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Abstract

Understanding the meteorological drivers of extreme impacts in social or environmental systems is important to
better quantify current and project future climate risks. Impacts are typically an aggregated response to many
different interacting drivers at various temporal scales, rendering such driver identification a challenging task.
Machine learning–based approaches, such as deep neural networks, may be able to address this task but require
large training datasets. Here, we explore the ability of Convolutional Neural Networks (CNNs) to predict years with
extremely low gross primary production (GPP) from daily weather data in three different vegetation types. To
circumvent data limitations in observations, we simulate 100,000 years of daily weather with a weather generator
for three different geographical sites and subsequently simulate vegetation dynamics with a complex vegetation
model. For each resulting vegetation distribution, we then train two different CNNs to classify daily weather data
(temperature, precipitation, and radiation) into years with extremely lowGPP and normal years. Overall, prediction
accuracy is very good if the monthly or yearly GPP values are used as an intermediate training target (area under the
precision-recall curve AUC≥ 0.9). The best prediction accuracy is found in tropical forests, with temperate grasslands
and boreal forests leading to comparable results. Prediction accuracy is strongly reduced when binary classification is
used directly. Furthermore, using daily GPP during training does not improve the predictive power. We conclude that
CNNs are able to predict extreme impacts from complex meteorological drivers if sufficient data are available.

Impact Statement

Understanding and predicting extreme climate-related impacts is crucial to constrain climate risk. This is a
difficult task because of the typically multiple involved time scales and interactions between impact drivers.
Here, we employ Convolutional Neural Networks (CNNs) and test their ability to predict years with extremely
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low carbon uptake (a proxy for vegetation mortality) from daily weather data. The employed CNNs can
distinguish well between normal years and years with extremely low carbon uptake, with prediction power
increasing from high to low latitudes. This highlights that deep learning can be used to learn very complex
relationships between daily weather data and extreme impacts.

1. Introduction

Climatic hazards such as heavy precipitation, storms, droughts, and heatwaves often have disruptive impacts
on human societies and ecosystems. Heavy precipitation can cause floods, whichmay lead to infrastructural
damages and fatalities. Heatwaves adversely affect human health. Droughts diminish agricultural output and
ecosystem productivity. Despite extensive knowledge of climate extremes and associated impacts, severe
climate-related impacts often surprise us and can supersede the coping capacity of the impacted system. The
risk of this happening is particularly large in systems for which there is no direct correspondence between
the impact and a well-defined climatic hazard (Smith, 2011; Leonard et al., 2014; Ben-Ari et al., 2018).

Natural systems not only respond to climate extremes, but also to the continuous occurrence of weather
conditions on top of longer-term climate trends. Consequently, repeated moderate weather that adversely
affects a system may accumulate and ultimately pass the coping capacity of that system, resulting in a
large impact (Leonard et al., 2014). An example of this was the high-impact lake flood event that took
place in southern Switzerland in October 2010. Two storms preconditioned the catchment and brought the
lake close to its flood level. Only during the third storm, the lake level rose above the flood threshold
(Lenggenhager et al., 2019). Such temporally compounding effects (Zscheischler et al., 2020) are also
relevant for ecosystems, whose sensitivity to weather conditions and climate extremes depends on the
vegetation composition and varies between seasons (Frank et al., 2015). Climate extremes can have a
positive or negative effect on ecosystem productivity, depending on the ecosystem and when they occur
(Sippel et al., 2016; Flach et al., 2018). As an example, the extremely hot and dry conditions during the
2010 Russian heatwave led to a significant decrease in photosynthetic carbon uptake in crop-dominated
ecosystems in the south, whereas the energy-limited forest ecosystems in the north responded with a
significant increase in uptake (Flach et al., 2018). Similarly, a heatwave in spring can lead to higher
productivity, whereas a heatwave in summer may reduce productivity (Wolf et al., 2016). Despite the
relevance of climate extremes, extreme impacts may be the result of an unfortunate combination of not
very extreme weather and climate conditions (Van der Wiel et al., 2020). For instance, the extreme wheat
loss in 2016 in France, which resulted in wide-ranging implications for the French agricultural sector, is
linked to the compounding effect of warm temperature in late autumn and abnormally wet conditions in
the following spring (Ben-Ari et al., 2018).

Compound weather and climate events have been defined recently as the combination of multiple
climate drivers and/or hazards that contributes to societal or environmental risk (Zscheischler et al., 2018).
Climate drivers may spanmultiple spatial and temporal scales. Identifying which combinations of climate
conditions lead to an impact is a challenging task, especially in systems where the impact is a complex
function of weather conditions over many time-scales, such as agriculture or natural ecosystems (Vogel
et al., 2021). In particular, compounding effects of weather conditions that lead to state-dependent
extreme system response, for instance, in ecosystems, cannot be identified by solely studying climate
extremes (Van der Wiel et al., 2020). Uncovering such unusual conditions in the very high-dimensional
climate space requires new data-analytic approaches.

Discovering new (unknown) compounding drivers of large impacts from observations is extremely
difficult due to the lack of consistently high-quality and long-term datasets on climate-related impacts or
impact proxies. Impacts in this context may refer to low crop yields, heat-related mortality, low vegetation
carbon uptake, fire intensity, and flood height and damages, among others. Well-calibrated process-based
climate impact models (Frieler et al., 2017), such as physical hydrological models, crop models, and
dynamic vegetation models are an alternative to study climate-related impacts on ecosystems and
different aspects of human society.
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Process-based impact models can be used to question current paradigms and search for weather
conditions that lead to large impacts. A hydrological model, for example, can be used to study the
relationship between different precipitation patterns and flooding (Zischg et al., 2018; Peleg et al., 2020).
Impact models can also be used to study the impacts of climate extremes (Bastos et al., 2020) as well as to
explore and test new hypotheses. For instance, a dynamic vegetation model has been used to investigate
whether increased carbon uptake in spring can compensate for reduced carbon uptake during very hot and
dry summers (Sippel et al., 2017). Due to the well-constrained boundary conditions and the possibility to
create near-infinite amounts of data, process-based models are an excellent tool to develop and validate
new statistical approaches. Furthermore, insights from established impact models that incorporate the
most relevant processes can result in new knowledge about the real world or uncover model deficiencies.
In principle, one could use impactmodels and runmany factorial simulations by only varying one driver at
a time to identify weather conditions leading to extreme impacts. However, due to the extremely high
number of potential impact drivers, this approach cannot be exhaustive.

As a first step toward identifying weather features associated with large impacts, we aim to predict
years with extremely low carbon uptake from daily weather data. Identifying combinations of weather
patterns that lead to extremely low annual carbon uptake would help to better understand ecosystem
vulnerability to adverse weather conditions, and to potentially build predictive models of vegetation
mortality. In particular, we aim at the prediction of gross primary production (GPP), measuring the amount
of carbon extracted by plants from the atmosphere and incorporated into their structure. The total yearly
GPP, rather than the individual daily scale values, measures the impact on the ecosystem of unfavorable
meteorological conditions.

The simple statistical learning approaches, such as linear regression and Random Forest (Zscheischler
et al., 2016; Vogel et al., 2021) are restricted in their ability to deal with high-dimensional relationships,
requiring specification of suitable input features (i.e., effectively performing a dimensionality reduction as
a preprocessing step). Instead, here we apply a deep learning approach (Artificial Neural Networks,
ANNs) as it was shown that deep learning models are able to capture nonlinear and multivariate
relationships in high-dimensional datasets, and achieve state-of-the-art performance in various fields
(LeCun et al., 2015). Since ANNs typically require large amounts of training data to achieve good
performance, here we use a dynamic vegetation model to create large amounts of training data at four
different sites, representative of different climates and vegetation types.

2. Data

In this work, we consider three different geographic locations, which are shown in Figure 1. These climate
sites are denoted as temperate, boreal, and tropical, following their respective main climatic zone. To
produce representative meteorological data for each location, we used the AWE-GEN stochastic weather
generator model (Fatichi et al., 2011). The weather generator simulates hourly precipitation (PPT), air
temperature (AT), and radiation (photosynthetically active radiation, PAR) so that hourly-to-seasonal
dynamics, as well as seasonal- and inter-annual variability, are preserved. For each site, hourly climate
data obtained from the ERA5 climate reanalysis product (Hersbach et al., 2020)were used to parameterize
the model. Our next step was to simulate a stationary climate ensemble of 100,000 years that represents a
pseudo-replication of the current climate for each site. For more information about the model and the
simulated climate stochasticity, see Fatichi et al. (2016) and Peleg et al. (2019).

The generated meteorological data are then used to drive three single grid-cell simulations with the
dynamic global vegetation model LPX-Bern v1.4 (Lienert and Joos, 2018). In addition to daily tempera-
ture, precipitation, and radiation, the vegetation model is supplied with the 2010 levels of global
atmospheric CO2 concentration (387.98 ppm) and Nitrogen deposition (Tian et al., 2018). The model
represents vegetation with plant functional types (PFTs), the relative abundance of which are determined
dynamically by climatic conditions and competition for light, nutrients, and water. Here, only natural
vegetation is considered, internally represented by eight tree-PFTs and two grass-PFTs. The leaf
phenology of deciduous trees is determined by considering the warmest and coldest month in a model
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year. Since this can potentially lead to a dependence of GPP on the temperature in the future, we adapted
the model code such that the phenology is always calculated assuming January is the coldest and July is
the warmest month of the year.

The three simulations differ in their vegetation composition (Figure 2a). The temperate site is
dominated almost exclusively by grasses (TrH) (we note that, despite the misleading name, in the LPX
model grasses are named tropical [TrH] according to a particular photosynthetic pathway [C4] and do not
necessarily grow exclusively in tropical climates Sitch et al., 2003). The boreal site is dominated by boreal
trees (BoNE, BoNS, and BoBS) with few temperate trees (TeBS) and grasses (TeH), whereas the tropical
site is dominated by tropical trees (TrBE and TrBR) and a few grasses (TrH). We observe that the
vegetation distributions do not overlap and are representative of distinct ecosystems. The corresponding
monthlyGPP is reported in Figure 2b. In boreal climate, GPP has a pronounced seasonal cycle and is close
to zero during colder months. Under a tropical climate, GPP is almost constant during the majority of the
year but drops in themonths of August and September during the dry season, duringwhich the interannual
variability is increased. The temperate site shows the highest interannual variability in GPP consistently
for all months. In Figure 2c, we report the distribution of yearly GPP, showing an unstructured uni-modal
distribution for all sites. In the Supplementary Information, we report daily distributions for both
meteorological variables and gross primary production (Figures S1–S4).

3. Methodology

3.1. Fundamental idea

To characterize meteorological conditions leading to a low yearly GPP, we present machine learning
models able to learn complex mappings between meteorological data, that is the PPT, AT, and PAR time
series, considered asmodel inputs, and annualGPP. The developedmachine learningmodels learn, via the
provided training examples, weather patterns causing low GPP and have been devised according to the
following general guidelines. First, we avoid modeling assumptions that could bias the results and their
interpretation, keeping meteorological data at a daily scale as an input to our models. This way, we avoid
loss of information that could result from ad hoc feature-engineering procedures neglecting day-to-day
variability. Second, in order to deal with nonlinear behaviors, we exploit ANNs. SinceANNs require large
number of data samples to fit their parameters, we employ simulated data that model the time evolution of
weather and vegetation using a detailed process-based model (Lienert and Joos, 2018). The simulation of
GPP requires a characterization of complicated biogeochemical and physical processes affecting

Figure 1. Geographic locations of the three sites considered in this work. Sites are named according to
their climate type.

e2-4 Environmental Data Science

https://doi.org/10.1017/eds.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.1


vegetation growth. We demonstrate that it is possible to build ANN models able to predict directly the
yearly GPP from meteorological data alone. The neglected degrees of freedom, involving the exact
vegetation dynamics (Lienert and Joos, 2018), will be reflected in the uncertainty of the predicted GPP.

We first construct a binary classification problem by labeling years into two classes, corresponding to
extreme and normal years. Here, we define a year as extreme if the yearly GPP belongs to the lowest 10th
percentile for a given site. Amodel can then be directly trained to classify the years into these two classes.
The choice of the 10th percentile as a cutoff is somewhat arbitrary, but for our case does not affect the
conclusions of the analysis. Yet, as it will be shown below, the binary approach appears to be suboptimal
since it does not leverage the information available in the GPP daily time series, which in this case is used
exclusively to label the years as extreme or nonextreme. A more fruitful approach consists of building
intermediate regression models able to predict cumulative yearly GPP values. By fixing a cutoff on the
predicted GPP values, one can trivially build a binary classifier on top of the regression model (see also
Section 3.2.4). This brings the possibility to compare, using the same metrics, the performance of the
classifier built on top of regression models against the classifiers trained exclusively for the
classification task.

Figure 2. (a) The surface coverage by plant functional type, as defined by the Bern-LPX vegetationmodel.
(b) Box-plot (across years) of monthly gross primary production (GPP) values. (c) Normalized density of
yearly GPP, according to which a year is defined as extreme or nonextreme.
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We further explore the possibility for leveraging information from the GPP time series, by building
regression models which perform intermediate predictions of GPP aggregated at different time scales
(e.g., monthly or daily values), and sum them up to obtain a yearly GPP prediction.

There are different ANN architectures that one can choose for this task. Dealing with time series, a
common choice would be long short-term memory architectures (Hochreiter and Schmidhuber, 1997).
Nevertheless, we believe that the complex nature of such architectures could decrease model interpret-
ability for future analysis. Here, we focus therefore on CNNs. These architectures are often used for image
analysis (Krizhevsky et al., 2012), but can be used also for one-dimensional inputs. We propose here two
CNN architectures, named CNN-M and CNN-D throughout the work. The meteorological input to the
models remains always the same but they differ on the time scale used for the intermediate GPP
predictions (i.e., CNN-M—monthly and CNN-D—daily).

Finally, we stress that in this work, we are training distinct CNNs for each individual site.

3.2. Models

In this section, we describe the data preprocessing steps, the different model architectures, how themodels
were trained, and the evaluation metrics we used.

3.2.1. Data preprocessing
The PPT, AT, and PAR time series are preprocessed before being fed into CNN-M and CNN-D. AT and
PAR are converted to standardized anomalies by subtracting themean seasonal cycle. That is, for each day
d and variable X = AT,PARf g, Xd ! Xd�μXd

� �
=σXd , where daily means μXd and standard deviations σXd

are estimated over the whole time series. Daily values of PPT have distributions highly peaked at zero
(no precipitation). Since we expect cumulative precipitation over several days to play an important role,
we do not de-seasonalize PPT data but only rescale them with a factor fixing the daily 90th percentile
QPPT

d,0:9 to a value of 3 and not changing the zero value, that is PPT d ! 3�PPT d=QPPT
d,0:9. The alternative

preprocessing procedure of converting PPT to anomalies, similarly to AT and PAR, leads to models with
slightly worse performance. This preprocessing does not lead to loss of statistical information, since the
same transformation is applied to each day independently of the year, but it ensures that the input values lie
in the range compatible with standard CNNs initialization values (He et al., 2015), facilitating the training.
On the output side, the GPP time series is left unchanged forCNN-M. ForCNN-D the daily values of GPP
are de-seasonalized on a daily bases: GPPd ! GPPd�μGPPd

� �
.

Additionally, since the filters of the CNNs are time translational invariant, we considered inserting
indexes into the network keeping track of the day of the year. This can be achieved adding additional time
series to the input data.We consider the choice whether to insert these additional indexes as another meta-
parameter. The day indexwas designed to be a time series of linearly decreasing values, where the element
corresponding to the first input day has value 1, and the element corresponding to the last day of the year
has value 0. We also considered two other constant input time series, with the shape of a sine and cosine,
taking into account the yearly cycle. We observed that employing a combination as well as all these
additional input index variables has only marginal impact on the resulting model performance for the
datasets used in this work.

3.2.2. Model descriptions
3.2.2.1. CNN-M. The architecture of CNN-M is illustrated in Figure 3. The input consists of daily data
from T = 544 days, corresponding to the year under consideration plus about half of the previous one. The
input to the model is a 2D matrix of size T�N inp. N inp = 3 or 6, according to whether additional indexes
are used or not. The convolutional part of the CNN-M is composed of a series of convolution operators
followed by max-pooling and produces feature maps (extracted internal representations) of dimension
34�64. These representations are then pulled together and fed into dense layers to evaluate the output.
CNN-M first predicts some intermediate predictions M1,…,M12, which corresponds to the monthly
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amounts of GPP. The yearly GPP is evaluated as a simple sum
P

iMi. In this case,CNN-M is in regression
mode. For CNN-M, we also explored the possibility of having a classification layer after the monthly
predictions and in this case, it is in classification mode. By carefully weighting the loss contributions (see
Section 3.2.3, Equation (5)), one can useCNN-M in a combinedmode, to which we refer as amultitasking
mode.We expect the multitasking approach to push the CNN toward learning features that are important
for classifying years into extreme/nonextreme and neglect features that might be important to characterize
the whole distribution of GPP (e.g., in an exclusive regression mode).We perform experiments to test this
hypothesis.

We note that for image analysis application the number of channels in CNNs is usually multiplied by
2 after each max-pooling operation halving linear dimensions, leading to a total number of neurons that
gets divided by 2. For 1D inputs, this would lead to a constant number of representations flowing through
the network. We decided therefore to increment the number of channels progressively by

ffiffiffi
2

p
, with an

initial seed of 16, leading to the sequence of channels 16,22,32,45,64½ �. This way the total number of
representations gets divided progressively by a factor of

ffiffiffi
2

p
. We note that the value of

ffiffiffi
2

p
as a ratio

between the depth of consecutive layers is arbitrary and can be chosen as a hyperparameter to tune.

3.2.2.2. CNN-D. The architecture ofCNN-D is illustrated in Figure 4 and is a standard form of the U-Net
architecture (Ronneberger et al., 2015), adapted to be used for 1D inputs. It has an encoder–decoder
architecture, where the encoder part, used to build hidden representations of dimension 34�64, follows
the same exact architecture of CNN-M.Differently from CNN-M, the resulting hidden representations go
through a sequence of upsampling and convolutional operators leading to an output with the same size as
the input (544 days). This way the decoder processes the high-level hidden representation found by the
encoder and the prediction at each day depends on high-level features evaluated using neighboring days as
well. Finally, the skip connections bring lower-level features found by the decoder closer to the output.

Figure 3. CNN-M model architecture. Rectangles represent 2D or 1D tensors according to the reported
dimensions. The input corresponds to meteorological data from the year considered plus around half
of the previous one, for a total of 544 days. The output of the network is shown in red. NeuronsMi, i¼
1…12 correspond to monthly gross primary production (GPP) values of current year. In regression
mode the monthly predictions are summed up to obtain the yearly GPP, denoted as Ŷ

GPP
. In

classification mode, a neuron predicts the probability for the year to be an extreme as well, indicated
with P̂

GPP
:When both classification and regression modes are active CNN-M is in multitasking mode.
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This not only avoids the gradient vanishing issue, but also restores the localization lost due tomax-pooling
operations, in order to perform predictions at the input resolution (Ronneberger et al., 2015). This way,
U-net architectures are able to make daily predictions using features extracted at different time scales.
From the point of view of this work, the daily outputs of CNN-D are considered as intermediate
predictions, on the same ground of the monthly predictions of CNN-M. The last 365 days of the
predictions can therefore be summed up to evaluate the yearly GPP. Only regression mode is explored
for CNN-D.

For both CNNmodels the ReLU activation function is used (Glorot et al., 2011). L2 regularization was
exploited for all weights and tuned as a meta-parameter. Last, the suffixes in the names CNN ‐M and
CNN ‐D refer to the time scale of the intermediate predictions characterizing the corresponding CNN .
Nevertheless, note that in both models by changing the meta-parameter α (see Section 3.2.3), one can
choose whether these intermediate predictions should be forced to be close to the exact values or if just the
final yearly output is considered.

3.2.2.3. Baseline linear model. For the baseline linear model, yearly meteorological data were first
aggregated into monthly values. In particular, mean and standard deviations for each months were
computed, giving a total of 12�3�2= 72 features for each year.Multilinear regressionwas then directly
applied to predict yearly GPP. The improvement gained by including the monthly standard deviations of
the meteorological data as additional features was only marginal, showing the difficulty of performing
manual feature engineering for the task considered in this work.

3.2.3. Training scheme
In the following, we indicate with a hat quantities depending on the model’s parameters to be optimized,
for example, model outputs or loss functions. Ground truth quantities are reported without a hat. The loss
function for models in regression mode, minimized through gradient descent for a batch B with Ns

samples, is:

Figure 4. CNN-D model architecture. The same notation of Figure 3 is followed. The output tensor
contains daily gross primary production (GPP) values from current year plus around half of previous
one (544 days), Ŷ

GPP
is the yearly GPP (sum over last 365 days).
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L̂
REG

= αL̂
REG
low þ 1�αð ÞL̂REGhigh , (1)

L̂
REG
low =

1
Ns

X
s∈B

Ŷ
GPP
s �YGPP

s

� �2
, (2)

L̂
REG
high =

1
NsNX

X
s∈B

XNX

i= 1

X̂
GPP
s,i �XGPP

s,i

� �2
, where (3)

X =M for CNN ‐Mð Þor X =D for CNN ‐Dð Þ:

Here, M refers to GPP data at monthly resolution and D to GPP data at daily resolution. The
functional form of the loss is equal for both CNN-M and CNN-D. L̂

REG
low is the loss component taking

into account the low resolution part of the output (i.e., the prediction at the yearly scale) and L̂
REG
high takes

into account the high resolution one (i.e., the intermediate predictions), corresponding to monthly or
daily scale (X =M or X =D) for CNN-M and CNN-D, respectively. Normalizations NM = 12 or
ND = 544 are used accordingly.

Themeta-parameter αweights the low and high frequency contributions to the total loss. Therefore, by
choosing α= 0 or α= 1, it is possible to make the network fit exclusively the high-frequency or low-
frequency GPP values, respectively. In particular, for α= 1, the intermediate predictions are not forced to
be related to any exact GPP value and only the total yearly GPP is considered from the model. The meta-
parameter α can be also adjusted along the course of training.

WhenCNN-M is used in classification mode, the corresponding loss contribution is the standard cross-
entropy between exact and distribution predicted by the classification output neuron:

L̂
CLASS

=
1
Ns

X
s∈B

X
c
Ps cð Þ log P̂s cð Þ� �

, (4)

where c∈ extreme,normalf g spans the two classes. If a combined classification and regression, that is a
multitasking mode is used, the two losses are combined in the following way:

L̂
MULTI

= βL̂
REGþ L̂

CLASS
, (5)

where ameta-parameter β has been introduced.When fixing β= 0, multitasking and classification models
coincide. In the following for models in multitasking mode β is kept constant during training to a value
selected by monitoring performance on the validation set.

The training parameters used for the optimization are reported in the Supplementary Information. We
used the first 80,000 years as a training set, the following 10,000 as a validation set to tune the meta-
parameters, and the last 10,000 as a test set. Results over validation and test set were always similar,
indicating no overfitting to the validation set during meta-parameter tuning. More information about the
training procedures is reported below and in the Supplementary Figures S9–S11.

3.2.4. Evaluation metrics
As we compare models with different outputs, choosing the right metrics is crucial for a meaningful
comparison.We compare the performance ofmodels in regressionmodebyplotting the distribution of yearly
residuals, Ŷ

GPP�YGPP, in the test set. Intermediate predictions at monthly or daily scale are neglected and
models are compared according to the quality of their yearly predictions. We then rescale the residuals
according to the standard deviation of the exact values, σ YGPP

� �
. This procedure renders the residuals

dimensionless and permits comparing them across different sites. From the squared sum of the rescaled
residuals one can evaluate a normalized root mean squared error (NRMSE) (see also Supplementary
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Information, Section S3). A model predicting for each year a constant equal to the standard deviation of
yearly GPP has a NRMSE equal to unity. Values of NRMSE closer to zero are indicative of better
performance. The same metric will be used also to evaluate the residuals in the daily GPP predicted by
CNN-D.

In order to compare the quality of models in classification and multitasking mode, we build precision-
recall curves using the output of the classification neuron and report the corresponding area under curve
(AUC) (Sammut andWebb, 2017). Thesemetrics are suited for binary classifiers with imbalanced classes.

Last, we compare models in regression mode against models in classification or multitasking mode
using the following methodology. By fixing a cutoff on the predicted GPP values it is possible to build
trivially a classification model on top of a model operating in regression mode. Varying such a cutoff one
can draw a PR curve for models in regressionmode as well. In practice, this can be achieved standardizing
the output of the network Ŷ

GPP
and passing it to a sigmoid function. A PR curve can than be built with the

usual routines (Pedregosa et al., 2011) if a predicted probability P̂ extremeð Þ= sigmoid Ŷ
GPP

� �
is used.

With this procedure, it is possible to compare models’ performance in regression, classification, and
multitasking mode on the same grounds using the PR curves obtained.

4. Results

4.1. Regression

The distribution of the rescaled residuals of the predicted yearly GPP, obtained from models in exclusive
regressionmode, is reported in Figure 5 and comparedwith the baseline linearmodel highlighted in green.
Smaller residuals with distributions more peaked around zero imply better predictions. Our results clearly
show that the prediction performance depends on the background climate and that for all sites the ANNs
clearly outperform the baseline. The best NRMSE values are obtained for the tropical site, which is also
the one where the linear model shows the worst results. We performed some experiments (not shown)
suppressing the dry season artificially via an increased precipitation. These experiments lead in the

Figure 5. Distributions of rescaled residuals of yearly gross primary production (GPP) for models in
exclusive regression (Reg.) mode, with reported normalized root mean squared error (NRMSE). bYGPP

indicates the predicted yearly GPP and YGPP its exact value, evaluated for the test set. For CNN-M,
when α¼ αm/αy the regression task fits monthly/yearly GPP values. For CNN-D, α changes during
training from αd to αy, fitting daily/yearly GPP values at the beginning/end of training.
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tropical site to a large performance improvement of the linear model, showing that the effect of water
limitation during the dry season is the main source of nonlinearity for this site.

First, we discuss results from CNN-M in regression mode and consider here two limiting values of the
meta-parameter α in Equation (1). When α= 0, CNN-M is trained to minimize only the error of the
predicted GPP at the monthly scale. Instead, the model with α= 1minimizes the prediction error directly
at the yearly scale, effectively ignoring the monthly GPP values. To use more intuitive notation for CNN-
M, from now on we will therefore use the notation αm and αy referring to α= 0 and α= 1, respectively.
Despite the different ways of leveraging GPP values, the two setups returned comparable distributions of
residuals andNRMSEs (Figure 5, black and red lines). Themodel trained to optimizemonthly predictions
provides distributions slightlymore peaked at zero and lower NRMSEs, but the difference in performance
between the twoCNN-M setups is small. Intermediate values of α have also been explored but did not lead
to improved performance (not showed). Regarding the training procedure, the CNN-M model fitting
intermediate monthly predictions did not require L2 regularization to avoid overfitting, in contrast to the
model directly predicting yearly values. Last, in the Supplementary Figures S5–S8, we plot the inter-
mediate monthly predictions given by the former setup, showing a very good correlation between
predicted and exact values for all sites.

The distribution of yearly residuals obtained fromCNN ‐D is also plotted in Figure 5 (blue lines). In this
case, the meta-parameter α balances daily and yearly loss. We found it beneficial to change it along
the training. First, themodel is trained with α= 0, that is with all the loss at the daily scale values. After the
model converges, α is changed gradually from zero to one, with the final model having all the loss at the
yearly scale. Accordingly, for CNN ‐D, we use the notation αd and αy to indicate α= 0 and α= 1,
respectively. The resulting distribution of yearly GPP residuals outperforms the baseline and yearly
NRMSE values are slightly larger but comparable to the ones obtained from CNN ‐M models. In the
Supplementary Information, we also report the distribution of residuals before switching α from 0 to
1 (Figure S12).

A better understanding of CNN ‐D predictions can be obtained looking at the daily GPP values
predicted by the intermediate output layer of CNN ‐D, just after the first training phase with α= 0, which
is showcased in Figure 6. Note that the mean value of GPP at each day has been subtracted from the time
series, that is daily GPP anomalies are reported.While a high day-to-day variability in the GPP time series
is observed, one can appreciate that it is followed very closely by the values predicted by the CNN ‐D
model. This is also indicated by the values of NRMSEs, which are comparable with the ones obtained
from the prediction at the yearly scale.

4.2. Classification

We first present performance of CNN-M used in classification mode. The PR curves obtained from the
output classification neuron are reported in Figure 7a (green lines).Models in classificationmode use only
the loss contribution reported in Equation (4) and therefore rely solely on the binary labels and ignore all
scalar GPP values. These models show a limited performance with the worst AUC scores, as is
particularly evident for the tropical site. We note that L2 regularization was found necessary to train
the CNN-M architecture in exclusive classification mode, which otherwise would result in strong over-
fitting and poor performance on the test set.

PR curves substantially improve for all sites when switching to multitasking mode (Figure 7a, red and
black lines). This shows the importance of leveraging the additional information present in the GPP time
series in order to obtain better models. In the multitasking mode, best results are obtained when the
parameter α= αm is used for the regression loss, that is, when the auxiliary regression task performs
optimization of the intermediate monthly GPP predictions. Nevertheless, the difference in AUC scores
between models with α= αm and α= αy is only marginal, similar to what we found for models in
regression mode. For the multitasking mode, regularization was needed only if the auxiliary regression
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task consisted in optimizing the predicted yearly GPP value. Instead, when optimizingmonthly values, no
regularization was needed.

Last, we compare models in classification/multitasking mode against models in regression mode. As
discussed in Section 3.2.4, by fixing a threshold on the predicted yearly GPP, it is possible to build PR
curves for models in regression mode, even if they do not have in their architecture an explicit
classification output neuron, and perform a comparison using the same metrics. PR curves obtained in
this way are reported in Figure 7b. Surprisingly, PR curves for models in regression mode improve their
AUC scores with respect to classification/multitasking modes, even if they tend to become slightly less
smooth. For a given site, however, the difference in classification performance across all models in
regression mode can be considered small. Slightly larger AUC scores are obtained with CNN-M fitting
intermediate monthly values (Figure 7b, black lines). This result is compatible with the previous one
obtained from residual analysis (Figure 5). The classifier built on top of CNN-D yearly predictions
(Figure 7b, blue lines) shows also PR curves with a larger AUC scores than the ones from CNN-M in
multitasking mode. Performance across sites is consistently best for the tropical site and worse for the
boreal site.

In order to better understand why the models trained in regression mode achieve higher AUC scores
than the models trained inmultitasking mode, we plot the predicted versus exact yearly GPP from aCNN-
M model trained in multitasking mode (Figure 8). Red points indicate missclassified years according to
prediction probability threshold of 0.5. These plots show that the classification neuron is performing
predictions coherent with the regression output and is not adding further information. In conclusion, even
considering classification metrics related to the distinction of extreme/nonextreme years, the regression
approach, focusing its loss function on the prediction of the whole GPP distribution, is superior to the
multitasking one.

Figure 6. Daily preditions of GPP from CNN-D (black points), superposed with the exact behavior (red
lines), for one random year selected from the test set.
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5. Discussion

In this work, we demonstrate that one can predict whether a year has low GPP or not from daily
meteorological input using ANNs. The different behavior of the trained models in the three sites shows
the difficulty of obtaining generalizable meteorological features leading to extremely low values of yearly
carbon uptake. According to the type of vegetation growing in each site and the meteorological
background conditions, the mapping from daily precipitation, temperature, and radiation to annual gross
primary production changes. Our interpretation is that when climate is more variable (e.g., in higher
latitudes), changes between different bioclimatic conditions happen more frequently and the the sources
of nonlinearities become more abundant and dependent on longer periods. The three sites can be
considered representative of the respective climate, that is, tropical, temperate, and boreal. We resorted

Figure 7. Precision-recall (PR) curves for different architectures. Corresponding area under curve
(AUC) scores are reported on the legends. See caption of Figure 5 and Section 3.2.3 for definition of the
different αs. (a) Models based on CNN-M in classification or multitasking mode. Classification is
equivalent to multitasking without regression task (β¼ 0, see Equation (5)). For these settings the
classification output neuron can be directly used to evaluate the PR curves. (b) Models in exclusive
regression (Reg.) mode. PR curves are obtained varying a cutoff on the predicted yearly GPP. With this
procedure, the PR curves provide a common metric to compare all models.
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to simulated data, which are therefore an idealization of real climatic conditions, but we expect our
conclusions to hold qualitatively also in the real world.

The regression results show that all neural network architectures considered here, which leverage the
information present in the GPP at different time scales, significantly outperform the yearly predictions of
the linear model. CNN-D can achieve very good daily GPP predictions as well (Figure 6). Nevertheless,
we have shown that yearly residuals obtained from CNN-D do not improve over the ones provided by
CNN-M (Figure 5). Such a result may sound surprising becauseCNN-D exploits 365 GPP values per year
to fix parameters during training, whereasCNN-M uses 12 or 1 values depending on amonthly (α= αm) or
yearly (α= αy) training target, respectively. We hypothesize that near perfect prediction of daily GPP
would be required to tackle the cumulation of errors at the annual scale.We further speculate that learning
GPP at longer time scales forces the model to neglect potentially irrelevant daily variations and focus on
events that are important for the impact of interest. Although we cannot exclude the existence of learning
schemes able to better leverage daily GPP values for annual predictions, our results show that this is not a
trivial task.

On the other extreme, predicting yearly GPP directly ignoring all intermediate time scales (i.e., the
setup provided byCNN-Mwith α= αy) leads already to good residuals, with only one cumulative value of
GPP per year used by the network during training. The improvement of NRMSE values (and of residuals
distributions) using monthly values (CNN-M with α= αm) was non-negligible, but rather small. Never-
theless, only in the latter case CNN-M did not require L2 regularization. Therefore, we speculate that the
effect of employing the information about the GPP values at a monthly scale has also a regularizing effect
on the model, thus enabling the learning of more robust and relevant features.

Finally, in pure classification mode, that is neglecting the GPP distribution and classifying years
directly into “extreme” or “normal,” leads to ANNmodels with the poorest performance, among the ones
considered in this work. The amount of data points needed to train a decent model with such a limited
information provided to the network depends on the complexity of the dataset as well. In our case (see
Figure 7a), we find that models in exclusive classification mode achieve poor AUC score in the tropical
site, and intermediate in the temperate and boreal ones. This limited performance can be improved by
switching to amultitasking framework, when themodel is trained to classify years and to predict values of
yearly GPP at the same time. Nevertheless, even these hybrid models achieve lower AUC scores than the

Figure 8.For the indicated model in multitasking mode, we plot predicted versus exact yearly GPP on the
test set. Colors identify correct (blue) and missclassified (red) examples when a fixed threshold of 0:5 on
the predicted probability is applied. Dashed lines indicate the quantile used to define extreme and normal
years.
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ones in exclusive regression mode, predicting only scalar GPP values (compare Figure 7a and Figure 7b).
This finding can be interpreted in the following way. In our framework, the classification task can be
considered a subtask of the regression task, because the classification into extreme or normal years is
derived from the exact value of the yearly GPP, comparing with the percentile under consideration.
Therefore, the multitasking approach can be considered equivalent to a regression approach which
focuses its attention on the prediction of GPP in extreme years. It seems the classification tasks finds a
“shortcut” that does not generalize well. If the multitasking approach led to AUC scores higher than
models based solely on regression, this would have been a sign that the meteorological patterns leading to
extremely low GPP values are qualitatively different than the ones driving GPP in normal years. Instead,
models in regression mode are able to use the patterns learnt to fit the whole GPP distribution in order to
improve classification metrics based solely on the distinction between extreme/nonextreme years. From
our results, we speculate therefore that in these datasets similar weather patterns drive GPP variations
across all years, either extreme or nonextreme. This hypothesis will be investigated in future works.

In this study, we have used simulated 100,000 years of data, a sample size that is not realistic in
observational datasets. Our main goal was to demonstrate the feasibility of the presented approach.
Moreover, using novel ideas from the rapidly developing field of explainable machine learning (Samek
et al., 2019), we aim to build on these results to generate low-dimensional mappings of weather features to
“bad GPP” years, which would allow for a comparison of mappings between well-calibrated process
models with real-world observations. Furthermore, very high resolution observations, for instance from
satellites (Drusch et al., 2012), would potentially allow a space-for-time substitution to increase the
sample size.

6. Conclusions

In this work, we analyzed the performance of several CNN architectures to predict years with extremely
low annual GPP from daily meteorological time series. Overall, the employed CNN architectures
achieved very good performance. Nonetheless, our results show that themapping betweenmeteorological
data and GPP varies across climatic conditions. In tropical climates, where the source of nonlinearity is
due almost exclusively to the presence of a dry season, CNNs show the best performance.We showed that
the prediction of years with extremely low carbon uptake using models in exclusive regression mode
outperforms models in classification or in mixed (multitasking) mode.

The performance of regression models is relatively stable with respect to the time scale used for
intermediate GPP predictions and therefore on the amount of information provided to the network during
training. Although daily data were available, the best approach turned out to be the one with an
intermediate prediction at themonthly scale, before summing up values to compute yearly GPP. Although
we showed that it is possible to obtain very high performance for daily predictions, small errors at the daily
scale accumulate to comparably large errors when summing up daily values to obtain yearly GPP. The
final error on predicted annual GPP, as well as classification performance into extreme of normal years,
was then slightly worse with respect to setups predicting GPP values directly at longer time scales.

Despite the good quality of all the trained models, it remains an open question to understand what are
the actual weather features that the CNNs are learning. These learned features are hidden in the trained
parameter values. In future work, interpretable machine learning techniques will be used to find out what
are the typical meteorological patterns associated with years of extremely low GPP for different climate
zones and vegetation types. The acquired understanding of model behavior in this study sets a solid
foundation to fully accomplish this task.
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