearisation
is valid uniformly in the whole gas region. The situation is therefore different from
that of a slow uniform flow past a sphere, for which a matched expansion approach is
required to treat the nonlinear effect in the region far from the sphere (Taguchi 2015;
Taguchi & Suzuki 2017).
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A rarefied gas flow around a rotating sphere 11

3. Relation between the solutions for the ES model and the BGK model
The problem contains three parameters: k, Pr (or ν) and α. Hence, the necessary

amount of computations is quite large. Fortunately, in the case of the ES model,
one can express the solution for arbitrary ν in terms of the solution for ν = 0 (the
BGK model), thereby reducing the amount of computations. In this section, for
the sake of discrimination, we denote the solution of the boundary-value problem
(2.15)–(2.17) based on the ES model and that based on the BGK model by φES

S and
φBGK

S , respectively (i.e. φBGK
S = φES

S |ν=0). Likewise, the corresponding macroscopic
quantities are distinguished using the superscript ‘ES’ or ‘BGK’.

Supposing that φBGK
S is known, we seek φES

S in the form

φES
S = a(r)+ bφBGK

S , (3.1)

where a is a function of r and b is independent of (r, ζr, ζ ). Because of the linearity
of LES

1 and LES
1 [1] = 0, we deduce

LES
1 [φ

ES
S ] − bLBGK

1 [φ
BGK
S ] =LES

1 [φ
ES
S − bφBGK

S ] + 2bνζrP̃BGK
rϕ = 2bνζrP̃BGK

rϕ . (3.2)

Thus, the subtraction of (2.15) for ν = 0 with φS = bφBGK
S from (2.15) with φS = φ

ES
S

leads to

ζr
∂(φES

S − bφBGK
S )

∂r
−
ζr

r
(φES

S − bφBGK
S )=

2νb
k
ζrP̃BGK

rϕ , (3.3)

or equivalently,

r
d
dr

(a
r

)
=

2νb
k

P̃BGK
rϕ (r). (3.4)

On the other hand, equation (2.24) allows one to write

P̃BGK
rϕ =

P̃BGK
rϕ |r=1

r3
. (3.5)

Substituting this into (3.4) and integrating the result with respect to r yield

a=−
2
3
νb
k

P̃BGK
rϕ |r=1

r2
+ βr, (3.6)

where β is an integration constant.
The constants β and b are determined as follows. First, condition (2.17) at infinity

requires a→ 0 as r→∞, and hence β = 0. Next, after noting that both φES
S and φBGK

S
satisfy the boundary condition (2.16) at r= 1 independently (for the same α > 0), we
have

a(1)= 2− 2b. (3.7)

Applying this to (3.6) (with β = 0) determines b, and hence a(r), as follows:

a=−
2ν
3k

P̃BGK
rϕ |r=1

1− (ν/3k)P̃BGK
rϕ |r=1

1
r2
, (3.8)

b=
1

1− (ν/3k)P̃BGK
rϕ |r=1

. (3.9)
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12 S. Taguchi, K. Saito and S. Takata

To summarise, φES
S is expressed in terms of φBGK

S as

φES
S =

(
1+

1
8π

Pr− 1
Prk

hBGK
M

)−1 (
φBGK

S +
1

4π

Pr− 1
Prk

hBGK
M

r2

)
, (3.10)

where we have replaced P̃BGK
rϕ |r=1 and ν by hBGK

M (≡ hM(k, 1, α)) and Pr, respectively,
by the use of the relation hBGK

M = −(8/3)πP̃BGK
rϕ |r=1 and (2.13). The corresponding

formulas for the macroscopic variables (i.e. the moments of φS) are summarised as

ũES
ϕ =

(
1+

1
8π

Pr− 1
Prk

hBGK
M

)−1 (
ũBGK
ϕ +

1
8π

Pr− 1
Prk

hBGK
M

r2

)
, (3.11a)

P̃ES
rϕ =

(
1+

1
8π

Pr− 1
Prk

hBGK
M

)−1

P̃BGK
rϕ , (3.11b)

Q̃ES
ϕ =

(
1+

1
8π

Pr− 1
Prk

hBGK
M

)−1

Q̃BGK
ϕ . (3.11c)

The moment of force acting on the sphere is also expressed as

hES
M =

(
1+

1
8π

Pr− 1
Prk

hBGK
M

)−1

hBGK
M . (3.12)

With the aid of these relations, one can readily obtain the solution for the ES model
from that for the BGK model (Pr= 1 or ν = 0) for the common k and α. Moreover,
the relation can be used to check the accuracy of numerical computation, if one has
solutions for Pr= 1 and Pr 6= 1 for the same k and α.

4. Results for large and small k

Before proceeding to the actual numerical analysis, we summarise here some
analytical results available for large and small k. The formulas given in this section
are not restricted to the ES model.

The solution in the case of a collisionless gas, i.e. k=∞, is easily obtained for the
present problem and is given by

φS =

{
2αr, (0 6 θζ <Arcsin(r−1)),

0, (Arcsin(r−1) < θζ 6π).
(4.1)

Here, θζ (0 6 θζ 6 π) is the polar angle of the molecular velocity ζi measured from
the radial direction, i.e. θζ = Arccos(ζr/ζ ). Thus, the solution is simply proportional
to α in the case of the collisionless gas. The macroscopic quantities and the torque
acting on the sphere are easily obtained and are summarised as follows:

ũϕ =
αr
2

[
1−

√
1−

1
r2

(
1+

1
2r2

)]
, (4.2a)

P̃rϕ =
α

π1/2

1
r3
, (4.2b)

Q̃ϕ = 0, (4.2c)

hM =−
8
3π

1/2α. (4.3)
Thus, the heat flow vanishes in the collisionless limit. From the above expression, it
is easily seen that dũϕ/dr diverges with the rate (r− 1)−1/2 as r ↓ 1.
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A rarefied gas flow around a rotating sphere 13

k0 a1 a2 a3 3k2
0 − 3a1 + a2 + a3

BGK −1.01619 0.76632 0.50000 −0.26632 1.03265
ES (Pr= 2/3) −0.67746 0.51088 0.33333 −0.17755 0.00000
HS −1.25395 0.90393 0.66012 −0.24381 2.42169

TABLE 1. The slip coefficients occurring in (4.4a)–(4.4c) for the BGK model, for the
ES model with Pr = 2/3 and for the hard-sphere gas (HS) under the diffuse reflection
boundary condition (or the Maxwell boundary condition with α = 1). Data taken from
Sone (2007) and Takata et al. (2016a).

The asymptotic expressions of the flow field for k� 1 are obtained with the aid
of the asymptotic theory (the generalised slip flow theory) (Sone 2002, 2007). We
summarise the results in the case of α = 1:

ũϕ =
1
r2
+ 3k

(
k0

r2
+ Y0(η)

)
+ 3k2

(
3k2

0 − 3a1 + a2 + a3

r2
+Y(η)

)
+ · · ·, (4.4a)

P̃rϕ =
3γ1k(1+ 3kk0 + 3k2(3k2

0 − 3a1 + a2 + a3)+ · · ·)

r3
, (4.4b)

Q̃ϕ =−3kHA(η)+ · · · (4.4c)

and
hM =−8πγ1k(1+ 3kk0 + 3k2(3k2

0 − 3a1 + a2 + a3)+ · · ·), (4.5)

where
Y(η)= 3k0Y0(η)− 3Ya1(η)+ Ya2(η)+ Ya3(η) (4.6)

and η = (r − 1)/k. We note that γ1k is the dimensionless viscosity ((
√

π/2)γ1p∞
(2RT∞)−1/2`∞ is the viscosity, where γ1= 1/(1− ν)=Pr for the ES model, γ1= 1 for
the BGK model and γ1 = 1.270042427 for the hard-sphere model), k0, a1, a2 and a3
are the slip coefficients and Y0(η), Ya1(η), Ya2(η), Ya3(η) and HA(η) are the Knudsen-
layer functions (Sone 2007). The slip coefficients and the Knudsen-layer functions
depend on the molecular model as well as on the model of the molecular scattering
law on the surface. The values for the ES model under the diffuse reflection boundary
condition, i.e. α = 1, have recently been obtained in Takata et al. (2016a). In that
study, it was shown that the above slip coefficients and the Knudsen-layer functions
for the ES model are related to those for the BGK model (i.e. Pr=1) by the following
simple relations:

(k0, a1, a2, a3)ES = Pr(k0, a1, a2, a3)BGK, (4.7)
(Y0, Ya1, Ya2, Ya3,HA)ES = Pr(Y0, Ya1, Ya2, Ya3,HA)BGK, (4.8)

where the subscripts ‘ES’ and ‘BGK’ stand for the slip coefficients and Knudsen-layer
functions for the ES model and for the BGK model, respectively. We list the values
of the slip coefficients for the BGK model and those for the ES model with Pr= 2/3
under the diffuse reflection boundary condition in table 1. For the ES model with
Pr= 2/3, the combination 3k2

0 − 3a1 + a2 + a3, occurring at the third term in ũϕ , P̃rϕ
and hM, turns out to be practically zero.

We note that the S-layer corrections, which are required at the bottom of the
Knudsen layer (Sone & Takata 1992), have not been included in the above formulas
for ũϕ and Q̃ϕ for k� 1.
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14 S. Taguchi, K. Saito and S. Takata

5. Numerical results
We solved the boundary-value problem (2.15)–(2.17) numerically by a finite

difference method. The main feature of the present problem is the propagation of the
discontinuity of the VDF in the phase space along the characteristics r sin θζ = 1
(θζ = Arccos(ζr/ζ )). In order to capture this feature accurately, our method is
based on a hybrid scheme consisting of a finite difference method and a method of
characteristics. Its original form, among its variants, was developed for an evaporating
flow from a cylindrical condensed phase (Sugimoto & Sone 1992) and then applied
to the problem of a slow uniform flow past a sphere (Takata, Sone & Aoki 1993).
Recently, the process of calculating the discontinuity was refined in Taguchi & Suzuki
(2017). The numerical computations were carried out for Pr = 1 (or ν = 0) and
Pr= 2/3 (or ν =−0.5), and for various values of the accommodation coefficient α.

It should be emphasised that a proper account of the discontinuity in the VDF is
crucial for the purpose of the present study. Loyalka (1992) solved the same problem
numerically by using the Legendre polynomial expansion (truncated at the fourth term)
of the linearised collision kernel for a hard-sphere gas. However, probably due to
his main interest in the global quantities (e.g. the torque), the discontinuity of the
velocity distribution was not taken into account there. In the present study, numerical
computations were carried out carefully and faithfully at the level of the VDF in order
to achieve the high accuracy required to reveal precise structures of the flow field. This
is computationally quite challenging even with the ES or BGK model.

5.1. Behaviour of the macroscopic quantities
We first show the behaviour of the macroscopic quantities. Figure 1 shows the profiles
of uϕ/Ω sin θ , Prϕ/Ω sin θ and Qϕ/Ω sin θ in the case of diffuse reflection (α = 1)
for k= 0.1, 1 and 10. The solid line indicates the results for Pr= 2/3 and the dashed
line those for Pr= 1 (or the BGK model). A flow is induced around the sphere due
to the sphere rotation. The flow speed is faster for Pr= 2/3 than for Pr= 1 for the
same k. On the other hand, the flow speed is larger for smaller k and approaches the
limit uϕ→ αΩ sin θ/r2 as k→ 0. The tangential stress Prϕ is inversely proportional
to r3 as seen from (2.24). There occurs a heat flux flowing in the opposite direction
to the mass flow when 0< k<∞, in spite that the temperature is uniform. Note that
this heat flow, however, vanishes in the collisionless limit (see (4.2c)).

Next, in order to see the effect of the accommodation coefficient α, the profiles of
uϕ/Ω sin θ and Qϕ/Ω sin θ for various α (α= 1, 0.6 and 0.2) are presented in figure 2
in the case of Pr= 2/3 (k= 0.1, 1 and 10). The magnitude of the flow velocity and
that of the heat flux decrease with a decrease of α.

We have seen that the gradient of the tangential flow velocity ∂uϕ/∂r diverges on
the boundary r = 1 in the case of collisionless flow (k = ∞). It is also seen from
figures 1 and 2 that uϕ and Qϕ vary sharply near the boundary r = 1. Though it is
difficult to see from the figure, the heat flux Qϕ for α= 0.2 is also seen to vary quite
sharply near r= 1 if the figure is enlarged. In order to see this behaviour more clearly,
we show in figure 3 the variations of uϕ and Qϕ near the boundary as functions of
s= r− 1 for k= 10, 1 and 0.1, in the case of the diffuse reflection boundary condition
(α= 1). Clearly, these quantities approach their boundary values in proportion to s1/2

for each Knudsen number, implying that the divergence of ∂uϕ/∂r and ∂Qϕ/∂r occurs
at r = 1. This seems paradoxical from the conventional fluid mechanics viewpoint,
because the divergence of the derivative of the flow velocity implies that the viscous
stress is not well defined on the boundary. Note that, however, the stress is not
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FIGURE 1. Profiles of the macroscopic quantities in the case of α = 1 (the diffuse
reflection boundary condition): (a) uϕ , (b) Prϕ , (c) Qϕ . The solid line indicates the results
for Pr = 2/3 and the dashed line those for Pr = 1. The value at r = 1 is indicated by
E for Pr= 2/3 and by@ for Pr= 1.

determined by the derivative of the flow velocity in a rarefied gas, but is directly
related to the VDF. In figure 4, we show the variations of the same macroscopic
variables for different values of α in the case of the Maxwell boundary condition
for k = 10 (Pr = 1). Again, we see the occurrence of the gradient divergence of
the macroscopic variables on the boundary, implying that this phenomenon is not
restricted to the case of the diffuse reflection boundary condition. In figure 4(b),
several results based on different lattice systems, (M1)–(M3), are shown for α = 0.2
((M1) is the finest and (M3) is the coarsest). When the mesh near r = 1 is refined,
the variation tends to follow that of s1/2. The cause of the gradient divergence is due
to the propagation of the discontinuity of the VDF in the gas. We will come back to
this point later in § 6. For the moment, we continue to present our numerical results.

5.2. Moment of force acting on the sphere
We now show the results for the (dimensionless) moment of force hM acting on
the sphere. Figure 5 shows hM as a function of k for Pr = 1 and 2/3 and for
various values of α (α = 1, 0.6 and 0.2). The symbols represent the results of
direct numerical analysis. For comparison, the values of hM for Pr = 2/3 are also
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FIGURE 2. Profiles of uϕ and Qϕ for various α in the case of Pr = 2/3: (a,b) k = 0.1,
(c,d) k= 1, (e, f ) k= 10. The value at r= 1 is indicated byE.

calculated from those for Pr = 1 with the aid of formula (3.12) and are shown by
the symbol + in figure 5(b). The results of the direct numerical computations and
those obtained from the formula agree well (see also table 3). The corresponding
values for Pr= 1 and those for Pr= 2/3 are tabulated in tables 2 and 3, respectively,
where the results for α = 0.8 and 0.4 are also included. The magnitude of hM
increases monotonically with k, and approaches the limiting value hM→−(8/3)π1/2α
as k→∞. The moment of force decreases in its magnitude with the decrease of
the accommodation coefficient α. The two-term asymptotic formula and three-term
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FIGURE 3. Variations of uϕ and Qϕ near the surface of the sphere as functions of the
normal distance s= r− 1 for various k (Pr= 1, α = 1): (a) uϕ , (b) Qϕ .
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FIGURE 4. Variations of uϕ and Qϕ near the surface of the sphere as functions of the
normal distance s = r − 1 for various α (Pr = 1, k = 10): (a) uϕ , (b) Qϕ . (M1)–(M3)
in (b) are the results based on different lattice systems; (M1) is the finest and (M3) is
the coarsest.

formula for α= 1 (the dash-dotted line and the solid line) do not make a difference in
the case of Pr= 2/3, since the coefficient of the term k3 is zero within the significant
figures (see table 1). Incidentally, the asymptotic formula for the Maxwell boundary
condition with α ∈ (0, 1) requires information on the slip coefficients (k0, a1, a2, a3)
for α 6= 1. The values of the first-order slip coefficient k0 under the Maxwell boundary
condition were obtained by Wakabayashi, Ohwada & Golse (1996) for various α, for
a hard-sphere gas. Results based on the variational approach are available in Loyalka
& Hickey (1989). The leading-order term of the formula is given by hM =−8πγ1αk.

The increasing trend of −hM in terms of k can be interpreted in the case of large
and small k as follows. For the sake of convenience of discussion, we take a frame
of reference rotating with the sphere, in which the sphere is at rest and the fluid is
rotating. Also for clarity, we consider the situation where the molecules are reflected
diffusely on the surface. In this case, the reflected molecules have an isotropic velocity
distribution and give no contribution to the tangential momentum flux on the surface
at a point under consideration. Then, the torque acting on the sphere is determined
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FIGURE 5. Plots of hM versus k on the basis of the ES model under the Maxwell
boundary condition with accommodation coefficient α: (a) Pr = 1 (or the BGK model),
(b) Pr= 2/3. The symbol ◦ indicates the numerical results. The horizontal lines indicate
the values in the collisionless gas limit (k→∞). The results based on the asymptotic
formula (4.5) for α= 1 are shown by the dashed line (one term), by the dash-dotted line
(two terms) and by the solid line (three terms). In (b), the symbol + represents the result
obtained from that for Pr= 1 with the aid of formula (3.12).

k α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 0.7179 1.1589 1.4588 1.6771 1.8439
0.2 0.8283 1.4753 1.9960 2.4253 2.7861
0.3 0.8695 1.6106 2.2510 2.8106 3.3047
0.4 0.8902 1.6829 2.3940 3.0362 3.6197
0.5 0.9024 1.7269 2.4837 3.1814 3.8271
0.6 0.9104 1.7562 2.5445 3.2814 3.9723
0.7 0.9159 1.7769 2.5881 3.3541 4.0789
0.8 0.9200 1.7923 2.6208 3.4090 4.1601
0.9 0.9231 1.8042 2.6462 3.4519 4.2239
1 0.9256 1.8136 2.6663 3.4861 4.2751
2 0.9361 1.8541 2.7547 3.6384 4.5058
3 0.9393 1.8669 2.7829 3.6876 4.5813
4 0.9409 1.8730 2.7966 3.7117 4.6185
5 0.9418 1.8767 2.8047 3.7260 4.6405
6 0.9424 1.8791 2.8100 3.7354 4.6551
7 0.9428 1.8808 2.8138 3.7421 4.6655
8 0.9432 1.8820 2.8166 3.7470 4.6733
9 0.9434 1.8830 2.8188 3.7509 4.6793
10 0.9436 1.8838 2.8206 3.7540 4.6840

TABLE 2. Values of −hM for various k and α on the basis of the BGK model (or
the ES model with Pr = 1) under the Maxwell boundary condition with accommodation
coefficient α.

solely by the tangential momentum flux carried by the impinging molecules on the
boundary. For the free molecular flow, all the impinging molecules come directly from
infinity. When k is large but finite, some molecules, after having been reflected on the
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A rarefied gas flow around a rotating sphere 19

k α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1

0.1 0.6282 (0.6282) 0.9417 1.1306 — 1.2575 (1.2575) 1.3490 (1.3490)
0.2 0.7653 — 1.2865 1.6654 — 1.9539 (1.9538) 2.1815 (2.1814)
0.3 0.8221 — 1.4552 1.9586 (1.9586) 2.3691 (2.3690) 2.7106 (2.7105)
0.4 0.8524 — 1.5529 2.1393 (2.1392) 2.6379 (2.6378) 3.0674 (3.0674)
0.5 0.8711 — 1.6158 2.2603 — 2.8239 — 3.3213 (3.3212)
0.6 0.8837 — 1.6595 2.3465 — 2.9594 — 3.5100 (3.5099)
0.7 0.8927 — 1.6915 2.4108 — 3.0622 — 3.6552 (3.6551)
0.8 0.8994 — 1.7158 2.4605 — 3.1426 — 3.7701 (3.7700)
0.9 0.9047 — 1.7350 2.4999 — 3.2072 — 3.8632 (3.8631)
1 0.9089 (0.9089) 1.7504 2.5320 — 3.2600 — 3.9400 (3.9400)
2 0.9275 — 1.8206 2.6813 — 3.5113 — 4.3125 (4.3125)
3 0.9335 — 1.8440 2.7325 — 3.5996 — 4.4462 (4.4462)
4 0.9365 — 1.8558 2.7582 — 3.6444 — 4.5147 (4.5147)
5 0.9383 — 1.8628 2.7737 — 3.6715 — 4.5564 (4.5564)
6 0.9395 — 1.8674 2.7841 — 3.6897 — 4.5844 (4.5844)
7 0.9403 — 1.8708 2.7915 — 3.7027 — 4.6045 (4.6045)
8 0.9409 — 1.8733 2.7970 — 3.7124 — 4.6196 (4.6196)
9 0.9414 — 1.8752 2.8014 — 3.7201 — 4.6314 (4.6313)
10 0.9418 (0.9418) 1.8767 2.8048 — 3.7261 — 4.6408 (4.6408)

TABLE 3. Values of −hM for various k and α on the basis of the ES model with Pr =
2/3 under the Maxwell boundary condition with accommodation coefficient α. The results
were obtained from those for Pr= 1 with the aid of formula (3.12). The results of direct
numerical computations for Pr= 2/3 are shown in parentheses.

surface, collide with the incoming molecules and hit them back, thereby reducing the
momentum flux transmitted to the boundary. The torque is therefore reduced with a
decrease of k when k is large. On the other hand, when k is small, the molecules
coming from the region several mean free paths away from the surface essentially
determine the momentum flux. Since there is a shear around the sphere, the molecules
arriving at a point on the surface have faster tangential velocity when k becomes larger.
Therefore, the torque increases with k, when k is small.

Finally, we compare hM for different Pr in the case of α = 1 (i.e. the diffuse
reflection boundary condition) in figure 6. Here, the results for Pr > 1 are also
included though this is unrealistic for a gas. The value of −hM increases with the
increase of Pr. However, if Pr is further increased, the monotonicity of −hM with
respect to k is lost.

Remark 1. We have so far confined our consideration to the case of a monatomic
gas. The extension to the case of a polyatomic gas is simple if we adopt the
ES model for a polyatomic gas proposed by Andries et al. (2000) to replace our
basic equation (with a suitable modification in the diffuse reflection boundary
condition). Let us denote by δ the number of internal degrees of freedom of a
gas molecule, by RT∞ε the energy related to the internal degrees of freedom and by
ρ∞(2RT∞)−3/2(RT∞)−1(1 + φ(x, ζ , ε))E(ζi)Eδ(ε) the molecular VDF, where Eδ(ε) =
Λδε

δ/2−1 exp(−ε) with Λ−1
δ =

∫
∞

0 εδ/2−1 exp(−ε) dε. We also introduce the following
notations for the polyatomic gas under consideration: `∗

∞
= (2/

√
π)(2RT∞)1/2/A∗cρ∞

with A∗c being a constant is the molecular mean free path at the reference equilibrium
state at rest, Kn∗= `∗

∞
/L, k∗= (

√
π/2)Kn∗, α∗∈[0,1] is the accommodation coefficient
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FIGURE 6. Plots of hM versus k for various Pr in the case of α= 1 (the diffuse reflection
condition). The symbols show the numerical results based on the ES model, which are
connected by solid lines.

(for the present linearised problem, the Maxwell boundary condition on the sphere
is given by φ = (1 − α∗)φ(xi, ζi − 2ζrni, ε) + α

∗(−2
√

π
∫
ζr<0

∫
∞

0 ζrφEEδ dε dζ +

2Ωζϕ sin θ), ζr > 0, (r= 1)) and

Pr∗ =
δ + 5

2
Rµ∗
∞

λ∗
∞

(5.1)

is the Prandtl number, where µ∗
∞

and λ∗
∞

are, respectively, the viscosity and the
thermal conductivity at the reference state. Then, if we introduce the similarity
solution similar to (2.14) as well as its marginal with respect to the energy related to
the internal degree of freedom, i.e.

φ =ΩζϕφS(r, ζr, ζ , ε) sin θ and FS(r, ζr, ζ )=

∫
∞

0
φSEδ dε, (5.2a,b)

it turns out that FS solves the same equation and boundary conditions as φS, (2.15)–
(2.19), provided that the following correspondence between the parameters is satisfied:

k∗ = k, α∗ = α, Pr∗ = Pr= 1/(1− ν). (5.3a−c)

Under the same condition, the macroscopic variables of the polyatomic gas also
coincide with those of a monatomic gas. Therefore, the present result for a monatomic
gas also gives the result for the case of a polyatomic gas. This also signifies the
utility of the conversion formula derived in § 3.

We conclude this section by a brief summary of the present numerical analysis.

(i) The flow speed is faster for Pr= 2/3 than for Pr= 1 and faster for smaller k.
(ii) There exists non-zero heat flux in the gas in spite that the temperature of the gas

is uniform. The heat flow vanishes at the two limits k=∞ and 0.
(iii) The flow and heat flow decrease as the accommodation coefficient (α) becomes

small.
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(iv) The tangential component of the flow velocity and that of the heat flux, uϕ
and Qϕ , vary abruptly near the boundary in a way that their normal derivatives
diverge on the boundary with the rate (r − 1)−1/2. On the other hand, as (2.24)
implies, such a divergence of the normal derivative does not occur for Prϕ . Such
observations are not peculiar to the diffuse reflection boundary condition.

(v) Magnitude of dimensionless torque −hM(> 0) is monotonically increasing in k if
Pr is not very large.

(vi) The present result is also applicable to the case of a polyatomic gas.

6. Discussions: gradient divergence
We have seen that the normal derivatives of the macroscopic quantities uϕ and Qϕ

diverge on the boundary. The present section discusses the cause of the occurrence of
gradient divergence in more detail along the line of Takata & Taguchi (2017). The
point is the propagation of the discontinuity of the VDF along the characteristics
r sin θζ = 1 in the phase space.

Let us consider the tangential flow velocity uϕ as an example, whose radial
dependency ũϕ(r)(= uϕ/Ω sin θ) is given by

ũϕ =π

∫
∞

0

∫ π

0
ζ 4 sin3 θζφS(r, θζ , ζ )E dθζ dζ . (6.1)

Here, φS is regarded as a function of (r, θζ , ζ ). Now, keeping in mind that φS is
discontinuous at θζ = θ∗ζ ≡ Arcsin(r−1), we differentiate the above expression with
respect to r to obtain

dũϕ
dr
=π

∫
∞

0

∫ π

0
ζ 4 sin3 θζ

∂φS

∂r
E dθζ dζ −π

∫
∞

0
ζ 4
[φS]

± sin3 θ∗ζ
dθ∗ζ
dr

E dζ , (6.2)

where
[φS]

±
= φS(r, θ∗ζ + 0, ζ )− φS(r, θ∗ζ − 0, ζ ). (6.3)

The second term arises because the location of the discontinuity θζ = θ
∗

ζ (r) changes
with r. Now substituting the explicit form of θ∗ζ , the second term is further
transformed into

(second term)=
π

r4
√

r2 − 1

∫
∞

0
ζ 4
[φS]

±E dζ , (6.4)

which diverges with the rate (r − 1)−1/2 as r ↓ 1, provided that |
∫
∞

0 ζ 4
[φS]

±E dζ | is
bounded from below by a positive constant. On the other hand, the first term diverges
at most logarithmically on approaching the boundary. We leave the estimate of the first
term in appendix B. Thus, the normal derivative ∂uϕ/∂r diverges on the boundary with
the diverging rate (r− 1)−1/2 due to the second term of (6.2). Since its mechanism is
the propagation of the discontinuity of the VDF into the gas, it should be observed
irrespective of the magnitude of k (even in the free molecular gas limit). Similarly,
we can show that ∂Qϕ/∂r diverges with the same rate, (r− 1)−1/2, as r ↓ 1, which is
also consistent with our numerical results.

Now let us introduce the following notation for the integral measuring the
magnitude of jump across r sin θζ = 1 (a weighted marginal with respect to the
ζ -variable):

G(r)=
∫
∞

0
ζ 4
[φS]

±E dζ . (6.5)
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FIGURE 7. (a) Plots of C1 and G0 = limr↓1
∫
∞

0 ζ 4
[φS]

±E dζ for various accommodation
coefficients α in the cases of k= 10 and 1 (Pr= 1). The circles (E,u) are for the case
k= 10 and the triangles (A,q) for the case k= 1. (b) Double-log plot of |C1| versus |G0|

for k = 10 (E) and 1 (A). In both panels, the symbols represent the numerical results,
which are connected by solid lines.

k= 10 k= 1
α C1 G0 C1/G0 α C1 G0 C1/G0

1 −1.0380 −0.2343 4.431 1 −0.8796 −0.1976 4.453
0.8 −0.8334 −0.1881 4.430 0.8 −0.7301 −0.1641 4.450
0.6 −0.6274 −0.1416 4.430 0.6 −0.5683 −0.1277 4.449
0.4 −0.4198 −0.0948 4.429 0.4 −0.3933 −0.0884 4.447
0.2 −0.2106 −0.0476 4.428 0.2 −0.2042 −0.0459 4.445

TABLE 4. Values of C1 and G0 = limr↓1
∫
∞

0 ζ 4
[φS]

±E dζ for various accommodation
coefficients α (k= 10, 1).

From the above discussion, ũϕ can be expressed as ũϕ = ũϕ|r=1 + C1(r − 1)1/2 + · · ·
for r∼ 1, and the coefficient C1 of the leading term of the diverging gradient should
be related to G0 ≡ limr→1+0 G(r) as

C1 = 21/2πG0, (6.6)

where the factor 21/2π is purely geometric. To check this relation, the value of C1
was obtained by fitting the curve ũϕ = ũϕ|r=1 + C1(r − 1)1/2 to the numerical data
by the least-squares method using five data points adjacent to the boundary. At the
same time, the value of G0(=G(1)) was calculated numerically using the data of φS
at θζ = π/2 ± 0 on the boundary. We show the values of C1 and G0 thus obtained
in table 4 and in figure 7 for k= 10 and 1 and for various α in the case of Pr= 1.
It is clearly observed that C1 varies in proportion to G0, a measure of the magnitude
of jump discontinuity of the VDF (see figure 7b). The constant of proportionality is,
according to (6.6), 21/2π∼ 4.44288 irrespective of α> 0. As is seen from the columns
C1/G0 in table 4, our numerical results show C1/G0 ∼ 4.4, which is close to 21/2π,
and again support the discussion in this section.

As for Prϕ , a factor ζr = ζ cos θζ is contained in the integrand. This factor acts
to cancel the singularity originated from dθ∗ζ /dr as well as that contained in the first
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term. This explains why ∂Prϕ/∂r remains finite as r ↓ 1. This result is also consistent
with the more general result that the normal derivative of any moment which contains
ζini as a factor in the integrand (ni is the unit normal vector to the boundary) does
not diverge on a smooth boundary (Takata & Taguchi 2017).

We conclude this section with a brief comment on the S layer. The discontinuity of
the VDF decays appreciably over the distance of the order of the mean free path due
to molecular collisions. Therefore, when k is small, the region where the discontinuity
of the VDF is appreciable is confined in a thin region adjacent to the boundary with
a thickness of the order of Lk2. This thin region at the bottom of the Knudsen layer
whose thickness is of the order of Lk is the S layer (Sone 1973; Sone & Takata 1992).
The discussion in the present section is applicable irrespective of the values of k, and
therefore naturally applies to the S layer. In this way, the present results also clarify
the structure of the S layer around a rotating sphere.

7. Conclusion
In this paper, we have studied in detail a flow induced around a spinning sphere in

a rarefied gas, on the basis of the linearised ES model and Maxwell diffuse–specular
boundary condition. The main results are summarised as follows:

(i) We have derived a conversion formula that allows us to derive the result for
arbitrary Pr (> 2/3) from that for Pr= 1, for given (k, α).

(ii) We have clarified the detailed profiles of the macroscopic quantities (flow
velocity, tangential stress, heat flow). In particular, we have shown numerically
that the normal derivatives of uϕ and Qϕ diverge on the boundary with the
rate 1/

√
r− 1, which is consistent with the estimate obtained by Takata &

Taguchi (2017). The diverging terms in the normal derivatives of uϕ and Qϕ

are proportional to the magnitude of the jump discontinuity in the VDF on the
boundary.

(iii) On the other hand, the normal derivative of Prϕ does not diverge on approaching
the boundary. This result is consistent with the more general result that the
normal derivative of any moment containing ζini as a factor in the integrand
(ni is the unit normal vector to the boundary) does not diverge on a smooth
boundary.

(iv) We have obtained the moment of force acting on the sphere for a wide range of
the parameter space.

(v) The present results are also applicable to the case of a polyatomic gas.
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Appendix A. On the temperature of the sphere
In this paper, we have assumed that the temperature of the sphere is uniform and is

equal to that of the gas at infinity. In this appendix, we justify this in the case where
the heat flow in the sphere is described by the Fourier law.

We take the linearised Boltzmann equation as our basic equation and assume the
general kinetic boundary condition on the sphere, which includes the ES model
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and the Maxwell boundary condition as particular examples. Let ρ∞(2RT∞)−3/2(1 +
φ(x, ζ ))E be the VDF of the gas molecules, T∞(1 + τs(x)) be the temperature of
the sphere, (2RT∞)−3/2KB0(ζ , ζ

∗) be the scattering kernel at the reference equilibrium
state at rest describing the relation between the velocities of the incident molecules
ζ ∗ (ζ ∗r < 0) and those of the reflected molecules ζ (ζr > 0) on the surface and
p∞(2RT∞)1/2(L/T∞)λ̂s(>0) be the thermal conductivity of the sphere. The other
notations appearing below are the same as those in the main text, unless otherwise
stated. Then, φ and τs satisfy the following equations and boundary conditions:

ζi
∂φ

∂xi
=

1
k
L[φ], (|x|> 1), (A 1a)

φ = gw + E−1
∫
ζ ∗r <0

KB0(ζ , ζ
∗)(φ∗ − g∗w)E

∗ dζ ∗, ζr > 0, (|x| = 1), (A 1b)

φ→ 0, (|x|→∞), (A 1c)

∂

∂xj

(
λ̂s
∂τs

∂xj

)
= 0, (|x|< 1), (A 2a)

λ̂s
∂τs

∂r
=−

〈
ζr

(
ζ 2
−

5
2

)
φ

〉
≡−Qr[φ], (|x| = 1). (A 2b)

Here, L[φ] is the linearised collision integral (Sone 2007) whose explicit form is not
required,

gw(ζ )= 2Ωζϕ sin θ +
(
|ζ |2 − 5

2

)
τs, (A 3)

and φ∗, g∗w and E∗ are φ∗=φ(x, ζ ∗), g∗w=gw(ζ
∗) and E(ζ ∗), respectively. The function

gw depends also on the position on the sphere through θ and τs. Equation (A 2b),
which states the continuity of heat flow across the surface, is the linearised version
of the conservation of energy on the surface (i.e. the continuity of energy flow across
the surface).

The operator L satisfies the following well-known properties:

(i)
L[ϕ] = 0 ⇐⇒ ϕ(ζ ) is a linear combination of 1, ζ and |ζ |2. (A 4)

(ii) For any function ϕ(ζ ),
〈ϕL[ϕ]〉6 0, (A 5)

and the equality holds if and only if ϕ is a linear combination of 1, ζ and |ζ |2.

The scattering kernel KB0(ζ , ζ
∗) is required to satisfy the following basic properties.

Let ni be the unit normal vector on the boundary pointing to the gas and let ζn= ζini

and ζ ∗n = ζ
∗

i ni.

(i) Positivity:
KB0(ζ , ζ

∗)> 0, for ζ ∗n < 0 and ζn > 0. (A 6)

(ii) Impermeability: ∫
ζn>0

ζn

ζ ∗n
KB0(ζ , ζ

∗) dζ =−1, ζ ∗n < 0. (A 7)
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(iii) Uniqueness: let ϕe = c0 + ciζi + c4|ζ |
2, where c0, ci (i = 1, 2, 3) and c4 are

independent of ζ . Then, the equality

ϕeE=
∫
ζ ∗n<0

KB0(ζ , ζ∗)ϕe(ζ
∗)E∗ dζ ∗ (ζn > 0) (A 8)

holds if and only if c1 = c2 = c3 = c4 = 0.

Further, if KB0(ζ , ζ
∗) satisfies the above properties, the following inequality holds on

the boundary:

(i) Darrozes–Guiraud inequality (Cercignani 1988; Sone 2007). Let F(x) be a strictly
convex function. Then, for any ϕ(ζ ) satisfying

ϕE=
∫
ζ ∗n<0

KB0(ζ , ζ
∗)ϕ(ζ ∗)E∗ dζ ∗, (ζn > 0), (A 9)

the following inequality holds:

〈ζnF(ϕ)〉6 0. (A 10)

The equality sign applies if and only if ϕ is independent of ζ .

We first consider a reduced problem for φ derived from (A 1a)–(A 1c) by setting
τs ≡ 0 in the boundary condition (A 1b), i.e. gw ≡ 2Ωζϕ sin θ . The solution to this
problem is denoted by φ0. Clearly, this corresponds to the situation considered in the
main text; the temperature of the sphere is uniform and coincides with that of the
gas at infinity. If the scattering operator defined by the kernel KB0(ζ , ζ

∗) admits an
axial symmetry about the axis normal to the boundary, the same similarity solution
of the form (2.14) is applicable, and, consequently, the heat flux across the boundary
vanishes since Qr[φ

0
] = 0 (see the line following (2.20)). Consequently, τs = 0 is a

solution to the problem (A 2a) and (A 2b) (with φ = φ0). Thus, we conclude that
(φ, τs) = (φ

0, 0) is a solution to the (full) boundary-value problem (A 1a)–(A 2b).
Moreover, the uniqueness of the solution (see below) ensures that (φ, τs) = (φ

0, 0)
is the only solution to the problem (A 1a)–(A 2b).

The uniqueness of the solution can be shown along the same line as that of the
boundary-value problem of the linearised Boltzmann equation (without the stationary
heat-conduction equation) (see e.g. Sone 2007, A.12). However, the inclusion of
the heat-conduction equation results in an interesting application of the uniqueness
condition for the scattering kernel, which is illustrative. Therefore, we present a proof
here.

Our goal is to show that the solution to the problem (A 1a)–(A 1c) with Ω = 0
vanishes identically, i.e. (φ, τs)= (0, 0). To see this, we multiply equation (A 1a) by
2φE and integrate the result with respect to ζi over the whole space to obtain

∂

∂xi
〈ζiφ

2
〉 =

2
k
〈φL[φ]〉 ≡ g(x)6 0. (A 11)

(Since the VDF contains discontinuities, the order of spatial derivative and integration
cannot be interchanged freely. However, using the fact that the discontinuity of φ lies
on the characteristics of the equation, one can show that the expression of the most
left-hand side of (A 11) is legitimate (Sone 2007). The same applies to the sentence
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containing (2.24).) Further integration with respect to x over the whole gas region
gives ∫

|x|>1

∂

∂xi
〈ζiφ

2
〉 dx=

∫
|x|>1

g(x) dx≡ G 6 0. (A 12)

Applying Gauss’s divergence theorem on the left-hand side yields∫
|x|>1

∂

∂xi
〈ζiφ

2
〉 dx= lim

r→∞

∫
|x|=r
〈ζrφ

2
〉 dS−

∫
|x|=1
〈ζrφ

2
〉 dS, (A 13)

where dS is the surface element. Noting that 〈ζiφ
2
〉=O(|x|−3) for |x|� 1 (this follows

from the estimate φ=2ζihi+ (|ζ |
2
−5/2)h4+O(|x|−2) for |x|�1, where hi (i=1,2,3)

and h4, independent of ζ , are quantities of O(|x|−1)), the first term on the right-hand
side vanishes and (A 12) reduces to

−

∫
|x|=1
〈ζrφ

2
〉 dS= G 6 0. (A 14)

Now if we put F(x) = x2, ϕ = φ − ḡw and ḡw = (|ζ |
2
− 5/2)τs in the Darrozes–

Guiraud inequality, the condition (A 9) is satisfied and we have

〈ζr(φ − ḡw)
2
〉6 0, (|x| = 1). (A 15)

Since 〈ζrḡ2
w〉 = 0, the left-hand side is transformed to

〈ζr(φ − ḡw)
2
〉 = 〈ζrφ

2
〉 − 2〈ζrḡwφ〉 = 〈ζrφ

2
〉 − 2τsQr[φ]6 0, (|x| = 1). (A 16)

Thus, ∫
|x|=1
〈ζrφ

2
〉 dS 6 2

∫
|x|=1

τsQr[φ] dS. (A 17)

Combining this with (A 14), we obtain∫
|x|=1

τsQr[φ] dS > 0. (A 18)

On the other hand, multiplying (A 2a) by τs and integrating the result inside the
sphere gives ∫

|x|<1

∂

∂xj

(
τsλ̂s

∂τs

∂xj

)
dx−

∫
|x|<1
λ̂s

(
∂τs

∂xj

)2

dx= 0. (A 19)

Applying Gauss’s divergence theorem to the first term gives∫
|x|<1

∂

∂xj

(
τsλ̂s

∂τs

∂xj

)
dx=

∫
|x|=1

τsλ̂s
∂τs

∂r
dS=−

∫
|x|=1

τsQr[φ] dS, (A 20)

where (A 2b) has been used in the last equality. Therefore,∫
|x|=1

τsQr[φ] dS=−
∫
|x|<1
λ̂s

(
∂τs

∂xj

)2

dx 6 0. (A 21)
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Hence, from (A 18) and (A 21), we have∫
|x|=1

τsQr[φ] dS=
∫
|x|<1
λ̂s

(
∂τs

∂xj

)2

dx= 0. (A 22)

Thus, τs is a constant independent of x. Also from (A 14), (A 17) and (A 22),

−

∫
|x|=1
〈ζrφ

2
〉 dS= G =

2
k

∫
|x|>1
〈φL[φ]〉(x) dx= 0. (A 23)

In the meantime, since 〈φL[φ]〉 is non-positive (see (A 5)), 〈φL[φ]〉 = 0 must hold
throughout the gas region. This shows that φ is a linear combination of 1, ζ and |ζ |2.
As the result, L[φ] = 0 holds and (A 1) reduces to

ζi
∂φ

∂xi
= 0. (A 24)

Therefore, φ is invariant along the characteristics, which implies that φ = 0 for ζi
whose corresponding characteristic can be traced back to infinity. In particular, φ = 0
for the incident molecules (ζr < 0) on the boundary (|x| = 1). With this, (A 23) is
rewritten to give ∫

|x|=1

∫
ζr>0

ζrφ
2E dζ dS= 0, (A 25)

which shows that φ = 0 holds also for the outgoing molecules (ζr > 0) on the
boundary (|x| = 1). Thus, we can conclude that φ = 0 in the whole gas region. Then,
equation (A 1b) (with Ω = 0) reduces to

ḡwE=
∫
ζ ∗r <0

KB0(ζ , ζ
∗)ḡ∗wE∗ dζ ∗, ζr > 0, (|x| = 1). (A 26)

Finally, due to the uniqueness condition for KB0, τs must vanish on the boundary. Thus,
we conclude that τs = 0 also inside the sphere, since τs is constant.

One might think that the uniform temperature of the sphere and the gas (i.e. τ =
τs = 0) is physically obvious for the following reason. In a slow flow for which a
linearisation is applicable, the energy equation of the gas reduces to ∂Qi/∂xi = 0,
which is identical to the energy equation in a solid body. Consequently, in the absence
of heat sources in the body and under the condition of energy continuity across the
surface, the radial heat flux through the sphere and the gas is zero, which results in
a uniform temperature of the sphere and the gas. However, this argument does not
hold in rarefied gases, though the result is still true for the present rotating flow. The
reasons are the following. First, we cannot conclude that τ = const. from Qi= 0, since
the Fourier law does not hold generally in rarefied gases. In the present problem, τ ≡0
is derived as a consequence of the similarity solution. Second, we cannot conclude
that there is no radial heat flux in the sphere in the absence of heat sources inside
when the ambient gas is a rarefied gas. In rarefied gases, the flow velocity and the
heat flux are linked through the VDF, and if any non-zero radial heat flux is induced
in the gas, it may cause a redistribution of the temperature (in a thermally neutral
body), resulting in a non-uniform temperature distribution (thermal polarisation). The
present linearised steady rotating flow is free from this effect because it produces no
radial heat flux in the gas (i.e. Qr≡ 0). Here, we stress again that the vanishing radial
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heat flux is a consequence of the similarity solution and is not derived from τ ≡ 0. In
rarefied gases, τ = const. and Qi= 0 are not equivalent. Indeed, Qϕ 6= 0 despite τ ≡ 0
in the present rotating flow. Incidentally, the thermal polarisation of a sphere has been
extensively studied in the literature (see e.g. Beresnev, Chernyak & Fomyagin 1990;
Takata & Sone 1995, and references therein).

A steady non-uniform temperature distribution of the sphere and the surrounding gas
without total heat production in a thermally adiabatic system does not conflict with
the thermodynamic laws, when there are inputs of energy (i.e. work) per unit time. If
this work is solely associated with the sphere rotation, the problem separation and the
uniqueness result exclude such a possibility in the linearised framework.

Appendix B. Estimate of the first term on the right-hand side of (6.2)

In this appendix, we estimate the behaviour of the first term on the right-hand side
of (6.2). To this end, we follow the basic strategy in Takata & Taguchi (2017) and
summarise the main points.

Let us first consider the so-called partial model, obtained by omitting the gain term
of the linearised ES equation (or the linearised Boltzmann equation):

ζi
∂φ

∂xi
=−

νc

k
φ, (B 1)

which is supplemented by the boundary conditions (2.6) and (2.7). Here, νc= νc(ζ )>

δ(> 0) with δ being a positive constant (νc= 1 in the case of the linearised ES model).
After applying the form φ=ΩζϕφS(r, θζ , ζ ) sin θ , the solution φS for the partial model
is given by

φS(r, θζ , ζ )=

2αr exp
(
−
νcσB(r, θζ )

kζ

)
, [0 6 θζ 6 Arcsin(r−1)],

0, [Arcsin(r−1) < θζ 6π],

(B 2)

σB(r, θζ )= r cos θζ − (1− r2 sin2 θζ )
1/2. (B 3)

Thus, in the case of the partial model, it is sufficient to consider the case of α = 1.
Keeping this in mind, we evaluate the first term of (6.2) as follows:

(first term) = π

∫
∞

0

∫ Arcsin(1/r)

0
ζ 4 sin3 θζ

∂φS

∂r
(r, θζ , ζ )E dθζ dζ

= 2π

∫
∞

0

∫ Arcsin(1/r)

0
ζ 4 sin3 θζ

∂

∂r

[
r exp

(
−
νcσB(r, θζ )

kζ

)]
E dθζ dζ

= 2π

∫
∞

0

∫ Arcsin(1/r)

0
ζ 4 sin3 θζ

(
1−

νcr
kζ

cos θζ

)
× exp

(
−
νcσB(r, θζ )

kζ

)
E dθζ dζ

−
2π

k

∫
∞

0

∫ Arcsin(1/r)

0

νcr2ζ 3 sin5 θζ

(1− r2 sin2 θζ )1/2
exp

(
−
νcσB(r, θζ )

kζ

)
E dθζ dζ .

(B 4)
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The first term obviously remains finite as r ↓ 1. On the other hand, the second term
is estimated as∣∣∣∣∫ ∞

0

∫ Arcsin(1/r)

0

νcr2ζ 3 sin5 θζ

(1− r2 sin2 θζ )1/2
exp

(
−
νcσB(r, θζ )

kζ

)
E dθζ dζ

∣∣∣∣
6
∫
∞

0

∫ Arcsin(1/r)

0

νcr2ζ 3

(1− r2 sin2 θζ )1/2
E dθζ dζ

=

∫
∞

0
νcζ

3E dζ
∫ π/2

0

r2

(r2 − sin2 θζ0)1/2
dθζ0 =

(∫
∞

0
νcζ

3E dζ
)

rK
(

1
r

)
, (B 5)

where K(x) is the complete elliptic integral of the first kind. Since K(x) ∼
(1/2) ln (16/(1− x2)) as x ↑ 1, we find that

rK
(

1
r

)
∼

1
2

ln
(

1
r− 1

)
(B 6)

as r ↓ 1. Thus, the second term diverges at most logarithmically. Also, notice that
this logarithmic divergence of the first term of (6.2) does not occur when the gas is
collisionless (k=∞), because the second term of (B 4) degenerates in this case.

Now we consider the following quasi-full model:

ζi
∂φ

∂xi
=−

νc

k
φ +

S
k
, (B 7)

supplemented by the same boundary conditions as before, i.e. (2.6) and (2.7). Here,
S≡Ωζϕ sin θS1(r, θζ , ζ ) represents a source term which is supposed to behave in the
same way as the moments of φ of the partial model as r↓ 1. The ES model obviously
satisfies this property. That is, S1 ∼ a(θζ , ζ ) + b(θζ , ζ )s1/2

+ c(θζ , ζ )s ln s + · · · with
s= r− 1. The second term proportional to s1/2 is due to the contribution of the second
term of (6.2).

Integrating the equation along the characteristics, the solution φS of φ = ΩζϕφS
(r, θζ , ζ ) sin θ for the quasi-full model is given, for θζ ∈ [0,Arcsin(r−1)), as follows:

φS(r, θζ , ζ )= rφS(1, θζ0, ζ ) exp
(
−
νcσB

kζ

)
+

1
k

∫ σB

0

rS1(̃r, θ̃ζ , ζ )
ζ r̃

exp
(
−
νc(σB − t)

kζ

)
dt.

(B 8)
Here, σB = σB(r, θζ ) is given by (B 3) and

θζ0 =Arcsin(r sin θζ ), (B 9a)
r̃= (t2

+ 2t cos θζ0 + 1)1/2, (B 9b)

θ̃ζ =Arcsin
(

r sin θζ
r̃

)
, (B 9c)

φS(1, θζ , ζ )= 2α + (1− α)φS(1,π− θζ , ζ ), (0 6 θζ 6π/2). (B 9d)

Note that φS(1, θζ0, ζ ) in the first term depends on the VDF of the incoming molecules
on the boundary when α 6= 1.

In order to verify that the inclusion of the source term does not change the
behaviour of the moment of the partial model, we go back to the first term of (6.2)
and consider the following partial integral:

I =π

∫
∞

0

∫ Arcsin(1/r)

0
ζ 4 sin3 θζ

∂φS

∂r
(r, θζ , ζ )E dθζ dζ . (B 10)
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Substituting φS into this expression, we obtain, after some manipulations,

I = π

∫
∞

0

∫ Arcsin(1/r)

0
ζ 4 sin3 θζ

×

[(
1−

νcr cos θζ
kζ

)
φS(1, θζ0, ζ )+

r cos θζ
kζ

S1(1, θζ0, ζ )

]
exp

(
−
νcσB

kζ

)
E dθζ dζ

−
π

k

∫
∞

0

∫ Arcsin(1/r)

0

r2ζ 3 sin5 θζ

(1− r2 sin2 θζ )1/2

[
νcφS(1, θζ0, ζ )− S1(1, θζ0, ζ )

−
k(1− α)ζ

r sin θζ

∂φS(1,π− θζ0, ζ )

∂θζ0

]
exp

(
−
νcσB

kζ

)
E dθζ dζ

+
π

k

∫
∞

0

∫ Arcsin(1/r)

0
ζ 3 sin3 θζ

∫ σB

0
D
(

rS1(̃r, θ̃ζ , ζ )
r̃

)

× exp
(
−
νc(σB − t)

kζ

)
dtE dθζ dζ , (B 11)

where

Dg(t, r)=
(
∂

∂r
+
∂σB

∂r
∂

∂t

)
g(t, r). (B 12)

Note that (B 4) for the partial model is recovered by setting φS(1, θζ , ζ ) = 2 (0 6
θζ 6 π/2) and S1 = 0 as well as α = 1. Clearly, the first term remains finite as
r ↓ 1 if |φS(1, θζ , ζ )| is bounded for the impinging molecules, θζ ∈ (π/2, π]. The
second term involves the derivative of φS with respect to θζ on the boundary for
the impinging molecules, θζ ∈ (π/2, π]. We will see later that this remains finite.
Therefore, essentially the same estimate as in the case of the partial model applies
and the integral is estimated to be logarithmically diverging as r ↓ 1. For the third
term, we first note that

Dr= 1, (B 13)

Dr̃=

(
t+
√

1− r2 sin2 θζ

)
cos θζ + r sin2 θζ

r̃
, (B 14)

Dθ̃ζ =
sin θζ

(
t+
√

1− r2 sin2 θζ − r cos θζ

)
r̃2

. (B 15)

Then, since |∂S1/∂r| ∼ C/
√

r− 1 for some positive constant C as r ↓ 1, we
have the following estimate (since t 6 σB in the range of integration, Dr̃ 6

((σB +

√
1− r2 sin2 θζ ) cos θζ + r sin2 θζ )/̃r= (r cos2 θζ + r sin2 θζ )/̃r= r/̃r):∣∣∣∣∣D

(
rS1(̃r, θ̃ζ , ζ )

r̃

)∣∣∣∣∣. Cr2

√
r̃− 1

, (̃r ↓ 1). (B 16)

Thus, we are left to examine the integral

J =
π

k

∫
∞

0

∫ Arcsin(1/r)

0
ζ 3 sin3 θζ

∫ σB

0

r2

(̃r− 1)1/2
exp

(
−
νc(σB − t)

kζ

)
dtE dθζ dζ . (B 17)
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Since

1
√

r̃− 1
=

√
r̃+ 1
√

r̃2 − 1
=

√
r̃+ 1√

t2 + 2t cos θζ0
6

√
r+ 1

t1/2
√

t+ 2 cos θζ0

6

√
r+ 1

t1/2
√

2 cos θζ0
6

√
2r

t1/2
√

2 cos θζ0
=

r
t1/2
√

cos θζ0
, (B 18)

we have

J 6
π

k

∫
∞

0

∫ Arcsin(1/r)

0
ζ 3r3 sin3 θζ

1√
cos θζ0

∫ σB

0

dt
t1/2

E dθζ dζ

6
2π

k

∫
∞

0

∫ Arcsin(1/r)

0
ζ 3r3 sin3 θζ

√
σB√

cos θζ0
E dθζ dζ

=
2π

k

∫
∞

0
ζ 3E dζ

∫ π/2

0
sin3 θζ0

√
σB√

cos θζ0

cos θζ0√
r2 − sin2 θζ0

dθζ0. (B 19)

But, since

σB = r cos θζ −
√

1− r2 sin2 θζ 6 r cos θζ = r
√

1− sin2 θζ =

√
r2 − sin2 θζ0, (B 20)

J 6
2π

k

∫
∞

0
ζ 3E dζ

∫ π/2

0
sin3 θζ0

(r2
− sin2 θζ0)

1/4√
cos θζ0

cos θζ0√
r2 − sin2 θζ0

dθζ0

=
2π

k

∫
∞

0
ζ 3E dζ

∫ π/2

0

sin3 θζ0√
cos θζ0

cos θζ0

(r2 − sin2 θζ0)1/4
dθζ0

6
2π

k

∫
∞

0
ζ 3E dζ

∫ π/2

0

1√
cos θζ0

cos θζ0

(1− sin2 θζ0)1/4
dθζ0

=
2π

k

∫
∞

0
ζ 3E dζ

∫ π/2

0
dθζ0 =

π2

k

∫
∞

0
ζ 3E dζ . (B 21)

Thus, the third term is also bounded.
We close this appendix by showing the boundedness of |∂φS/∂θζ | at r= 1 for θζ ∈

(π/2,π]. This is directly seen by writing φS(1, θζ , ζ ) for π/26 θζ 6π as (see (B 8))

φS(1, θζ , ζ )=
1
k

∫
∞

0

1
ζ

S1(̃r, θ̃ζ , ζ )
r̃

exp
(
−
νct
kζ

)
dt,

(π

2
6 θζ 6π

)
, (B 22a)

r̃= (t2
− 2t cos θζ + 1)1/2, (B 22b)

r̃ sin θ̃ζ = sin θζ , (π/2 6 θ̃ζ 6π). (B 22c)

Differentiating (B 22a) with respect to θζ , we have

∂φS(1, θζ , ζ )
∂θζ

=
1
k

∫
∞

0

1
ζ

∂

∂θζ

[
S1(̃r, θ̃ζ , ζ )

r̃

]
exp

(
−
νct
kζ

)
dt, (B 23)
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where

∂

∂θζ

[
S1(̃r, θ̃ζ , ζ )

r̃

]
=

(
−

S1(̃r, θ̃ζ , ζ )
r̃2

+
1
r̃
∂S1(̃r, θ̃ζ , ζ )

∂ r̃

)
∂ r̃
∂θζ
+

1
r̃
∂S1(̃r, θ̃ζ , ζ )

∂θ̃ζ

∂θ̃ζ

∂θζ
,

(B 24)
∂ r̃
∂θζ
=

t
r̃

sin θζ ,
∂θ̃ζ

∂θζ
=

t cos θζ − 1
r̃2

. (B 25a,b)

Thus, recalling again that |∂S1/∂r| ∼C/
√

r− 1 as r ↓ 1, we have the estimate∣∣∣∣∣ ∂∂θζ
[

S1(̃r, θ̃ζ , ζ )
r̃

]∣∣∣∣∣. Ct

r̃2
√

r̃− 1
, (B 26)

uniformly in θζ ∈ (π/2,π]. In view of this, we consider the integral

1
k

∫
∞

0

1
ζ

t

r̃2
√

r̃− 1
exp

(
−
νct
kζ

)
dt. (B 27)

Since

t
√

r̃− 1
=

t
√

r̃+ 1
√

r̃2 − 1
=

t
√

r̃+ 1√
t2 − 2t cos θζ

6
t
√

r̃+ 1
√

t2
=

√
r̃+ 1 6

√
2r̃2, (B 28)

1
k

∫
∞

0

1
ζ

t

r̃2
√

r̃− 1
exp

(
−
νct
kζ

)
dt 6

√
2

kζ

∫
∞

0
exp

(
−
νct
kζ

)
dt=

√
2
νc
. (B 29)

Thus, |∂φS(1, θζ , ζ )/∂θζ | is bounded for θζ ∈ (π/2,π].
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