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ANALYTIC TAF ALGEBRAS

J. R.PETERS, Y. T. POON AND B. H. WAGNER

ABSTRACT A strongly maximal triangular AF algebra which 1s defined by a real-
valued cocycle1s said to be analytic Formulas for generic cocycles are given separately
for both the iteger-valued case and the real-valued coboundary case, and also for cer-
tain nest algebras In the case of an integer-valued cocycle, there 1s an associated partial
homeomorphism of the maximal 1deal space of the diagonal If the partial homeomor-
phismextends to a homeomorphism, then the algebra embeds in a crossed product This
occurs for a large class of subalgebras of UHF algebras, but an example shows that this
does not always occur An example s given of a triangular AF algebra which 1s analytic
via a coboundary but 1s not a nest algebra, also, 1t 1s shown that a nest algebra need not
be analytic

Motivated by the studies in [Ba] and [Prl], the development of a general theory of
triangular subalgebras of AF algebras was first undertaken in [PPW], and further ex-
tended in a number of other papers, for example [HP, MS1, MS2, Po2, Po3, Pr2, Pr3,
PW, T, V1, V2]. The theory of TAF algebras parallels that of the o-weakly closed tri-
angular subalgebras of von Neumann algebras, expounded in [MSS1] and [MSS2]. A
TAF subalgebra 7 of an AF algebra 2 is said to be analytic if there is a one-parameter
family {a,} of automorphisms of U, leaving the diagonal pointwise fixed, such that
T = {a € N : spyla) C [0,00)} (where sp is the Arveson spectrum) [R]. Viewing
9 as a groupoid C*-algebra C*(R), there is a subset P contained in R such that T
consists of those elements of C*(R) supported on P [MS1]. S. Power first noticed that
P, which he called the fundamental relation, completely determines 7 [Pr3]. From this
perspective, the analyticity of 7 is equivalent to the existence of a real-valued cocycle
d such that P = d~'[0, 00). In the case of a o-weakly closed triangular algebra T, T
is a nest algebra if and only if it is analytic and the cocycle is trivial, i.e., a coboundary
[MSS2, Corollary 3.4]. By contrast, in our setting it can happen that 7 is trivially ana-
lytic but not a nest algebra (Examples 3.7 and 3.17). On the other hand, T can be a nest
algebra without being trivially analytic (Example 3.18).

The class of analytic TAF algebras is properly contained in the strongly maximal ones
[SVe, PWo]. In this paper, we concentrate on those analytic TAF algebras which are
trivially analytic, nest algebras, or analytic by means of an integer-valued cocycle (Z-
analytic). For TAF subalgebras of simple (infinite dimensional) AF algebras, the latter
class is disjoint from the first two (Theorem 3.1 and Proposition 4.4). Of course, these
do not exhaust the class of analytic TAF algebras (Example 2.3).

Section 2 is concerned with Z-analytic TAF algebras. The main results are Theo-
rems 2.2 and 2.8. The first result gives a simple necessary and sufficient condition for

Received by the editors August 10, 1991
AMS subject classification 46H20, 46L.05
(©) Canadian Mathematical Society 1993

1009

https://doi.org/10.4153/CJM-1993-056-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-056-0

1010 J.R.PETERS, Y. T. POON AND B. H. WAGNER

Z-analyticity, and provides a useful generic form for a Z-valued cocycle. The latter re-
sult answers the question, raised implicitly in [PPW, Examples 1.2 and 1.3], as to which
TAF algebras can be imbedded in semicrossed products, at least for those TAF algebras
considered in [PPW, § 4]. Specifically, if 2 is the closed union of factors 2(,, with 7N,
maximal triangular in (,, and if 7 is Z-analytic, then there is a homeomorphism ¢ of
X such that P = {(x ¢"(x)) cx € X,n€,n> O}. There is, however, an example
of a Z-analytic subalgebra 7 of a UHF algebra for which no such homeomorphism ex-
ists (Example 2.10). This shows that the algebras considered in [PPW, §4] are indeed a
special type of strongly maximal TAF algebra.

In Sections 3 and 4, we discuss real-valued coboundaries. Theorem 3.16, the main
result, gives necessary and sufficient conditions for an analytic TAF algebra to be gen-
erated by a real-valued coboundary, and also gives a generic form for the coboundary. A
similar result for certain nest algebras follows in Theorem 4.6. We also give a number
of examples illustrating various phenomena, and some computational tools related to the
conditions in Theorem 3.16.

1. Preliminaries. An AF algebra is a C*-algebra U which has an increasing se-
quence of finite dimensional C*-subalgebras {2, : | <n < oo} suchthat 2 = >, ),
If the sequence {(,,} can be chosen so that each 9, is a factor (i.e., W, = My , the k, Xk,
matrix algebra), then 2 is said to be a UHF algebra. In this paper, whenever we use the
notation 3 = J;°, 2, we will always assume that the sequence {2, } is increasing,
is unital, and 2| contains the unit 1 of .

An AF algebra U can also be defined as an inductive limit ligl(?l,,,j,,) of finite di-
mensional C*-algebras 2, with j,: %, < U, a unital C*-embedding [Br]. Then 1, is
isomorphic to a C*-subalgebra 3, of 2 such that 3 = J, %, so in this case we will
identify 2, and M.

Suppose 0 = | J2| %, is an AF algebra, and suppose D, is a maximal abelian self-
adjoint subalgebra (masa) of ), such that ©, C D, for each n. Let ® 2Dy
Then D is a masa (also called the diagonal) of ), and D, = D N U,,. By [SV], such a
masa always exists, and we will always use the term masa to refer to a masa of this form.
Let j, denote the embedding of U, into W,y If A, = H,," tn) \ Miumy, then for each n and
m, a system of matrix units {e("'")} can always be chosen for My (n.m) SO that each J,,(e("'"))

is a sum of matrix units of 9,1, and D is the closed linear span of {e("m) 1 <n 1<

m < {(n),1 <i<k(nm)} (see [PPW, §1] for details). Whenever we use matrix units in
9(, we will always assume that they are chosen in this manner. Also, we will often write
('"" for e("'") and, if 9(, is a factor, e(") for ef]"”.

All subalgebras of AF algebrds in this paper will be norm-closed. If 3 = {J, 9, is
an AF algebra with masa D, then a subalgebra 7 of 9 is said to be triangular AF (with
diagonal D), or TAF, if T N ‘T* = D. We often write TUHF instead of TAF if ) is a
UHF algebra. A TAF subalgebra ‘T of ( is said to be maximal triangularif ‘I is the only
TAF subalgebra containing 7. In addition, 7 is said to be strongly maximal triangular
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[PPW, page 105] if the sequence {2, } can be chosen so that 7N, is maximal triangular
in U, for every n.

Suppose U, = eafn(,’;)l M for each n and 2% = {J, 2. For each k, let Ty be the set
of upper triangular matrices of M;. Let ‘7, ﬁfn‘i’] Ty(n.m), and suppose the embedding
Jn: Wy — W,y takes T, to T,y Then T = J, Z, is a strongly maximal TAF subalgebra
of A = U, N, by [PPW, Theorem 2.6]. Conversely, suppose 7 is a strongly maximal
subalgebra of 9 such that 7, = T M %, is maximal triangular in %, for each n. Then
there exist permutation matrices U, € %, such that U,Z,U; = EB,/"(Z)I Tkn.my> and the
following diagram commutes:

Jn

— W, — W —
AdU, | | Ad UL,
B ?In ?In+l
AdR,; 1 9jn

where R,.; = U,y1ju(US). Thus, 7T is isomorphic to |, /™ Ti(nmy- This proves the

m=1
following lemma.

LEMMA 1.1. Let T be a strongly maximal triangular subalgebra of W = |J;2, W,

such that T N W, is maximal triangular in N, for each n. Then a system of matrix units
can be chosen for\J>> | W, such that if W, = @' My, then TN, = @' Ty

m=1 m=1
DEFINITION 1.2. A strongly maximal triangular subalgebra 7 of a UHF algebra
W is strongly maximal triangular in factors if a sequence {2(,} can be chosen so that
A, = M,, foreach n, N =, N, and T N N, is maximal triangular in %, for every n.

We note that it is possible to have a UHF algebra ) written as |, | U,, where each U,
is not a factor. Thus, it does not follow from the definition that a strongly maximal TUHF
algebra is strongly maximal triangular in factors. Indeed, we will show in Example 2.10
that this is not true in general. Some of the results in this paper are only valid for TUHF
algebras which are strongly maximal triangular in factors.

One of the most important facts in the study of TAF algebras is that the isomorphism
class of a TAF algebra depends on the embeddings j,: 2, — ,,, even though the
isomorphism class of U is independent of these embeddings [G, Br, PPW]. We will use
two particular embeddings for UHF algebras in a number of examples. The standard
embedding 0,: M,,, — M,,  is defined by

gn—1
(n)y __ (n+1)
U"(eij )— Z() ei+lp,,,j+tp,,
t=

where ¢, = pn+1 /p,,, and the nest embedding v,: M,,, — M,, is defined by

Gn
(n)y _ (n+1)
vnle;) = le(i*l)q,.ﬂ.(;’fl)qnﬂ‘
1=

lim(M,,,, 0,,) and lim(M,,, v,) are both UHF algebras of type (pip> - - ), and if T, de-
notes the set of upper triangular matrices in M,,,, then lim(%,on) and l[m(‘Z,,V") are

(nonisomorphic) TAF algebras.
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v, is called the nest embedding because l_im(‘Z;, vp) 1s also a nest algebra. In general,

if A\l is a set of projections in D, then we define Alg N = {a € N : e*ae = O forall e €
N}, where et = 1 — e. Alg Al is a norm-closed algebra, and it is called a nest algebra
if Al is a linearly ordered set (nest) of projections. It follows from [PPW, Example 1.1
and Proposition 2.8] that liﬂm(‘ﬂ,v,,) = Alg N[ for the nest AL = {0,57_ € : 1 < <
Pny 1 < n < 00}. We call this nest the canonical nest and im(‘Z,, v,,) the canonical nest

algebra. On the other hand, if § is a subset of ) with © C §, then a projection e € ) is
invariant for S if e'se = 0 for all s € S. The set Lat S of invariant projections of S is a
commutative lattice in ‘© since ® C .§ and D is a masa.

We will use Wy to denote the set of partial isometries w € ) such that w*Dw C D
and wDw* C D. Note that the initial and final projections of w € s lie in . Also,
every matrix unit of ) is an element of W5 [PPW, Lemma 3.3]. Two partial isometries
v,w € Ws are orthogonal if their initial projections are orthogonal (i.e., v\ yw*w = 0)
and their final projections are also orthogonal. The sum of orthogonal partial isometries
in Ws is also in Nh,.

If 9, is a factor, we will often use [n] to denote the size of the matrix algebra 9, (i.e.,
[n] = +/dim U,,). If A has a faithful normalized trace tr (in particular, if )l is UHF), we
will make use of the probability measure y induced on X = D, the spectrum of ), by tr.

Let ) be an AF algebra with diagonal ©, and let X = D. Then by the spectral theorem
of Muhly and Solel [MS1, Theorem 3.10], elements of ! can be represented as contin-
uous functions on an AF groupoid & on X. This representation will play a major role in
our discussion. To establish the notations and definitions, we will recall the construction
from [MS1].

Let X be a second countable locally compact Hausdorff space. An r-discrete princi-
pal groupoid § is an equivalence relation on X with a certain topological structure (see
[MS1] for details). Two points (x;,y1), (x2,y2) in G are said to be composable if y, = x,,
and in this case (x1,y1) © (x2,y2) = (x1,y2). For (x,y) € G, let (x,y)"' = (y,x). Let
C.(G) be the space of complex continuous functions on G with compact support. Given
f.8 € C(G), define

(f * )%, y) = 3 f(x,2)8(z, ),

where the summation runs over all z with (x, 2), (z,y) € G, and
£y = f(, 0.

This makes C.(G) a x-algebra, and the groupoid C*-algebra C*(G) is the closure of C.(G)
under a suitable C*-norm. The space X can be identified with the subset G° = {(x,x) :
x € X} of G. Then every continuous function f in C(X) can be identified with a unique
function on g‘) (also denoted by f) such that f(x, x) = f(x).

Let P be an open subset of G. Define A(P) = {a € C*(G) : a(x,y) = 0 for all(x, y) ¢
P}. Then A(P) is a norm-closed bimodule of C*(G) over C*(gﬂ)(% C(X)). Conversely,
by [MS1, Theorem 3.10], every closed C*(go)-bimodule A of C*(G) can be represented
uniquely in the form 4 = A4(P) for an open subset P of X ..
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Now suppose 9 = [J, ), is an AF algebra with masa © = m For each projec-
tionpin D, p = {x € X : x(p) = 1}isaclosed and open (clopen) subset of X. Let v be a
matrix unit in some ,. Then we can define a partial homeomorphism 4, [Pr2] from py
to v by h,(x) = x,, where x,(d) = x(vdv*). Letting ¥ = {(x,x,) : x(w*) = 1} C X X X,
we can then define a groupoid K, called an AF-groupoid, by

R = J{? : vis amatrix unit of some 2, }.

R_is given the smallest topology such that each 7 is clopen. Since any nonzero intersec-
tion ¥y M --- M ¥ contains some Py, it follows that {9 : v is a matrix unit of some 9, }
is a base for the topology. Given a matrix unit v, let x; be the characteristic function on
p. Direct computation shows that x; * X3 = xa and (xs)* = x». Hence we can iden-
tify v with x; in C.(R). This extends to an isomorphism between 9 and the groupoid
C*-algebra C*(R) [MS2, V2].

THEOREM 1.3 [MS1,MS2].  Let N be an AF algebra with diagonal ® and X = D,
let R_be an AF-groupoid such that ) =C*(R), and suppose T = A(‘P) is a D-bimodule
in N. Then

(a) T* = A(P"). Thus, T is self-adjoint if and only if P = P~

(b) T is an algebra if and only if Po P C P.

(c) T is triangular ifand only if PN P~ = RO,

Furthermore, a TAF algebra ‘T is strongly maximal triangular if and only if PUP ' =
R. Note that in this case P is a clopen subset.

THEOREM 1.4 [MS2, T, V1]. A TAF algebra ‘T is strongly maximal triangular in
W if and only if T + T* is dense in .

Suppose A = (J, N, and D = m as above. Then for every point x € X, there
exists a unique sequence {e, : 1 < n < oo} of projections, where ¢, is a minimal
projection in D, for every n, such that {x} = ;2 &, [SV]. Since each e, is minimal in
D, and %, C N,,|, we have e, > e, (the usual order of projections in D) for every
n. Conversely, if for each n, e, is a minimal projection of D, such that e, > e,4, then
N2, éx = {x} for some unique x in X. We will use x = (¢, é2, €3, ...) to denote such a
correspondence.

Now suppose we write 2 as C*(R), and let T = A(‘P) be a subalgebra of ) contain-
ing . Then T defines an orderingon X = D by x K yif (x,y) € P. We will call < the
spectrum ordering on X induced by T. This ordering is reflexive and transitive, and it is
antisymmetric if and only if 7 is triangular. An equivalent formulation of this concept
was first introduced by Power [Pr2], and he proved that this ordering, when viewed as a
topological subrelation of &, gives a complete isometric isomorphism invariant for TAF
algebras [Pr3). Note that if x < y, then there is some n and some matrix unity € TN,
such that (x,y) € ¥ C P, since P is open.

https://doi.org/10.4153/CJM-1993-056-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-056-0

1014 J.R.PETERS, Y. T. POON AND B. H. WAGNER

LEMMA 1L.5.  Suppose x = (é,,é1,é3,...)andy = (fl,fz,f3, ...). Thenx L y ifand
only if there exists an N and a matrix unit v in Ty such that e, = vf,v* foralln > N.

PROOF.  Suppose x < y. Then there exists an N and a matrix unit v € 7 N such
that (x,y) € v. Hence, foreach n > N, w* and v*v are projectionsin D, such that x € e
and y € v*v. Since e, and f, are minimal, we have e, < w* and f, < v*v. Now vf,v*
is a minimal projection in D, such that x € U e WV, Hence, e, = vf,v* because
there is only one minimal projection e in ‘®, such that x € é. The proof of the converse
is trivial. .

LEMMA 1.6.  Suppose that for each n, U, = My, and ‘I, is the algebra of upper tri-

angular matrices in . Let xy = (é(ll), é(lz), é‘lz),. Jandx, = (é;l), ”f), ‘k3),. ). Then x,

is the unique minimal point and x, is the unique maximal point in the spectrum ordering
L defined by T =, Iy

PROOF. We first show that xy is minimal in the spectrum ordering. Let y =
(‘(” ‘(22), ...) such that y < xo. By Lemma 1.5, there exists an N and a matrix unit v
in Q}v such that e(") = ve{"v* for all n > N. Since ‘T, is the algebra of upper triangular
matrices, we have V= Z(,‘,)ege for a nonempty subset S of {(i,j) : 1 <i <j < n}.
Hence, i, = 1 foralln > N, dnd therefore y = xg.

For uniqueness, suppose y = (e“) Af), ..) # xo. Then i, > 1 for some n, so there is
some x € X such that (x,y) € é ”(") . Consequently, x < y and y is not minimal.

The proof of the max1ma11ty and uniqueness of x; is similar. ]

DEFINITION 1.7. Let W = C*(R) for an AF-groupoid R on X. A (real-valued)
continuous function d on X_ is said to be a cocycle if d(x,z) = d(x,y) + d(y, z) for all
x,y),(0,2) € R.If d(R) C 7, the integers, then d is said to be an integer-valued
cocycle. A cocycle d is said to be a coboundary if there exists a continuous function b
on X such that d(x,y) = b(y) — b(x). Thus, a coboundary is bounded on &, since X is
compact. Conversely, if U is simple, then every bounded cocycle is a coboundary [R,
page 112].

DEFINITION 1.8. A subalgebra 7 = A(P) of A = C*(R) is said to be analytic
(Z-analytic) if there exists a (integer-valued) cocycle d such that P = d~'[0,00). In
this case, we write Iy for T. We also say 7 is trivially analytic if T = T, for some
coboundary d. Note that 7y is triangular if and only if 4~ '({0}) = R°(= X).

COROLLARY 1.9 [V2].  An analytic TAF algebra is strongly maximal triangular.

PROOF. This follows directly from Theorem 1.3 since d~'(—00,0] U d~'[0,00) =
R. .

The converse of Corollary 1.9 is false. Counterexamples are given in [SVe] and [PWo].

REMARK 1.10. Suppose T = A(P) is a strongly maximal triangular subalgebra of
A with diagonal ®. For each n, let I3, = C*(2,,, D). Then there exists a clopen subset R,
of R_such that A(R,) = B,. Note that R, = |J, R,. Let B, = PN R, and P} = P, \ X.
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Since T is strongly maximal, we have &, = P UXU(?P;)~'. Now suppose that for each
n, we can define a cocycle ¢, on R, such that ¢,(x, y) > 0if (x,y) € P}. Suppose also that
for each (x, y) € R, there is some m such that (x,y) € R, and c,(x,y) = cn41(x, y) forall
n > m. Then d(x,y) = lim,_ . c,(x,y) exists (as a finite number) for every (x,y) € R,
and d is a cocycle on R_such that 7 = ‘I, since P = |J B,. Conversely, if T = I, for
some cocycle d, then ¢, = d]% is a cocycle on &, such that ¢,(x,y) > 0 for (x,y) € P/,
and d(x, y) = c,(x,y) for all n > some m since R = J R,.

2. Analytic TAF algebras with integer-valued cocycles. Recall that a Z-analytic
TAF algebra is always strongly maximal, by Corollary 1.9. Now suppose T = A(P) is
a strongly maximal triangular subalgebra of 9 with diagonal D, and let R,, F,, and P}
be defined as in Remark 1.10. For (x,y) € P}, define

dy(x,y) = max{k > 1 : there exist (x,,x4;) € P71 <i <k,
such that x; = x and x4, = y}

If (x,y) € P/, then there exists a matrix unitv € Z, \ D such that (x,y) € . Hence
d,(x,y) > 0. Since 2, is finite dimensional, d,(x, y) is finite and d,(x,y) = d,(x,z) +
d,(z,y) if (x, z) and (z, y) are both in P} . Define d, on &, by

du(x,y)  if(xy) € B

dn(x,y) =0 ifx=y

—d,(y,x) if (y,x) € P;.
Direct computation shows that d,, is a cocycle on K, and 7 N'B, = T, . This implies
the following result.

PROPOSITION 2.1.  Suppose T is a strongly maximal triangular subalgebra of N.
Then T NV, is Z-analytic in B3, for each n.

Since R = U, Ry, for each (x,y) € R there exists some m such that d,(x,y) is
defined for all n > m. Furthermore, if (x, y) € P, then {d,(x,y) : n > m} is an increasing
sequence.

THEOREM 2.2.  Let ‘T be a strongly maximal triangular subalgebra of . Then ‘T is
Z-analytic if and only if for each (x,y) € R, lim,_,o, d,(x,y) = d(x, y) exists (as a finite
number). In this case, d is a cocycle on R_and T = T,

PROOE. For sufficiency, let (x,y) € 2R. Since d,(x,y) is always an integer,
lim, 00 dn(x, ¥) exists if and only if the sequence {d,(x, )} is eventually constant. Thus,
T is Z-analytic by Remark 1.10.

Conversely, suppose T = T, for an integer-valued cocycle d. If (x,y) € B,, then
{di(x,y) :m <n< o0} is an increasing sequence bounded above by d(x, y), so ﬁ(x, y)
exists, and it is a cocycle on R by Remark 1.10. Also, if (x,y) € R, then

d(x,y) > 0 & (x,y) € ¥ for some matrix unitv € T N,
& d,(x,y) > 0 for some n
& dx,y) > 0.
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Therefore, d'[0,00) = d '[0, 00) and T = T ™

Suppose T = ‘I is Z-analytic. We will call the integer-valued cocycle d obtained in
Theorem 2.2 the generic form of d. For the rest of this section, we will assume that the
Z-cocycles are given in generic form. Finally, we note that d is determined by the clopen
subset d'({1}).

EXAMPLE 2.3. We will show that the TAF algebra in Example 3.27 of [PPW] is
analytic via an unbounded, real-valued cocycle, but it is not Z-analytic.

Let N,, = My» with matrix units {eﬁj")}, and let 0, and v, denote the standard and nest
embeddings, respectively. For n even, let j,: W,, < 2,42 by jp = Vyy) © 0, SO

. (
Jn(ef:)) = Vnt1 © Un(e,]n))
_ (n+2) (n+2) (n+2) (n+2)
=iyt € i oy T € i)
Let 7, be the upper triangular subalgebra of %, and let 7 = lim{(‘Z,j,) : neven}. T,

viewed as a subalgebra A(‘P) of the groupoid C*-algebra, is supported on P = U{éij") :
1<i<j<2"n=24,.}

If (x,y) € &, define d(x,y) = (j — i)/(27). To see that d is well-defined, note that

An) _ 4(n+2) A(n+2) A(n+2) A(n+2)
&y = € 1y 1 Y80 Ui a1 Y &min ami

. An+2 .
one of these four sets, say (x,y) € &5" l)’zﬁ |- Observe that

Thus, (x,y) also belongs to

2j—-DH—-Qi—1) 2G—0 (G-
2% Co2.28 0 2%
The same result holds if (x,y) is in any of the other sets. Thus d is well-defined. d is
continuous since it is constant on each clopen set éfj’”. Also, d is clearly unbounded.
Finally, the facts (i) d(x,y) = 0iff y = x, and (ii) d(x, y)+d(y, z) = d(x,2) if (x,y),(y,2) €
R, are clear from the definition of d.
Now suppose (x,y) € éfj"), i #j. Thend,(x,y) = j —i,but dya(x,y) = 2(j — i). Thus,
lim,—, du(x,y) does not exist. It follows from Theorem 2.2 that 7" is not Z-analytic.

Let X be a compact zero-dimensional space and ¢ a minimal homeomorphism of X
(i.e., the ¢-orbit of each x € X is dense in X). Then the crossed product Z X, C(X) is the
C*-algebra generated by C(X) and a unitary U such that UfU* = f o ¢ for f € C(X). Let
xp € X. Then the C*-subalgebra (¢, xo) of Z X, C(X) generated by C(X) and UCy(X) =
{Uf : f € C(X),f(xo) = 0} is an AF algebra [Pu] with diagonal ® = C(X), and
the subalgebra T (¢, xo) generated by C(X) and UCy(X) is a strongly maximal triangular
subalgebra of (¢, xy) [PPW, Example 1.3].

Let X and ¢ be as given above. Then G = {(x qb"(x)) xeX,n€ Z} is an r-discrete
principal groupoid such that C*(G) = Z x, C(X) [R,MS1]. Since both T (¢,x,) and
(¢, x) contain C(X), there are open subsets P and R of G such that T (¢, xo) = A(P)
and (¢, x0) = A(R)). From Corollary 2.4 of [Pol], we have P = {(x c’)”(x)) D P'(x) #
xofor1 <i<nn>0}and R = PUP ' Define d: G— Z by d(x,¢"(x)) = n. Then
T =T;in N = C*(R). Thus,
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PROPOSITION 2.4.  Every T (¢, xo) is Z-analytic.

This leads to the following question: what kind of Z-analytic ‘7 can be represented
as T (¢, xp)? In Theorem 2.8, we will prove the converse of Proposition 2.4 for a certain
class of TUHF algebras.

REMARK 2.5. The strongly maximal triangular algebra 7 = liln(‘lfl, o,), generated
by the standard embeddings o, and the set of upper triangular matrices 7, in M, , can
be represented as T (¢, xy) [PPW, Example 1.2]. Ventura [V2, Example 5.1] has given
an explicit formula for an integer-valued cocycle d such that 7 = .

DEFINITION 2.6.  Given an integer-valued cocycle d on &, let ¢, be the partial home-
omorphism defined by the clopen subset d~!'({1}) of R, i.e., ¢4(x) = y, where y is the
unique element such that d(x,y) = 1. ¢, is defined on the open subset 7, (d"({l})),
where 7, R — X by 7,(x,y) = x.

LEMMA 2.7.  Let ‘T be a TAF subalgebra of W = C*(R), and let d be an integer-
valued cocycle on T such that T = ‘Iy. Let Xiax (and Xuin) be the maximal (respectively
minimal) points in X with respect to the ordering <. Then ¢4 is a homeomorphism from
X\ Xmax 10 X \ Xmin-

PROOE. Let P = d~'[0,00), s0 T = A(P). Let x € X. Then ¢(x) is defined iff
d(x,y) = 1 for some y iff (x,y) € P for some y # x iff x ¢ Xpax. Similarly, if y € X,
then y = ¢(x) for some x iff y & Xpin. n

THEOREM 2.8.  Let W, = M, for each n and let ‘I, (D,) be the set of upper triangu-
lar (diagonal) matrices in Myy,). Suppove the embedding N, — W,y takes T, into T,..
Lat W=, 0, T=U,% D=U, D and X = D. Suppose T = T is Z-analytic.
and let xy = (é(]“,é(] ,...)and x; = (e[”, AS},. ). Then

(a) ¢4 is a partial homeomorphism from X \ {x;} onto X \ {xo}.

(b) ¢4 can be extended to a minimal homeomorphism ¢ on X by defining ¢(x;) = xg.

(c) W= W(p,x0) and T = T (d,xp).

PROOF. (a) follows from Lemma 2.7 and Lemma 1.6.

For (b), we will first show that the extension ¢(x;) = xo is continuous. Let W be an
open subset of X containing xo. We can choose » such that e(”) C W. By Theorem 2.2,
foreach rand s, 1 <r,s < [n}], and each (x,y) € él"l we can find some m > n such that

rs o
A(m) . . . . . .
(*) (x,y) € ei;" for some 1 <i <j < [m]withj—i=d(x,y).

By the compactness of [J{&” : 1 < r, s < [n]}, we can find a finite number m such that
for every r, s, with 1 <r, s < [n], and every (x,y) € &, condition (x) is satisfied.

Now em is an open set containing x;. We are going to show that

¢( A(m) C A(n) C w.

[m]
Let x € & withx # x;. Then ¢(x) = ¢4(x). Suppose ¢(x) & é‘l"). Then there exists

[m]
A(n)

some j, I < j < [n], such that ¢(x) € éj(.”). Hence, for some y # ¢(x), (y, ¢(x)) €é).
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Let d(y, d)(x)) = r > 0. Then by (x), there is some k and r with 1 < k < k+r < [m]
such that ( Y, ¢(x)) € é;("';;,. Since

(my _ (m)  (m) L pm)
Chier = Gkl "Gkt k2 T Chir— ke

we have x = d)"(d)(x)) =o'y edn ém, a contradiction. Hence, ¢(x) € &"
and ¢ is continuous. Since X is compact Hausdorff and ¢ is bijective, it follows that ¢ is
a homeomorphism.

Finally, suppose z € X and Z is a nonempty open subset of X. Choose n and i, 1 <
i < [n], such that éf"’ CZ:ze éj('” for some j, 1 <j < [n], so (y,2) € éfj’” for some
yE éf"). Since either eﬁj") or e;,") isin T, we have y = ¢k(z) € éf") C Z for some integer
k. Hence, ¢ is minimal.

For (¢), let T = A(P). We note that T N 2, is equal to the set of upper triangular
matrices in %, [PPW, Proposition 2.5]. Hence, forn > 1, (x, ¢"(x)) € P if and only if
¢'(x) # xp for 1 < i < n. Thus, by the discussion preceding Proposition 2.4, T (¢, xo) =
T and (P, xp) = . .

COROLLARY 2.9. Suppose T is strongly maximal triangular in factors and T = I
is Z-analytic. Then ¢4 can be extended to a minimal homeomorphism ¢ on X such that
N 2 WN(p, x0) and T = T (¢, x0).

PROOF. Apply Lemma 1.1 and Theorem 2.8. [

The previous theorem and corollary depend on the facts that 2 is UHF and 7 is
strongly maximal triangular in factors. We will next show that not every strongly max-
imal TUHF algebra is strongly maximal triangular in factors. This same example will
then be used to show that the assumption in Corollary 2.9 that 7 is strongly maximal
triangular in factors is necessary.

EXAMPLE2.10. (a) A strongly maximal triangular subalgebra of a UHF algebra need

not be strongly maximal in factors. Let 8, = My & My. forn = 0,1,..., and let /,,
denote the identity operator in M,,,. Define embeddings j,: &, — &, by
A B
. B A
Jn(A®B) = B (S5 A
A B
Define 2\ = lim(G,,j,). Now let A,, = M; 4« and define J,;: 2, — G,4; C W,4 by
In(2) = (2D unzuy) S (upzuy Bz), where uy, is the unitary ( 10 148 ' ) Since Ju|6, = jns
4n 1

it follows that 2 = li_{n(?[n,J"), i.e., Wis UHF.

Note that 7,, the set of upper triangular matrices in (&, is maximal triangular in %,
and j,(‘I;) C ‘T,.1. Thus, since each (&, is a finite dimensional C*-algebra, T = (J, L,
is strongly maximal triangular in 3. However, T is not strongly maximal triangular in
factors since there are two maximal and two minimal points with respect to the spectrum
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ordering induced by 7. To see this, let {e(”k)} k = 1,2, be the usual set of matrix units
for 8,,. Then the two minimal points are

X0 _(A(Ol) A(H)’ A(Zl) )andx _ (A(02) A(IZ) A(22) )

and the two maximal points are

A(O]) A(ll) A(21) A(nl)

A(02) A(12) 522 (n2
yo = (&) 8l s sl .. )and y; = (( ) 1D 522 &)

R 2 PR ) (R

Since the spectrum ordering is an algebra isomorphism invariant, it follows from Lem-
mas 1.1 and 1.6 that T is not isomorphic to an algebra which is strongly maximal trian-
gular in factors.

(b) If (x,y) € R, and d,(x,y) = r, then it follows from the definition of j, that
dn(x,y) = rforall m > n. Thus, 7 is Z-analytic by Theorem 2.2. However, ¢, does not
extend to a homeomorphism ¢ of X. To see this, note that ¢(yg) would have to be either
xp or x;. We will show that ¢ is not continuous if ¢(yg) = xo. The proof is similar for the
other choice. Thus, the assumption in Corollary 2.9 that 7 is strongly maximal in factors
is necessary.

If ¢(yo) = xo and ¢ is continuous, then for each é("” there must be some éz',’n’” such
that ¢p(&2") C &V, But ju(eln’) = efnh! 4 il D, el + {12 Therefore, if

4m 4m 4,,,+|
Am+i 1 Sm 11 S+ l1 I
x €&t then ¢(x) € &t But &0t N ((imo - - 0jia)(e]™))" = 0. Thus, ¢ is not
continuous.

(c) Let S, be the set of upper triangular matrices in Mj4-. Note that lim(Mj .4, 0,,)
is isomorphic to ). Let .S be the strongly maximal TAF algebra lim(S,, o,,). Then by

Remark 2.5, S is Z-analytic, so (a) and (b) show that ) contains two nonisomorphic
Z-analytic TAF algebras.

REMARK 2.11.  Suppose A = {J, 2, and T C U is a TAF algebra with diagonal
D. By Corollary 2.3 of [PPW], we have T = (J,(T N A,). The last example showed
that even when 7 is strongly maximal triangular, T N 9, need not be maximal triangu-
lar in 9(,,. By Proposition 2.1 and Corollary 1.9, this complication can be overcome by
replacing ), with the infinite dimensional subalgebra 13, = C*(2(,, D). Furthermore,
analogous to Lemma 1.1, 7 N 23, can also be put into “upper triangular form”. More
specifically, suppose W = J, 2, D is a masa in 2, and 7T is a strongly maximal tri-
angular algebra in ) with respect to D. Let 33, = C*(),,, D) for each n. Then T NB,
is maximal triangular in 13, and 7" = ,(7 N B,). Furthermore, if A, = @, " b ' Mitum)
for each n, then there exist compact zero dimensional spaces X, ,, such that

{(n)
By 2 @B (CKnm) @ Mygum))

m=1
and .
TN B, = @ (C(Xnm) & Tk(n‘m))

m=1

where T = upper triangular matrices in My.

We omit the proof since this result is not needed in the sequel.
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3. Analytic TAF algebras with trivial real-valued cocycles. This section is moti-
vated by the following question: under what conditions is a TAF algebra 7 generated by
areal-valued cocycle? In Corollary 1.9, it was shown that a necessary condition is that 7
must be strongly maximal triangular. However, this condition is not sufficient. In Theo-
rem 3.16, the main result of this section, we give necessary and sufficient conditions for a
strongly maximal TAF algebra to be generated by a real-valued coboundary. In addition,
just as in the Z-valued case (Theorem 2.2), this result yields a generic coboundary.

We will first show that trivially analytic TAF algebras cannot be Z-analytic (Theo-
rem 3.1), and we will make some observations on the connection between coboundaries
and decreasing sets (defined below). We will also give a number of examples which mo-
tivate and illustrate the main result, and we will finish with a computational tool related
to Theorem 3.16 (Proposition 3.20).

If 4 is a nest subalgebra of a von Neumann algebra M of the type studied in [MSS1]
and [MSS2], then 4 is analytic via a coboundary [MSS2, Corollary 3.4]. In [V2, Exam-
ple 5.2], it was shown that the “canonical” nest algebra Alg A\ (defined in §1) in the M~
UHF algebra is also generated by a coboundary, specifically d(x,y) = b(y) — b(x) with
b(x) = sup{tr(P) : P € N\, x ¢ P}. However, this coboundary will not work for general
nest algebras. In fact, a nest subalgebra of a UHF algebra need not even be analytic, since
there are nest algebras which are not strongly maximal [PW, Example 2.26]. Conversely,
there are analytic algebras with trivial cocycle which are not nest algebras; in fact, they
may have no nontrivial invariant projections (Example 3.7 below). In Section 4, we will
investigate the question of when a nest algebra is trivially analytic.

For the remainder of this section, unless otherwise stated 7 = A4(‘P) will be a strongly
maximal triangular subalgebra of a simple (infinite dimensional) AF algebra 3l = C*(R).
X will denote the spectrum of © = 7 M ‘T*. The simplicity of 2 implies that K _is mini-
mal, i.e., {y € X : (x,y) € R },the equivalence class of x, is dense in X foreach x [R, page
112]. All cocycles and coboundaries will be real-valued. Note that if d(x, y) = b(y) —b(x)
is a coboundary, then the range of b is bounded since b is continuous and X is compact.

THEOREM 3.1.  Let W be a simple AF algebra, and let T C W be a trivially analytic
TAF algebra. Then T is not Z-analytic.

PROOF. Let 2 = C*(R) and suppose I = A(‘P), where d(x,y) = b(y) — b(x) for
(x,y) € R and P = d~'[0, 00). If there are distinct points z,, i = 0,...,m, such that
x =70 71 € -+ K zy = )y, then ﬁ(x,y) = :’;lc?(z,q,z,) > m. Thus, we may
assume that for every (x,y) € P, the set [x,y] = {z: x € z < y} is finite.

Suppose b(up) is the minimum of b on X and b(u,) is the maximum of b on X. Let C be
the equivalence class of ug. If u; isin C, then C = [u, u; ] is finite, a contradiction. Hence,
U ¢ C. As noted above, R_is minimal since ?{ is simple, so there is a sequence {x,} C C
which converges to u|, and we may further assume that all the x,’s are distinct and satisfy
b(x;) < b(xy) < -+ < b(uy). Choose ¢, > 0 such that b(x,) + ¢, < b(x,41) — €,41, and
let W, = (b(x,) — €,,b(x;) + €,). Then we can find a sequence {z,} in the equivalence
class of u; such that z, € b~'(W,) for all i > 1. But this implies that [z;, «;] is infinite, a
contradiction. n
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In particular, the result is true for infinite dimensional UHF algebras. Note also that
the hypotheses are stronger than necessary: only the density of the equivalence classes
of up and u; is needed in the proof.

DEFINITION 3.2. A set D C X is decreasing (relative to T) if y € Dand x < y
implies x € D. Similarly, I C X is increasing if x €  and x < y implies y € I.

PROPOSITION 3.3.  If D is a decreasing set, then so is D. I is an increasing set, then
soisl.

PROOF. We only prove the first assertion. Let z € D and suppose y < z. There is a
sequence {x, : 1 <n < oo} C D such that x, — z. The relation y < z is implemented
by a partial homeomorphism h,, h,(y) = z, such that ¥ C P. As Range(h,) = Vv is a
clopen subset of X, there is an N such that x,, € Range(h,) forn > N. Sety, = h, Y(x).
Then y, < x,, 50 y, € D, and limy, = limh; ' (x,) = h;'(z) = y. Therefore, y € D and
D is decreasing. [

PROPOSITION 3.4. If T is generated by a coboundary d(x,y) = b(y) — b(x), then
foreach r, b~'(—00, r) is an open decreasing set and b~'(—o0, r] is a closed decreasing
set. Similarly, each b~Y(r,00) is an open increasing set and each b~ '[r,00) is a closed
increasing set. In addition, the open decreasing and increasing sets separate the points
of X in the sense that if (x,y) € P, x # y, then there is an open decreasing set D and an
open increasing set I such thatx € D,y € I, and DN I = {),

PROOF.  Straightforward. =

It follows that an analytic algebra generated by a coboundary induces lots of decreas-
ing and increasing sets in X.

ExXAMPLE3.5. In[V2,Example 5.1], it was shown that the maximal triangular subal-
gebra of a UHF algebra generated by the standard embeddings and the upper triangular
matrices is analytic, but that the given cocycle cannot be represented by a cobound-
ary. The previous proposition, however, shows that there is no coboundary which gener-
ates the algebra, because every open decreasing or increasing set has measure 1. To see
this, represent 7 as |J, Z, with I, = span{e(") i < j}. If Wis open and decreasing,

then W contains some éf(’”, and therefore U{e(”) ”(”)} C W, so w(W) > k/[n]. But
(@10 -00)(e") = i) e, where g = [m]/[n], so U{e[",....ém |} C W

and therefore (W) > ((q — Din]l+ k)/[m] >1— [n]/ [m] — 1 as m — 00. A similar
proof shows that every open increasing set also has measure 1. Now if 7 is generated
by a coboundary d(x,y) = b(y) — b(x), choose sets D and I as in Proposition 3.4. Then
w(D) = p(h) = u(X) = 1 and DN I = (), a contradiction.

PROPOSITION 3.6. If T is a closed subalgebra of W containing D, then P is an
invariant projection for T if and only if P is a clopen decreasing set.

PROOF.  Suppose P is an invariant projection, y € P, and x < y. Then (x,y) € ¥ for
some matrix unit v € 7T, and therefore (x,y) € vP. But vP = PvP since P is invariant,
sox € P. Hence, P is decreasing, and it is clopen since P is a projection.
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On the other hand, if Pis decreasing but P is not invariant, then P Lyp # 0 for some
matrix unitv € 7. But then it follows that there is some (x, y) € (P vP)". Since P vP €
T, wehave x < yand y € P, but x ¢ P, a contradiction. "

Thus, in the case of the canonical nest A\, with 7 = Alg A\, X has lots of clopen
decreasing sets. However, as the next example shows, the existence of clopen decreasing
sets is not necessary.

EXAMPLE 3.7. There is a TUHF algebra which is analytic via a coboundary but
which has no nontrivial invariant projections (and therefore in particular it is not a nest
algebra). Let W, = Mys, Z, = {upper triangular matrices in %,}, and let U, be the
permutation matrix which satisfies

Un diag(al, P ,a4n)U;
- diag(als a2’ a3’ a55 a4’ aﬁs a77 a97 a87 MR a4k719 a4k+l, a4k’ a4k+2a R a4”)s

where diag(- - -) denotes the diagonal matrix with the given entries. Let j, = Ad U, ov,,
Jim = jm© - --0ji, and note that j,: T, < T4, so we can define T = im(‘Z,. /).

Now ‘T has no nontrivial invariant projections. For if P € D,, is invariant for 7, P #
0,1,then P = ¢! +- - -+¢!" for some k < 4". But then j,(P) = """ +- - -+t + et
$0 jn(P) is not invariant for ‘7., and thus not for ‘I as well.

Letk(n) = (4"— l)/3 andf, = Zf‘:"]) ef"). Then forevery n, f, is an invariant projection
for 7, and f,, < fy41. The set W = |2, fu is therefore open and decreasing, and (W) =
lim, ,u(f,,) = limy, oo tr(fy) = limy, 5o (4" — 1)/(3 -4M = % Thus, X has a nontrivial
(neither null nor conull) open decreasing set. Similar arguments show that X has lots of
such sets, and in fact it will follow from Theorem 3.16 that 7 is induced by a real-valued

coboundary (see Example 3.17).

DEFINITION 3.8. For x = (&1,82....), set Enx = U,eqnap. {ven'} and E, =
No2| Enx- Then E,  is the smallest open decreasing set containing é,, so E is a de-
creasing Gs subset of X containing {x}. Similarly, letting J, . = U,cqqy. {v*e,v} and
Je = N2 Jux, it follows that J, is an increasing Gy set containing {x}. Eqilivalently, E,
is the intersection of all open decreasing sets containing x, since each open decreasing set
contains some E, , and likewise J, is the intersection of all open increasing sets contain-
ing x. Thus, it is clear that E, and J, are independent of the sequence {9, : I <n < oo};
that is, if {8, : 1 < n < oo} is another such sequence with &, 1Y a masa in ($,, then

E‘({(S)',,}) = Ex({\)ln})

PROPOSITION 3.9. [If T is strongly maximal triangular in ), then E. U J, = X for
each x € X.

PROOF. Suppose x = (é;,é,,...), and let y be any point in X. For each n, there is
some z, € &, suchthat (y, z,) € R, since R_is minimal. Now if (y,z,) € P, theny € E, .
Likewise, if (z,,y) € P, theny € J, .. Thus, y € E, . UJ, for all n, and therefore

v E (VB Udns) = (ﬁ E) U < N J) —E.UJ,

n=1 n=1 n=1
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since the sets {E,, : 1 <n < oo}and {J,; : | <n < oo} are nested. It follows that
X=E UJ,. =

From now on, we will assume that ) has a faithful trace, and p will denote the measure
on X induced by the normalized trace tr. Let 7 be a strongly maximal TAF algebra in 9,
and define by: X — [0, 1] by bo(x) = p(Ey).

LEMMA 3.10.  If u(Ex N Jy) = 0 for all x € X, then by € C(X).

PROOF.  Suppose x = (&1, é,,...). Since p(Ey) = p(02 ) Eny) = limy oo p(E, x), it
follows that given ¢ > 0, there is an N such that if n > N, then |u(E,,) — bp(x)| < e.
Thus if y € é,, then bo(y) < p(E,,), and hence by(y) < bg(x) + €. Therefore by is upper
semicontinuous. Now the same argument shows that the function x — pu(J,) is upper
semicontinuous (replace E, , and E, by J,, and J,). Since u(E,MJ,) = 0 by hypothesis,
and Proposition 3.9 implies that u(E, UJ,) = p(X) = 1, it follows that by(x) = 1 — u(J,)
is also lower semicontinuous, and hence continuous. ]

REMARK 3.11. The converse of the lemma is false. If 7 is the algebra in Example
3.5, then every nonempty open decreasing or increasing set in X has measure one. There-
fore, u(Ey) = u(Jy) = 1 and necessarily u(E, NJ,) = 1. Thus, in this case, by € C(X) is
constant.

PROPOSITION 3.12.  Suppose c is a continuous function such that c(x) < c(y) if
(x,y) € P. Then for each y € X we have

(a) ¢ '(—o00,c(y)) CE, Cc'(—00,c(y)]

(b) ¢ (c(y),00) C Iy C ¢ Me(3), )

PROOF.  First, we claim c(x) < c(y) forall x € E,. Given e > Othere is, by continuity
of ¢, a projection e € D with y € & such that |c(x) — c(y)] < € for all x € é. Now
E CF = U‘GWEQT{vE*}. Thus, if x € F, then x < x’ for some x¥ € é. Hence
c(x) < c(x’) < c(y) + €. As € > 0 was arbitrary, ¢(x) < c(y). Similarly, it can be shown
that ¢(x) > ¢(y) forall x € J,. Since X = E, U J,, (a) and (b) follow. »

In particular, the preceding proposition is true for ¢ = by if p(E, M J,) = 0O for all x.

LEMMA 3.13. There is a countable collection {7, : 1 < n < o0} of measure-
preserving homeomorphisms of X such that for each x € X,

(i) (x,T,,(x)) € R, and

(ii) Tp(x) # Tw(x) if n # m.

PROOF.  We first prove the result in the UHF case, so assume that % = |, %, where

the ,,’s are factors. If ef") = efl’”” +. 4 efk"“), set vy, = ij;,' "D e andy, =

L uly

ZEZ'I V... Observe that v, € Wy is unitary, so that if 7, is the partial homeomorphism
corresponding to v,, defined by 7,(x)(d) = x(v,dv}), then 7, is a homeomorphism of X.
If e € P(D), then u(T,,(é)) = tr(viev,) = tr(ev,v;,) = tr(e) = u(é). As any open set in
X is a union of a countable number of clopen subsets, 7, is measure-preserving on open
sets and hence measure-preserving.
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Letxe X,x € éf.'””. Then 7,(x) ¢ é?'“”, but if m > n it follows from the construction
that 7,,(x) € ég"m. Thus 7,(x) # Tm(x). It is clear that (x, T,,(x)) € R.

Now suppose that U is a simple AF algebra which is not UHF. Then there exists a
sequence { U, } suchthat %, = e}fn(i’] My n.my With £(n) > 1. Fix n. By [Br, Corollary 3.5],
there is some r > n such that the multiplicity of the embedding of each My, in each
My, (in the sense of the Bratteli diagram of ) is at least 1. Consequently, there is
some s > r such that the multiplicity of the embedding of each My, ) in each My, ) is
at least 2. It follows that /" = ZSS)‘(e;“""’ +- -+ €y?) with g > 2 for each g. Now v,
can be defined in a similar manner as before, and the result follows. n

COROLLARY 3.14.  Let E C X be measurable with u(E) > 0. Then there are distinct
points x,y € E such that (x,y) € K.

PROOF.  Suppose E contains no two points x, y such that (x,y) € R. Then, with
notation as in Lemma 3.13, 7,(E) N 1,u(E) = 0 for n # m. For if there exist x,y € E
such that 7,(x) = 7T,»(y), then (x,y) € R_since (x, Tn (x)) € R and (T,,,(y), y) € R.. Thus,
L= pX) > (Ui m(B)) = 2, p(ru(E)) = T2, w(E) = oo. This contradiction
completes the proof. L]

LEMMA 3.15. Suppose T is analytic with cocycle d(x,y) = c(y) — c(x), ¢ € C(X).
Then W(ExNJ,) = 0forall x € X.

PROOF. Let P = d'[0,00),50 PUP ' = Rand PNP ' = X = d'({0}).
Suppose that u(E,, NJy,) > 0 for some xo € X. By the last corollary, there is a pair
(x,y) € P, x # y,such that x,y € E,, N J,,. Hence c(x) < ¢(y). Now exactly one of the
following holds: (i) c(y) < c(xp); (1) c(x) < c(xp) < c(y); or (iii) c(xg) < c(x). In case (i),
let o € R satisfy c(x) < a < ¢(y). Then ¢ Na,00) is open, increasing, and contains x.
Thus J,, € ¢ (a,00). But x & ¢! (ar,00), whereas x € J,,. The other cases are treated

similarly. .
We can now prove the main result.

THEOREM 3.16. Let W be a simple AF algebra with faithful trace, and let T =
A(P) C N be a strongly maximal TAF algebra. With ® = TNT* and X = 2, let
{Jn }f:’:l (N < o0) be an enumeration of the increasing clopen subsets of X, and set

N
b(x) = p(Ey) + ZI 27", (0.
Then ‘T is analytic via a real-valued coboundary iff
(i) W(ExNJy) =0 forallx € X, and
(ii) if (x,y) € P, x # y, then b(x) < b(y).
If (i) and (ii) are satisfied, then d(x,y) = b(y) — b(x) is a coboundary for T that is, b is
continuous and P = d~'(0, 00).

PROOF. Suppose first that T is analytic with cocycle d’(x,y) = ¢(y) — ¢(x), where
¢ € C(X). By Lemma 3.15, condition (i) is satisfied. Thus by Lemma 3.10, the function
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bo(x) = p(Ey) is continuous. Now Zf:':, 27"y, 1s continuous, if N is finite, since J, is
clopen; but if N = o0, the sum is the uniform limit of partial sums and thus is again
continuous. It follows that b € C(X).

Let (x,y) € P, x # y. If there is an n such that y belongs to the increasing set J, and x ¢
Ju, thenb(y)—b(x) > 27". So we may suppose that every increasing clopen set containing
y also contains x. It follows that Range(c)ﬁ(c(x), c(y)) +# (), for otherwise ¢! [c(y), 00) =
¢! (c(x), oo) is a clopen increasing set containing y but not x. So let « € Range(c),
c(x) < a < ¢(y). By Proposition 3.12, c"(*oo, c(y)) C Eyand ¢! (—oo, c(x)] DE,.
Thus

Ey\E, 2 ¢ (—00,c(»)) \ ¢! (—00,cx)| 2 ¢ (c(), c(»))

which is a nonempty open subset of X and consequently has positive measure. As E, C
Ey, W(Ey) — pu(Ey) = (Ey \ Ey) > u(c"' (c(x),c(y))) > 0. This implies b(y) — b(x) > 0.

For the other direction, if (i) and (ii) are satisfied, then we know from the above that
b is continuous, and (ii) implies P = d~'[0, 00), so T = Ty is the analytic TAF algebra
with cocycle d(x,y) = b(y) — b(x). n

EXAMPLE 3.17.  We will use Theorem 3.16 to show that the TAF algebra 7 given
above in Example 3.7 is analytic via a real-valued coboundary. Note that b(x) = u(E,)
since X has no clopen decreasing sets. Now if (x,y) € P, x # y, then (x,y) € éf"",:” for
some iy, k,, n, with i, < k,. It then follows from the definition of the embedding j, that

(x,y) € éi"fi)  With kyet > i1 + 3. Furthermore,

Insl | 1 intl 1
H(Ey) < 4n+l + 4n+2 + 4n+3 to = 4n+1 + 3. 4n+l
and
k,,+| —1 | 1 kn+l —1 1
,U'(EV) Z 4,1+| - 4n+2 - 4n+3 — e = 4n+| - 3. 4n+] >

s0 pu(Ey) < p(Ey).
Suppose x = (éi” ¢ ), and let 7, = T N N,. For each m > n, define the

17T

sets E) = Uveqmwr{(ve("’v*)A} and JW = Uvefr,,,mw,{(V*ef/f')V)A}- Note that E,, =

In

Um_>n E:z’:l() and J”-X = Umgn ‘]L,i)' Then fOl‘ in 7£ ]’ [n]’
E O = (@)
) p_ e
+ + plnt
s = U ey,

nx nx

k=41,—5
2 2 161,+5 (ns1)
n+. n+ — aln
El,[ m‘liz,r - U {ek }’ etc.
k=161,—25
Thus, (((Epx N Jyy) = 477424700 4247042 4 = %4‘”. In the other two cases,

the formulas are similar and p(E,x NJnx) = %4‘”. It follows that u(E, N J,) = O since
E.NJ, = Ny(Epx N Jnyx). Thus, conditions (i) and (ii) of Theorem 3.16 are satisfied, so
T is trivially analytic.
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EXAMPLE 3.18.  Consider the algebra I, in [PW, Theorem 2.24] with 0 < o < 1.
T« is a strongly maximal TAF nest subalgebra of the 2> UHF algebra which has the
property sup{tr(P) : P € Lat T(s), P < 1} = a. We will briefly describe the construction.
Let Q(N) be a permutation matrix in My such that

- H oM @ @ N
Q(N) diag(a\", ay", a\?,a?, ... ,a™, al")Q(N)'

Q@ N () @
= dlag(a(] ),a(l ),.. a(l ),ag ),a(z),..‘,a(zm),

where diag(by, ..., by) denotes the diagonal matrix with entries bi,....b;.Let R(n,m) =
Ly & QR" — m) for eachn, 1 <m <2 Ifa= 7, 2" is the nomermmatmg binary
expansion of a, let M,, = 7, 2"'k, and define the embedding j,: M»» < M. by
Jjn=AdR(n,M,)ov,. Let A = lim(Mzn,j,,)

Defme PV =5l e j=1,....M,ad M = {0,1,P" :j=1,... M.n=

.} Then it was shown in [PW Theorem 2.24] that M is a maximal nest such that

sup{p € M : p < 1} = «, and that (Alg M )NM» is the set of upper triangular matrices
in My (s0 Ty = Alg M is a strongly maximal TAF algebra).

Let E=UJ, IS(M") w(E) = o < 1, so there exists some xy € X \ E. For each n, let i, be
the integer satisfying xo € é(") Note that i, > M,. Now if W is an open decreasing set
containing xo, then W D U{A(") ..,éf"")} for some n. But (j,,_10- - -oj,,)(ef:”) D ég’:,') 2,8
so W D U{el™,....é0 5, b Thus, u(W) > (2" — 2" +i,) /2™ — 1 as m — oo. It
follows that (W) = 1, and therefore u(E,) = 1.

Now suppose V is an open increasing set containing x,. Every nonempty open set
intersects E because M is a maximal nest, so therefore there is some x; € VN E. Let
e(") be a matrix unit satisfying x; € e‘f(") C VNE. Then U{é;{" e AE:;} C Vand
U{ég"),.. &} C E. It follows that (V) > 1 — a, and therefore u(Jy,) > 1 — a.
Consequemly, M(Exo NJy) > 1 —a > 0, so Theorem 3.16 implies that 7, is not
generated by a real-valued coboundary.

Since a trivially analytic algebra need not have any increasing clopen sets (Exam-
ple 3.7), the u(E;) term in the definition of b(x) in Theorem 3.16 is necessary. The fol-
lowing example shows that the series >-_, 27"y, (x) is also necessary, even for “nice”
nest algebras.

ExAMPLE 3.19. Let A, = M, with the usual matrix units {e(") }, v, be the nest
embedding, and A = lim(,,v,). Define

nl

{O 1, }:e(") Ze("’+Ze(”)> : lgk,m§2""}.

Note that M, C M1, s0 M = (J32 | M, is a nest. Write Alg M as A(P).

Letx = (&", 6, 6,00, .. )dndy = (@, &P, e, ..., &, ...). Then (x,y) €
P, x # y, but /z(E ) = p(Ey) since E, = E, U {y}. However, AlgM is analytic via a
coboundary by Theorem 4.6 below (or 3.16), since C*(M) = D. It is interesting to com-

pare this with the canonical nest algebra, for which p(E,) does generate a coboundary.
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This illustrates, as seen in [PW], the importance of the embedding of the nest M in D
in relation to the groupoid ..

We will conclude this section by developing another method for computing p(E,)
(Proposition 3.20). This is useful in the application of Theorem 3.16, as will be seen in
Example 3.21. For the remainder of this section, % = C*(®R) will be UHF and T =
A(P) C N will be a TAF algebra which is strongly maximal triangular in factors, i.e.,
there is an increasing sequence {,, : 1 < n < 0o} of finite dimensional factors such that
W = {J, W, and T N A, is maximal triangularin %,. Let D = TNT* and X = D. By
Lemma 1.1, we can choose a set of matrix units {el(.;') 21 <i,j<[n],1 <n<oo}for

such that 7 N 2, is spanned by {ef.;” 1 <i<j<[n}.lfx= (e}(iivr),eﬁ;”,...) €X,
define

ko“x),andzfxx)::lnninka:;),

b*(x) = limsup

and recall that by(x) = u(E,).

PROPOSITION 3.20.  The following are equivalent:

(a) p(ExNJy) =0forallx € X.

(b) by is continuous and b*(x) = b~ (x) = by(x) forall x € X.

(c) bo is continuous and the sequences {]‘(ILH“IQ} and {(E,)} converge uniformly to
bo(x).

(d) by is continuous and Range(by) = [0, 1].

(e) by is continuous and ;L(bal({(x})) = 0 foreach a € 10, 1].

PROOF (a) = (b). If E, (resp., J,) is the decreasing (resp., increasing) open set

generated by e;('(',)u), then E, x 2 Uj<kin éj(.”) and J,x 2 Uiskonn é;.") since T N, is the

full upper triangular subalgebra of the factor W,. Thus, u(E, ) > Knd) and w(lny) =

[n] -
| — Kool Ag {E.x : 1 < n < oo} is nested, limy—. ((Ey ) exists, so u(Ey) =

[n]
. . k
limy, oo p(Ey, <) > limsup,_ (1’:[1)()

u(Jy) > lim sup(l — M)

= b*(x). Similarly,

n—00 [”]
k(n, x) — 1
> 1 — fiminf 22X 1
n—00 [n]
>1—b (x)

Since E, UJ, = X and u(E, NJ;) = 0, then 1 = p(Ey) + pu(Jy) > b*(x) + 1 — b (x),
i.e., b*(x) — b~ (x) < 0. As the opposite inequality is clear, it follows that b*(x) = b~ (x),
and the proof shows that the common value equals by(x). Finally, by is continuous by
Lemma 3.10.

(b) = (c). The sequence f,(x) = u(E,.) is decreasing to bo(x) = u(Ey). By Dini’s
Theorem, the convergence is uniform. Similarly, the decreasing sequence p(J, ) con-
verges uniformly to u(Jy) = 1 — by(x). Because 1 — u(J,) < /% < p(Ey.y), itfollows

k(nx) .

that {—IHT 1 <n< oo} converges uniformly to by(x).
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(c) = (d) Since Range(by) 1s closed, 1t 1s enough to show Range(by) 1s dense Let
o € {0,1] and € > 0 be given Choose N so that forn > N, (ﬂlﬁnlﬂ — bo(x)| < 5 for all
x € X We may assume [N] > % Thus, forn > N, there1s some k € {1,2, ,[n]} with
}ﬁ—a[ <5 Ifxe é;("),ze,k(n,x) = k, then |bp(x)—a] < }bo(x)—k(l%’l'l‘—’|+}ﬁl"%l"’—al <e

(d) = (e) Let ¢ € (0,1), and choose any € € (0,1)and 0 <7 < a < < | with
B —7 = € Then there are y,z € X with bo(y) = 3 and bo(z) = ¥ Since b, '(—00,8) C
Ey and E; C b, !(—00,7] by Proposition 3 12, we have b, '({a}) C b,'(—00,3) \
by (—00,7] C Ey\ E; Thus, p(by'({a})) < w(Ey\ Ex) = w(Ey) — (E:) = =7 = ¢
Since ¢ > 0 was arbutrary, N(bo '({a})) = 0 The cases @ = 0 and a = 1 are treated
similarly

(e) = (a) This follows from Proposition 3 12 [

EXAMPLE 321 We will use Theorem 3 16 and Proposition 3 20 to show that the
TAF algebra in Example 2 3, generated by alternating the standard and nest embeddings,
1s not trivially analytic Using the notation from Example 2 3 and letting m = n/2,
consider the pomnt x = (é(22), é‘l‘;),égﬁ),é(l%, ,éii’"), ), where k,, = 2k,, | 1f m1s odd

and k,, = 2(12m — 2]+ ky 1) = 2(4™ "+ k, 1) 1f m1seven Now for m odd,

kln _ 2km I 2(2(4m 2'i'km 2)) . 1 +1 km 2
2m] ~ 4m 4m 4 42(m—2)]

Since ki /(11 = 2/4 = 1/2,1t follows that k3 /[3] < 1/4+1/8 = 3/8 < 1/2, and
therefore k, /[2m] < 3/8 forall odd m Thus, ¢ (x) < 3/8
On the other hand, 1f m 1s even, then

k24" ke ) 24" 42k o) 11 kmo
emi = 4 @ 27 apm

Since k, /[2] = 12/16 =3/4 > 1 /2,1t follows thatks /[4] > 1/2+1/8 =5/8 > 1/2,
and therefore k,, /[2m] > 5/8 for all even m Thus, ¢*(x) > 5/8 It now follows from
Proposition 3 20 that u(E, NJ,) # 0, so Theorem 3 16 implies that 7 cannot be trivially
analytic

General alternating algebras were classified in [Po3] and [HP] The definition 1s the
same as in Example 2 3 except that we allow 2, to be any M,,,, with pnlpnst Then
Example 2 3 can be generalized to prove that these algebras are analytic, and an argument
stmular to the last example shows that they are not trivially analytic

As mentioned 1n § 1, a bounded cocycle 1s trivial A recent result of Solel shows that
if an analytic subalgebra of a simple AF algebra 1s generated by an unbounded cocycle,
then 1t cannot be trivially analytic [S] Thus, the conclusion of Example 3 21 also follows
from this result
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4. Analytic nest algebras with trivial real-valued cocycles. As already indicated,
some nest subalgebras of UHF algebras are analytic, but not all. This raises the question
of determining which nest algebras are analytic. We will give several results concerning
this problem, culminating in Theorem 4.6. Again, N will always represent a simple AF
algebra, but the nest algebras we consider will not necessarily be triangular.

Suppose M is a nest. Then M induces a partial order on X by x < y if there is some
P € M suchthatx € P,y ¢ P. This is different from the partial order x < y if (x,y) € P
(where Alg M = A(P)).

PROPOSITION 4.1.  Suppose AlgM = A(P) is a nest subalgebra of W = C*(R).
Then
x<y, (x,y) € R =x L ywithx #y.

PROOF. x # ysince x € Pandy ¢ P. (x,y) € R implies that (x,y) € &, for some
i,j,n,s0 (x,y) € (Pef/'”P'L)A. Then x < y since Pef/"’PL € AlgM. n

COROLLARY 4.2.  Suppose Alg M is induced by a real-valued cocycle d. Then

x<y, (xy) € R = dxy >0.

PROOF. By the previous proposition, d(x,y) > 0. If d(x,y) = 0, then (x,y) € ¥ for
some matrix unit v € (Alg M) N (Alg M)*. It follows that (x,y) € (PvPL)" for some
P € M, so0 # PvP-. This implies that 0 # P VP, i.e., v* ¢ Alg M, a contradiction.
Therefore, d(x,y) > 0. n

The converse of Proposition 4.1 is false in general. For example, it is false for the
multiplicity 2 nest algebra in Example 2.29 of [PW]. However, if C*(M) = D, the
converse is true by Proposition 4.5 below.

PROPOSITION 4.3.  Suppose M is a finite nest: 0 = My < M; < --- < M, = 1.
Then Alg M is Z-analytic via the coboundary d(x,y) = z(y) —z(x) withz: X — Z defined
by z(x) = inf{k : x € M, }.

PROOF. This follows easily from Proposition4.1 and the fact that for each k, Alg M
contains (M — My_;) Alg M(M;, — M_,). n

On the other hand,
PROPOSITION 4.4.  If M is an infinite nest, then Alg M is not Z-analytic.

PROOF. Assume Alg M is analytic via an integer-valued cocycle d. Now M con-
tains an increasing or decreasing sequence, so suppose {P, : 1 <i < 0o} isan increasing
sequence with Py # 0. Set Py = 0. Since X is compact, there is some y € X \ (U, P,).
By minimality, for each i there is some x, € (P, — P,_;)" such that (x,,y) € R.. Now for
each positive integer k, d(x, y) = Zf‘:l' d(x,, x41 ) +d(xg, y) > k by Corollary 4.2. Since k
is arbitrary, d(x, y) = 00, a contradiction. A similar argument works if M contains only
decreasing sequences. n
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PROPOSITION 45 Suppose C*(M) =D Then

XLy, x#ty=>x<yand(x)) € R

PROOF  Since CYH(M) = D, AlgM 1s tnangular (see [PW, § 2]) If x < y and
x # v, then there exist 1, J, and n such that (x,y) € éfj'” with efj") € AlgM and 1 #
ef") € C*(M), so [PW, Lemma 3 1] implies that there are projections P,Q € M such
that x € (P— Q)" C éi") (note the assumption 1 [PW, Lemma 3 1] that 2 1s UHF 1
not necessary, the proof works in the general AF case) Likewise, there are projections
R,S € M suchthaty € (R—S)" C éj“ Since (P—Q)R—S) = 0,eitherQ < P < S <R
or § < R < Q < P But the latter case implies that y € R and x §§ IAi‘, soy < x, and
therefore y < x by Proposition 4 1, a contradiction Therefore, x < y since x € P and

ygp
Alternatively, the result can be proved by applying [PW, Corollary 3 12] Again, the
proof of that corollary works 1n the general AF case n

In [PW, Corollary 3 13], it was shown that if C*(M) = D, then Alg M 15 strongly
maximal triangular We can now obtain the following stronger result

THEOREM 4 6 Suppose N 1s simple and M 1s a nest satisfying C*(M) = D Let
{P, 1 <1 < oo} be the set of projections in M Then Alg M 1s analytic via the
real-valued coboundary d(x,y) = b(y) — b(x), where

b =32 "xp ()
n 1 "

PROOF  As 1n the proof of Theorem 3 16, b € C(X) By Proposition 4 5,1f x < y
and x # y, then b(y) — b(x) > 0 If x = y, then certainly b(y) — b(x) = 0 Conversely,
if (x,y) € R and b(y) — b(x) > 0, then x < y, s0 x < y with x # y by Proposition 4 1
Finally, suppose (x,y) € R with b(y) — b(x) = 0 Now either (x,y) € P or (y,x) € P
since Alg M 1s strongly maximal triangular But then 1f x # y, 1t follows from the above
that b(y)—b(x) > 0 1n the first case and b(x)—b(y) > 0 1n the second case, a contradiction
Therefore, b(y) — b(x) > 0 with (x,y) € R_1f and only 1f (x,y) € P n

COROLLARY 47  If C*(M) = D, then AlgM 1s analytic via a real valued
coboundary d(x,y) = b(y) — b(x) which satisfies

x <y & by > b(x)
Note that the function b in Theorem 4 6 1s the same as the function b 1n Theorem 3 16

without the u(E,) term If C*(M) = D, there are enough increasing clopen sets so that
the p(Ey) term 1s not needed

ADDENDUM  In Example 3 18, we showed that the algebra 7, 1s not trivially ana-
lytic It has recently been shown in [PWo] that this algebra1s not even analytic Therefore,
this provides an example of a strongly maximal nest algebra which 1s not analytic
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