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ANALYTIC TAF ALGEBRAS 

J. R. PETERS, Y. T. POON AND B. H. WAGNER 

ABSTRACT. A strongly maximal triangular AF algebra which is defined by a real-
valued cocycle is said to be analytic. Formulas for generic cocycles are given separately 
for both the integer-valued case and the real-valued coboundary case, and also for cer­
tain nest algebras. In the case of an integer-valued cocycle, there is an associated partial 
homeomorphismof the maximal ideal space of the diagonal. If the partial homeomor-
phism extends to a homeomorphism, then the algebra embeds in a crossed product. This 
occurs for a large class of subalgebras of UHF algebras, but an example shows that this 
does not always occur. An example is given of a triangular AF algebra which is analytic 
via a coboundary but is not a nest algebra; also, it is shown that a nest algebra need not 
be analytic. 

Motivated by the studies in [Ba] and [Prl], the development of a general theory of 
triangular subalgebras of AF algebras was first undertaken in [PPW], and further ex­
tended in a number of other papers, for example [HP, MSI, MS2, Po2, Po3, Pr2, Pr3, 
PW, T, VI, V2]. The theory of TAF algebras parallels that of the a-weakly closed tri­
angular subalgebras of von Neumann algebras, expounded in [MSS1] and [MSS2]. A 
TAF subalgebra *T of an AF algebra 11 is said to be analytic if there is a one-parameter 
family {at} of automorphisms of 21, leaving the diagonal pointwise fixed, such that 
T = {a G 21 : spa(a) Ç [0, oo)} (where sp is the Arveson spectrum) [R]. Viewing 
21 as a groupoid C*-algebra C*(!RJ9 there is a subset !P contained in %, such that T 
consists of those elements of C*(!RJ supported on P̂ [MSI]. S. Power first noticed that 
(P, which he called the fundamental relation, completely determines T [Pr3]. From this 
perspective, the analyticity of T is equivalent to the existence of a real-valued cocycle 
d such that fP = d~l[0, oo). In the case of a a-weakly closed triangular algebra T, *T 
is a nest algebra if and only if it is analytic and the cocycle is trivial, i.e., a coboundary 
[MSS2, Corollary 3.4]. By contrast, in our setting it can happen that T is trivially ana­
lytic but not a nest algebra (Examples 3.7 and 3.17). On the other hand, T can be a nest 
algebra without being trivially analytic (Example 3.18). 

The class of analytic TAF algebras is properly contained in the strongly maximal ones 
[SVe, PWo]. In this paper, we concentrate on those analytic TAF algebras which are 
trivially analytic, nest algebras, or analytic by means of an integer-valued cocycle (Z-
analytic). For TAF subalgebras of simple (infinite dimensional) AF algebras, the latter 
class is disjoint from the first two (Theorem 3.1 and Proposition 4.4). Of course, these 
do not exhaust the class of analytic TAF algebras (Example 2.3). 

Section 2 is concerned with Z-analytic TAF algebras. The main results are Theo­
rems 2.2 and 2.8. The first result gives a simple necessary and sufficient condition for 
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Z-analyticity, and provides a useful generic form for a Z-valued cocycle. The latter re­
sult answers the question, raised implicitly in [PPW, Examples 1.2 and 1.3], as to which 
TAF algebras can be imbedded in semicrossed products, at least for those TAF algebras 
considered in [PPW, § 4]. Specifically, if 31 is the closed union of factors 3ln with TP) lln 

maximal triangular in 3In, and if *T is Z-analytic, then there is a homeomorphism </> of 
X such that (P = {(jc,0n(x)) : x e X, n G Z,n > 0}. There is, however, an example 
of a Z-analytic subalgebra T of a UHF algebra for which no such homeomorphism ex­
ists (Example 2.10). This shows that the algebras considered in [PPW, §4] are indeed a 
special type of strongly maximal TAF algebra. 

In Sections 3 and 4, we discuss real-valued coboundaries. Theorem 3.16, the main 
result, gives necessary and sufficient conditions for an analytic TAF algebra to be gen­
erated by a real-valued coboundary, and also gives a generic form for the coboundary. A 
similar result for certain nest algebras follows in Theorem 4.6. We also give a number 
of examples illustrating various phenomena, and some computational tools related to the 
conditions in Theorem 3.16. 

1. Preliminaries. An AF algebra is a C*-algebra 31 which has an increasing se­
quence of finite dimensional C*-subalgebras {31 n : 1 < n < oo} such that 31 = \J%L\ ÎI«-
If the sequence {3In} can be chosen so that each 3In is a factor (i.e., 3I„ = M^, the kn x kn 

matrix algebra), then 31 is said to be a UHF algebra. In this paper, whenever we use the 
notation 31 = (J£Li 51 „, we will always assume that the sequence {3I„} is increasing, 31 
is unital, and 311 contains the unit 1 of 31. 

An AF algebra 31 can also be defined as an inductive limit lim(3I„Jn) of finite di­
mensional C*-algebras 3ïn with7V. 31 n

 c—• 3In+i a unital C*-embedding [Br]. Then 3I„ is 
isomorphic to a C*-subalgebra 3l„ of 31 such that 31 = Un «̂> s o m t m s c a s e w e will 
identify 31 „ and 31 n. 

Suppose 31 = IJn^i ^n is an AF algebra, and suppose X)n is a maximal abelian self-
adjoint subalgebra (masa) of 31 „ such that 2)n Ç X)„+i for each n. Let Î) = U ^ i ^n-
Then T) is a masa (also called the diagonal) of 31, and T)n = î) H 3In. By [SV], such a 
masa always exists, and we will always use the term masa to refer to a masa of this form. 
Letyn denote the embedding of 3ln into 3In+i. If 31 n = 0^" \ M^(n m), then for each n and 
m, a system of matrix units {e{"m)} can always be chosen for Mk(n>m) so that each jn(e^m)) 
is a sum of matrix units of 3In+i, and 2) is the closed linear span of {e\n

t
m) : 1 < n, 1 < 

w < ^(w), 1 < i < k(n,m)} (see [PPW, §1] for details). Whenever we use matrix units in 
31, we will always assume that they are chosen in this manner. Also, we will often write 
e(nm) for e(nm) ^ [f ^ ^ ft ^ ^ ^ ^ ^ 1 ) ^ 

All subalgebras of AF algebras in this paper will be norm-closed. If 31 = \Jn 31 n is 
an AF algebra with masa Î), then a subalgebra T of 31 is said to be triangular AF (with 
diagonal X)), or TAF, if T n T* = 2). We often write TUHF instead of TAF if 31 is a 
UHF algebra. A TAF subalgebra T of 31 is said to be maximal triangular if T is the only 
TAF subalgebra containing T. In addition, T is said to be strongly maximal triangular 
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[PPW, page 105] if the sequence {2IW} can be chosen so that T n 2l„ is maximal triangular 
in 21 „ for every n. 

Suppose 21 w = © ^ Mjt(W>m) for each n and 21 = (J« ^w For each &, let T* be the set 
of upper triangular matrices of M*. Let % = © ^ T (̂A2m), and suppose the embedding 
in- 2ïw —* 2Iw+i takes 1^ to T^+i. Then ^T = \Jn%isâ strongly maximal TAF subalgebra 
of 21 = U/i I « by [PPW, Theorem 2.61. Conversely, suppose T is a strongly maximal 
subalgebra of 21 such that % — T Pi %n is maximal triangular in 21 „ for each A. Then 
there exist permutation matrices Un G 21 „ such that Un%U* = © ^ T^nm), and the 
following diagram commutes: 

—> 21 „ —> 2Iw+i —» 

Ad( /„ | JAd£/n+1 

— 3i„ —* ?i f l + 1 —-> 
Ad/?n+1o/„ 

where /?„+i = Un+\jn(U*). Thus, T is isomorphic to (Jw ©l^i Xt(«,m)- This proves the 
following lemma. 

LEMMA 1.1. Let T be a strongly maximal triangular subalgebra of^l = U^Li ^n 
such that T n 21 w w maximal triangular in 2f n /or ^ac/i #. TTien « system of matrix units 
can be chosen for {JZx ^n such that if %n = © ^ M,(,,w), faTfl21, = © ^ , T,(„,m). 

DEFINITION 1.2. A strongly maximal triangular subalgebra T of a UHF algebra 
21 is strongly maximal triangular in factors if a sequence {2I„} can be chosen so that 
21 „ = Mjfcw for each JZ, 21 = Un ^«» anc* ^ n 21 „ is maximal triangular in 21 n for every rc. 

We note that it is possible to have a UHF algebra % written as \J£=X 21 „ where each 21 „ 
is not a factor. Thus, it does not follow from the definition that a strongly maximal TUHF 
algebra is strongly maximal triangular in factors. Indeed, we will show in Example 2.10 
that this is not true in general. Some of the results in this paper are only valid for TUHF 
algebras which are strongly maximal triangular in factors. 

One of the most important facts in the study of TAF algebras is that the isomorphism 
class of a TAF algebra depends on the embeddings jV- %n

 c-^ 21,+j, even though the 
isomorphism class of 21 is independent of these embeddings [G, Br, PPW]. We will use 
two particular embeddings for UHF algebras in a number of examples. The standard 
embedding on\ MPn <-+ M ^ , is defined by 

where qn = pn+\ jpn, and the nest embedding vn\ M^ c-^ M^+1 is defined by 

-l)q„+t,(j-\)qn+t' '«(#> = x:# 
\im(MPn,(rn) and \im(MPn,i/n) are both UHF algebras of type (p\pi • • •)» a nd if % de­

notes the set of upper triangular matrices in M^, then \\m(%,on) and lim(7„,z/n) are 

(nonisomorphic) TAF algebras. 
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i/n is called the nest embedding because l im(^, i/n) is also a nest algebra. In general, 

if C\t is a set of projections in X), then we define Alg fA£ = {a G 51 : e 1 ^ = 0 for all e G 
fAQ, where e1- = 1 — e. Alg f7\̂  is a norm-closed algebra, and it is called a nest algebra 
if fAt is a linearly ordered set (nest) of projections. It follows from [PPW, Example 1.1 
and Proposition 2.8] that l im(^, vn) = Alg J\£ for the nest fA£ = {0, £{=1 e-w) : 1 < 7 < 
pn , 1 < n < oo}. We call this nest the canonical nest and lim(^, vn) the canonical nest 

algebra. On the other hand, if 5 is a subset of 21 with 5) Ç 5, then a projection e G 51 is 
invariant for 5 if eLse = 0 for all s G 5. The set Lat 5 of invariant projections of S is a 
commutative lattice in 35 since X) Ç S and X> is a masa. 

We will use *W^ to denote the set of partial isometries w G 51 such that w*T)w Ç Î) 
and wî)w* Ç 35. Note that the initial and final projections of w G W^ lie in 35. Also, 
every matrix unit of 51 is an element of W^ [PPW, Lemma 3.3]. Two partial isometries 
v, w G *M^ are orthogonal if their initial projections are orthogonal (i.e., v*vw*w = 0) 
and their final projections are also orthogonal. The sum of orthogonal partial isometries 
in W$ is also in W^. 

If 5In is a factor, we will often use [n] to denote the size of the matrix algebra 51n (i.e., 
[n] = \/dim5In). If 51 has a faithful normalized trace tr (in particular, if 51 is UHF), we 
will make use of the probability measure \i induced on X = 35, the spectrum of 35, by tr. 

Let 51 be an AF algebra with diagonal 35, and let X = 35. Then by the spectral theorem 
of Muhly and Solel [MSI, Theorem 3.10], elements of 51 can be represented as contin­
uous functions on an AF groupoid H^ on X. This representation will play a major role in 
our discussion. To establish the notations and definitions, we will recall the construction 
from [MSI]. 

Let X be a second countable locally compact Hausdorff space. An r-discrete princi­
pal groupoid Q is an equivalence relation on X with a certain topological structure (see 
[MSI] for details). Two points (x\,y\), (x^,yi)m Q are said to be composable if y\ = X2, 
and in this case (x\,y\) o (x2,yi) = (x\,yi). For (x,y) £ Q, let (x,y)~x = (y,x). Let 
CC(Ç) be the space of complex continuous functions on Q with compact support. Given 
f,g£ CC(Ç), define 

(f*g)(x,y) = ]T/(x,z)g(z,.y), 

where the summation runs over all z with (x, z), (z,y) G Ç, and 

f(x,y)=f&x). 

This makes Cc( Q) a *-algebra, and the groupoid C*-algebra C*(Ç) is the closure of Cc( Q) 
under a suitable C*-norm. The space X can be identified with the subset Cj° = {(x,x) : 
x G X} of Q. Then every continuous function/ in C(X) can be identified with a unique 
function on Cf° (also denoted by/) such that/(x,x) =f(x). 

Let <Pbe an open subset of Ç. Define A(T) = {a G C*(Ç) : a(x,y) = 0 for all(jc,;y) ^ 
2>}. Then A(<P) is a norm-closed bimodule of C*(Ç) over C*(£°)(^ C(X)). Conversely, 
by [MSI, Theorem 3.10], every closed C*(^°)-bimodule A of C*(Ç) can be represented 
uniquely in the form A = A(fP) for an open subset fP of %,. 
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Now suppose 21 = \Jn Il n is an AF algebra with masa Î ) = \Jn T)n. For each projec­

tion/7 in S),/? = { i G X : x(p) = 1} is a closed and open (clopen) subset of X. Let v be a 

matrix unit in some lln. Then we can define a partial homeomorphism /zv [Pr2] from vv* 

to v*v by hv(x) = xv, where xv{d) = x(vdv*). Letting v = {(x,xv) : x(vv*) = 1} Ç X x X, 

we can then define a groupoid ^ , called an AF-groupoid, by 

^ ~ LK^ : v *s a matrix unit of some 11 n}. 

%, is given the smallest topology such that each v is clopen. Since any nonzero intersec­

tion Pi D - • - D vk contains some Po, it follows that {v : v is a matrix unit of some lln} 

is a base for the topology. Given a matrix unit v, let Xv be the characteristic function on 

v. Direct computation shows that \Û * Xv = XÛV and (\v)* — Xv*- Hence we can iden­

tify v with Xv in CC(^J. This extends to an isomorphism between 1\ and the groupoid 

C*-algebra C*($J [MS2, V2]. 

THEOREM 1.3 [MSI, MS2]. Let 11 be an AF algebra with diagonal T)andX= lb, 

let %, be an AF-groupoid such that 11 =C*(!%J, and suppose ? = A(fP) is a T)-bimodule 

in 11. Then 

(a) T* = JZ(<P~l). Thus, ? is self-adjoint if and only if <P = <P~l. 

(b) ? is an algebra if and only if^oTCT. 

(c) ? is triangular if and only if <Pn(P~l = %?. 

Furthermore, a TAF algebra ? is strongly maximal triangular if and only if(PU(P~l = 

%s Note that in this case *P is a clopen subset. 

THEOREM 1.4 [MS2, T, VI] . A TAF algebra ? is strongly maximal triangular in 

11 if and only if? + T* is dense in IL 

Suppose 11 — \Jn !ln and 2) = |J« ^ « a s above. Then for every point x G X, there 

exists a unique sequence {en : 1 < n < oo} of projections, where en is a minimal 

projection in T)n for every n, such that {x} = D^Li en [SV]. Since each en is minimal in 

2)„ and ?ln Ç îïw+i, we have en > en+\ (the usual order of projections in î>) for every 

n. Conversely, if for each n, en is a minimal projection of T)w such that ew > ^ w + j , then 

n^Li en — {-*} for some unique x in X. We will use x = (e\, 2̂» 3̂» • • •) to denote such a 

correspondence. 

Now suppose we write 91 as C*(!%J, and let T = ZlifB) be a subalgebra of 1\ contain­

ing X). Then ? defines an ordering o n X = S by x <C y if (JC,y) G îP. We will call «C the 

spectrum ordering on X induced by ?. This ordering is reflexive and transitive, and it is 

antisymmetric if and only if ? is triangular. An equivalent formulation of this concept 

was first introduced by Power [Pr2], and he proved that this ordering, when viewed as a 

topological subrelation of ^ , gives a complete isometric isomorphism invariant for TAF 

algebras [Pr3]. Note that if x <C y, then there is some n and some matrix unit v £ ?Cilln 

such that (x,y) G v Ç fp, since ¥ is open. 
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LEMMA 1.5. Suppose x = (ê\,ê2, £3,...) and y = (f\,fz,f3,.. .)• Then x C y if and 
only if there exists an N and a matrix unit v in ̂ Tn 91/v sucn tnat en — vfnV*for all n> N. 

PROOF. Suppose x <^y. Then there exists an N and a matrix unit v G T n^l^ such 
that (x, y) G v. Hence, for each n> N, vv* and v* v are projections in î ) n such that x G vv* 
and y G v*v. Since en and/n are minimal, we have en < vv* and/n < v*v. Now v/nv* 
is a minimal projection in £)„ such that x G (v/nv*)A Ç vv*. Hence, en — v/nv* because 
there is only one minimal projection e in 5)n such that x G ê. The proof of the converse 
is trivial. • 

LEMMA 1.6. Suppose that for each n, îtn = M^ and % is the algebra of upper tri­
angular matrices in lln. LetXQ — (e\ \ e\ \ e\ \ ...) andx\ = (ê[ \ ê[ \ e[ \ . . . ) . Then XQ 
is the unique minimal point andx\ is the unique maximal point in the spectrum ordering 
<C defined by T = [jn%. 

PROOF. We first show that xo is minimal in the spectrum ordering. Let y = 
(ê\x\è\ \...) such that y <C *o- By Lemma 1.5, there exists an N and a matrix unit v 
in lyy such that ejn) = ve^v* for all n > N. Since % is the algebra of upper triangular 
matrices, we have v = T,aj)es e^ f° r a nonempty subset S of {(/ j ) : 1 < i < j < n}. 

Hence, /„ = 1 for all n>N, and therefore y = XQ. 

For uniqueness, suppose y = {ê\x\ êf\ ...) ^ x0. Then in > 1 for some n, so there is 

some x G X such that (JC, y) G ê^. Consequently, x <C y and y is not minimal. 
The proof of the maximality and uniqueness of JCI is similar. • 

DEFINITION 1.7. Let ÎÏ = C*(X) for an AF-groupoid ^ on X. A (real-valued) 

continuous function d on ^ is said to be a cocycle if d(x, z) = d(x, y) + J(y, z) for all 
(x,y), (y,z) G ^ . If d (^J Ç Z, the integers, then d is said to be an integer-valued 
cocycle. A cocycle d is said to be a coboundary if there exists a continuous function b 
on X such that d(x,y) = b(y) — b(x). Thus, a coboundary is bounded on ^ , since X is 
compact. Conversely, if 51 is simple, then every bounded cocycle is a coboundary [R, 
page 112]. 

DEFINITION 1.8. A subalgebra T = A(<£) of 21 = C*(4ÇJ is said to be analytic 
(Z-analytic) if there exists a (integer-valued) cocycle d such that (P = d-1[0,oo). In 
this case, we write ^ for T. We also say T is trivially analytic if T = 1 j for some 
coboundary J. Note that ^ is triangular if and only if d~l({0}) = ^K°(= X). 

COROLLARY 1.9 [V2]. An analytic TAF algebra is strongly maximal triangular. 

PROOF. This follows directly from Theorem 1.3 since dr*(—00,0] U dTx[0,00) = 

%. 

The converse of Corollary 1.9 is false. Counterexamples are given in [SVe] and [PWo]. 

REMARK 1.10. Suppose T = Sl((P) is a strongly maximal triangular subalgebra of 
% with diagonal Î) . For each n, let Kn = C*^&n, X)). Then there exists a clopen subset ^ 
of ^ such that # ( % ) = »„. Note that ^ = |J„ %i- Let <Pn = &(-)% and ÎP+ = fP„ \X. 
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Since T is strongly maximal, we have % = ^UXU((P^)~l. Now suppose that for each 
n, we can define a cocycle cn on %j such that cn(x, y) > 0 if (x, y) G î £ . Suppose also that 
for each (x, y) G ̂ , there is some m such that (x, y) G ̂  and cn(x, y) = cn+\ (x, y) for all 
n > m. Then <i(x,y) = Hindoo c„(x,y) exists (as a finite number) for every (x,y) G ^ , 
and d is a cocycle on ^ such that T = % since fP = |J ŵ- Conversely, if T — % for 
some cocycle d, then c„ = d\^ is a cocycle on % such that c„(x,y) > 0 for (x,y) G 2£, 
and d(x,y) = c«(x,y) for all « > some m since ^ = (J %>. 

2. Analytic TAF algebras with integer-valued cocycles. Recall that a Z-analytic 
TAF algebra is always strongly maximal, by Corollary 1.9. Now suppose T = !Aif2) is 
a strongly maximal triangular subalgebra of 21 with diagonal 2), and let ^ , 2 ^ , and 3£ 
be defined as in Remark 1.10. For (x,y) G î £ , define 

<4(x,y) = max{/: > 1 : there exist (x/,x/+i) G î Ç , l < / < /:, 

such that xi = x and x*+i = y} 

If (x,y) G 2£, then there exists a matrix unit v £ %\T) such that (x,y) G v. Hence 
dw(x,;y) > 0. Since 51 n is finite dimensional, <5n(x,y) is finite and dn(x,y) = d„(x,z) + 

are both in CP^. Define dn on %^ by 

p„(x,y) i f (x ,y)G^ 
dn(x,y) = 0 ifx = y 

[ -^ (y ,x ) i f ( y , x ) G ^ . 

Direct computation shows that dn is a cocycle on %^ and TPi 3J„ = %n. This implies 
the following result. 

PROPOSITION 2.1. Suppose 1 is a strongly maximal triangular subalgebra of%. 
Then T D 53n w Z-analytic in 23 „ /or eaC/J AZ. 

Since !^ = \Jn %, for each (x,y) G ^ there exists some m such that dn(x,y) is 
defined for all n > m. Furthermore, if (x, y) G T, then {dn(x, y) : n > m} is an increasing 
sequence. 

THEOREM 2.2. Let H be a strongly maximal triangular subalgebra of 11. Then T is 
Z-analytic if and only if for each (x,y) G %, limn_+oo dn(x,y) = d(x,y) exists (as a finite 
number). In this casey d is a cocycle on %^ and T — 1%-

PROOF. For sufficiency, let (x,y) G %,. Since dn(x,y) is always an integer, 
lim^oo dn(x,y) exists if and only if the sequence {dn(x,y)} is eventually constant. Thus, 
*T is Z-analytic by Remark 1.10. 

Conversely, suppose T = % for an integer-valued cocycle d. If (x,y) G ^Pm, then 
{J„(x,_y) : m < n < oo} is an increasing sequence bounded above by d(x,y), so d(x,y) 
exists, and it is a cocycle on ^ by Remark 1.10. Also, if (x,y) G ̂ , then 

d(x, y) > 0 & (x, >') G v for some matrix unit v G T D 21 „ 

<=> d«(x,y) > 0 for some n 

<*d(x,y) > 0 . 
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Therefore, d~l [0, oo) = drx [0, oo) and % = %. m 

Suppose T = % is Z-analytic. We will call the integer-valued cocycle d obtained in 
Theorem 2.2 the generic form of d. For the rest of this section, we will assume that the 
Z-cocycles are given in generic form. Finally, we note that d is determined by the clopen 
subset d~ \{\}). 

EXAMPLE 2.3. We will show that the TAF algebra in Example 3.27 of [PPW] is 
analytic via an unbounded, real-valued cocycle, but it is not Z-analytic. 

Let ?ln = M2« with matrix units {e-,n)}, and let on and vn denote the standard and nest 
embeddings, respectively. For n even, let jn: 31 „ -̂» 5In+2 byjn = vn+\ o an, so 

Mef) = vn+\ o an{ef) 

- Jn+U + >+ 2> + >+2) , .(«+2) 
~~ t2i-\,2j-\ ^t2i,2j ^ c 2 n + , +2/ - l , 2« + 1 +2/ - l ^2"+1+2/,2"+,+2j' 

Let 7^ be the upper triangular subalgebra of %n and let T = lim{(1^j„) : M even}. T, 

viewed as a subalgebra .#(fP) of the groupoid C*-algebra, is supported on fP = \J{ê{^ : 
1 < i<j <2 n , n = 2,4, . . .} . 

If (x,y) G êjj0, define d(x,y) = 0' - 0/(2"). To see that d is well-defined, note that 
&(n) Mn+2) , , An+2) , . *(/i+2) y ^(n+2) T h , x , belongs to 
eij e2i-\,2j-\ U e2i,2j U e2n + ,+2ï-l ,2w + 1+2/-l U e2"+1+2i,2"+1+2/* 1 I 1 U S ' ^X,y) d l M J D e i u I 1 5 s LU 

one of these four sets, say (x,y) G ̂ t-lii-v observe that 

( 2 / - l ) - ( 2 / - l ) = 2{j-i) = (/ - i) 

2 ^ 2-2? 2? 

The same result holds if (x,y) is in any of the other sets. Thus d is well-defined, d is 
continuous since it is constant on each clopen set e>^. Also, d is clearly unbounded. 
Finally, the facts (i) d(x, y) = 0 iff y = x, and (ii) d(x, y)+d(y, z) = d(x, z) if U, y), (y, z) G 
^ , are clear from the definition of d. 

Now suppose (x, y) G ê\"\ i ̂  j . Then dw(jc, y) =j — /, but dn+2(x, y) = 2(j — i). Thus, 
linv^oo dn(x,y) does not exist. It follows from Theorem 2.2 that T is not Z-analytic. 

Let X be a compact zero-dimensional space and <j> a minimal homeomorphism of X 
(i.e., the 0-orbit of each x G X is dense in X). Then the crossed product Z x^ C(X) is the 
C*-algebra generated by C(X) and a unitary £/ such that UfU* = / o </> for/ G C(X). Let 
JCO G X. Then the C*-subalgebra ?!(</>,x0) of Z x^ C(X) generated by C(X) and t/C0(X) -
{Uf : f e C(X),f(x0) = 0} is an AF algebra [Pu] with diagonal X) = C(X), and 
the subalgebra (T((j>,xo) generated by C(X) and UCQ(X) is a strongly maximal triangular 
subalgebra of 2I(<Mo) [PPW, Example 1.3]. 

Let X and </> be as given above. Then Q — {(x, (j>n(x)) : x G X, n G Z} is an r-discrete 
principal groupoid such that C*(^) = Z x^ C(X) [R,MS1]. Since both T((/>,JC0) and 
%(</>, JCO) contain C(X), there are open subsets Œ* and %, of Ç such that f (</>, JC0) = -#(̂ P) 
and 9l(<Mo) = ^ t (^ ) . From Corollary 2.4 of [Pol], we have & = {(x, </>n(jt)) : </>'(>:) ^ 
xofovl <i<n,n>0}md$l=(PU(P-1. Define d:C->Z by </(*, </>"(*)) = w. Then 
f = <£ in ?I = C*($J. Thus, 
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PROPOSITION 2.4. Every T(</>,xo) is 1-analytic. 

This leads to the following question: what kind of Z-analytic HL can be represented 

as T(</>, JCO)? In Theorem 2.8, we will prove the converse of Proposition 2.4 for a certain 

class of TUHF algebras. 

REMARK 2.5. The strongly maximal triangular algebra CT = X\m{fTn, an), generated 

by the standard embeddings <rn and the set of upper triangular matrices % in M ^ , can 

be represented as T(</>,xo) [PPW, Example 1.2]. Ventura [V2, Example 5.1] has given 

an explicit formula for an integer-valued cocycle d such that T — %. 

DEFINITION 2.6. Given an integer-valued cocycle d on %^, let fa be the partial home-

omorphism defined by the clopen subset d~l({\}) of %,, i.e., fa(x) = y, where y is the 

unique element such that d(x,y) = 1. </>j is defined on the open subset 7r^(d_1({l})), 

where TT[ : %^ —> X by 717 (JC, y) = x. 

LEMMA 2.7. Let 1be a TAF subalgebra of% — C*(%J, and let d be an integer-

valued cocycle on T such that T — %. LetXm2iX (andXm\n) be the maximal (respectively 

minimal) points in X with respect to the ordering <C. Then fa is a homeomorphism from 

X \ Xmax to X 

PROOF. Let <P = d~l[0,oo\ so T = A(P). Let x G X. Then cj)(x) is defined iff 

d(x,y) = 1 for some y iff (JC, y) G & for some y ^ x iff x £ Xmax. Similarly, if y G X, 

then y = 0(JC) for some xiffy £ Xm[n. m 

THEOREM 2.8. Let %n ~ M[n]for each n and let % (^n) be the set of upper triangu­

lar (diagonal) matrices in M[wj. Suppose the embedding 91 „ c—> lln+\ takes % into %+]. 

Let 91 = ( X 1 Û <T = \Jn%, X> = \Jn^n, andX = lb. Suppose <I = % is Z-analytic, 

and let XQ — (ê\l\ êf\ ...) andx\ = (ejjj, eLl,...). Then 
(a) fa is a partial homeomorphism from X \ {x\} onto X \ {xo}. 

(b) fa can be extended to a minimal homeomorphism </> onXby defining (j)(x\ ) = XQ. 

(c) 91 ̂  9l(<Mo) and T ^ T(<Mo). 

PROOF, (a) follows from Lemma 2.7 and Lemma 1.6. 

For (b), we will first show that the extension (j>(x\) — xo is continuous. Let W be an 

open subset of X containing x$. We can choose n such that ê\n) Ç W. By Theorem 2.2, 

for each r and s, 1 < r, s < [n], and each (x,y) G ê\%\ we can find some m> n such that 

(*) (x,y) G ejm) f ° r s o m e 1 < i <j < M with7 — / = d(x,y). 

By the compactness of [Ji^if : I < r> s < [/?]}, we can find a finite number m such that 

for every r, s, with I < r, s < [n], and every (x,y) G £^\ condition (*) is satisfied. 

Now ê(
{2\ is an open set containing x\. We are going to show that 

Le tx G e[™j with* ^ JCJ . Then <j>(x) ~ fa(x). Suppose 4>{x) fi ê\n). Then there exists 

some 7, 1 < j < [n]y such that <j>(x) G êj. Hence, for some y ^ (j>(x), (y, </>(*)) G ê\"\ 
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Let d{y, (/>(-*)) = r > 0. Then by (*), there is some k and r with 1 < k < k + r < [m] 

such that (y, </>0)) G êj^+r- Since 

(m) _ (m) . (m) . . # (m) 

we have JC = <£_1 (</>(*)) = 0r-1OO G ê^_j 7̂  é[™j, a contradiction. Hence, <K*) G ^n) 

and </> is continuous. Since X is compact Hausdorff and <j> is bijective, it follows that <j> is 
a homeomorphism. 

Finally, suppose z G X and Z is a nonempty open subset of X. Choose n and /, 1 < 
i < M, such that ê^ Ç Z. z £ e-n) for some 7, 1 < 7 < [n], so (j,z) G ê^ for some 
_y G êjn). Since either e|n) or e^f is in T, we have y = 0*(z) G ê\n) Ç Z for some integer 
&. Hence, (/> is minimal. 

For (c), let T = Jl(îP). We note that T Pi 21 „ is equal to the set of upper triangular 
matrices in 21 n [PPW, Proposition 2.5]. Hence, for n > 1, (JC, </>nQt)) G fP if and only if 
^'(JC) ^ xo for 1 < / < n. Thus, by the discussion preceding Proposition 2.4, *T(</>,;co) = 
T and ?!(<£, JCÔ) = ?I. • 

COROLLARY 2.9. Suppose T /s strongly maximal triangular in factors and *I — % 
is T-analytic. Then fa can be extended to a minimal homeomorphism (j> on X such that 
21 ^ 2I(<£,*o) and<T ̂  T((/),JCO). 

PROOF. Apply Lemma 1.1 and Theorem 2.8. • 

The previous theorem and corollary depend on the facts that 21 is UHF and T is 
strongly maximal triangular in factors. We will next show that not every strongly max­
imal TUHF algebra is strongly maximal triangular in factors. This same example will 
then be used to show that the assumption in Corollary 2.9 that *T is strongly maximal 
triangular in factors is necessary. 

EXAMPLE 2.10. (a) A strongly maximal triangular subalgebra of a UHF algebra need 
not be strongly maximal in factors. Let &n = ^U" © ^Un fovn = 0 , 1 , . . . , and let Im 

denote the identity operator in Mm. Define embeddingS7n: &n ^ &n+\ by 

Define 21 = \im(&nJn). Now let 21 „ = M2.4« and define Jn: 21 n ^ &n+\ Ç %n+l by 

Jn(z) = (z©WnZW*)0(wnzw*0z), whereun istheunitary 4" ' . Since7n|©n =jn, 

it follows that 21 ^ lim(2In,7n), i.e., 2( is UHF. 

Note that %, the set of upper triangular matrices in &n, is maximal triangular in &n 

mdjn(%) Ç %+\. Thus, since each &n is a finite dimensional C*-algebra, T = \Jn % 
is strongly maximal triangular in 21. However, T is not strongly maximal triangular in 
factors since there are two maximal and two minimal points with respect to the spectrum 
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ordering induced by T. To see this, let {e^k)}, k = 1,2, be the usual set of matrix units 
for ©„. Then the two minimal points are 

xo = {êf\ê^\êf\...) and*, = (ê\02\ê\l2\êf2\...) 

and the two maximal points are 

,o = ( ^ V V.6 }. • •.,%», • • •) andy, = (<f2>4'^If,... ,êf\.. .)• 
Since the spectrum ordering is an algebra isomorphism invariant, it follows from Lem­
mas 1.1 and 1.6 that *T is not isomorphic to an algebra which is strongly maximal trian­
gular in factors. 

(b) If (x9y) G %a and dn(x9y) — r, then it follows from the definition of jn that 
dm(x,y) = r for all m> n. Thus, T is Z-analytic by Theorem 2.2. However, <j>d does not 
extend to a homeomorphism </> of X. To see this, note that </>(yo) would have to be either 
xo or x\. We will show that <j> is not continuous if <\>(yo) = xo. The proof is similar for the 
other choice. Thus, the assumption in Corollary 2.9 that T is strongly maximal in factors 
is necessary. 

If 4>(yo) = xo and </> is continuous, then for each ^ n l ) there must be some ê^l) such 
that <t>{ê%X)) Ç êf\ Buijm{e%X)) = e$+l'l) + effi» + e{^2) + e%£'2). Therefore, if 
x £ e%+ U ) , then <j>{x) G ê%£'l). But ê$+

+\'l) n ( ( / f f l o - ojn)(e\nl)))A = 0. Thus, <j> is not 
continuous. 

(c) Let Sn be the set of upper triangular matrices in M24». Note that lim(M2.4«, cr„) 

is isomorphic to 21. Let S be the strongly maximal TAF algebra lim(5w,0"/i). Then by 

Remark 2.5, S is Z-analytic, so (a) and (b) show that 21 contains two nonisomorphic 

Z-analytic TAF algebras. 

REMARK 2.11. Suppose 21 = Un ÎI* and *T Ç 21 is a TAF algebra with diagonal 
Î). By Corollary 2.3 of [PPW], we have T = L U ^ n 2 I n ) . The last example showed 
that even when *T is strongly maximal triangular, T D 2ln need not be maximal triangu­
lar in lln. By Proposition 2.1 and Corollary 1.9, this complication can be overcome by 
replacing %n with the infinite dimensional subalgebra K„ = C*(2I„,X)). Furthermore, 
analogous to Lemma 1.1, T H 23„ can also be put into "upper triangular form". More 
specifically, suppose 21 = \Jn 2In, Î) is a masa in 21, and T is a strongly maximal tri­
angular algebra in 21 with respect to X). Let K„ = C*(2ln, ©) for each «. Then T n 3S„ 
is maximal triangular in 2}„ and T = L U ^ H 33,,). Furthermore, if 2l„ = © ^ M ^ ^ ) 
for each rc, then there exist compact zero dimensional spaces Xn,m such that 

and 

L k(n,m) I 
m=\ 

where T^ = upper triangular matrices in M*. 

We omit the proof since this result is not needed in the sequel. 
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3. Analytic TAF algebras with trivial real-valued cocycles. This section is moti­
vated by the following question: under what conditions is a TAF algebra T generated by 
a real-valued cocycle? In Corollary 1.9, it was shown that a necessary condition is that T 
must be strongly maximal triangular. However, this condition is not sufficient. In Theo­
rem 3.16, the main result of this section, we give necessary and sufficient conditions for a 
strongly maximal TAF algebra to be generated by a real-valued coboundary. In addition, 
just as in the Z-valued case (Theorem 2.2), this result yields a generic coboundary. 

We will first show that trivially analytic TAF algebras cannot be Z-analytic (Theo­
rem 3.1), and we will make some observations on the connection between coboundaries 
and decreasing sets (defined below). We will also give a number of examples which mo­
tivate and illustrate the main result, and we will finish with a computational tool related 
to Theorem 3.16 (Proposition 3.20). 

If A is a nest subalgebra of a von Neumann algebra 94 of the type studied in [MSS1 ] 
and [MSS2], then A is analytic via a coboundary [MSS2, Corollary 3.4]. In [V2, Exam­
ple 5.2], it was shown that the "canonical" nest algebra Alg 9\[ (defined in § 1 ) in the IV^ 
UHF algebra is also generated by a coboundary, specifically d(x, y) = b(y) — b(x) with 
b(x) — sup{tr(P) : P G 9£,x fi P}. However, this coboundary will not work for general 
nest algebras. In fact, a nest subalgebra of a UHF algebra need not even be analytic, since 
there are nest algebras which are not strongly maximal [PW, Example 2.26]. Conversely, 
there are analytic algebras with trivial cocycle which are not nest algebras; in fact, they 
may have no nontrivial invariant projections (Example 3.7 below). In Section 4, we will 
investigate the question of when a nest algebra is trivially analytic. 

For the remainder of this section, unless otherwise stated T = A(^P) will be a strongly 
maximal triangular subalgebra of a simple (infinite dimensional) AF algebra ÎI = C*(^J. 
X will denote the spectrum of T) = Tf lT* . The simplicity of 51 implies that %^ is mini­
mal,/.<?., {y G X : (x,y) G %}, the equivalence class of x, is dense in X for each x[R, page 
112]. All cocycles and coboundaries will be real-valued. Note that if d(x, y) = b(y) — b(x) 
is a coboundary, then the range of b is bounded since b is continuous and X is compact. 

THEOREM 3.1. Let 91 be a simple AF algebra, and let Î Ç H be a trivially analytic 
TAF algebra. Then T is not Z-analytic. 

PROOF. Let 11 = C*(%J and suppose T = A((P), where d(x,y) = b(y) - b(x) for 
(x,y) G %, and P̂ = d_1[0, oo). If there are distinct points zu i — 0,...,ra, such that 
x = zo < Z\ < • • • < zm = y, then d(x,y) = E™Li d(zt-\,Zi) > m. Thus, we may 
assume that for every (x,y) G fP, the set [x,y] = {z : x <C z <C y} is finite. 

Suppose b(uo) is the minimum of b on X and b(ui ) is the maximum of b on X. Let C be 
theequivalenceclassofwo-If u\ is in C, then C = [UQ,U\] is finite, a contradiction. Hence, 
u\ (£ C. As noted above, %^ is minimal since 91 is simple, so there is a sequence {XJ} Ç C 
which converges to u\, and we may further assume that all the x/ 's are distinct and satisfy 
b(x\) < b(x2) < • • • < b(u\). Choose a > 0 such that b(xi) + e, < b(xi+\) — e/+i, and 
let Wi = (b(xi) — Ci,b(xj) + a). Then we can find a sequence {z,} in the equivalence 
class of wi such that zi G b~](W() for all / > 1. But this implies that [z\, u\\ is infinite, a 
contradiction. • 

https://doi.org/10.4153/CJM-1993-056-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-056-0


ANALYTIC TAF ALGEBRAS 1021 

In particular, the result is true for infinite dimensional UHF algebras. Note also that 
the hypotheses are stronger than necessary: only the density of the equivalence classes 
of wo and u\ is needed in the proof. 

DEFINITION 3.2. A set D Ç X is decreasing (relative to T) if y E D and x < y 
implies x G D . Similarly, / Ç X is increasing if x G / and x <C y implies y E I. 

PROPOSITION 3.3. IfD is a decreasing set, then so is D. If I is an increasing set, then 
so is I. 

PROOF. We only prove the first assertion. Let z E D and suppose y < z . There is a 
sequence {xn : 1 < n < oo} Ç D such that xn —> z. The relation y <C z is implemented 
by a partial homeomorphism hv, hv(y) = z, such that v Ç fp. As Range(/zv) = v*v is a 
clopen subset of X, there is an N such that xn G Range(/zv) for n>N. Set y„ = /Ç^Jt,,). 
Then ;y„ < x „ , so yn E D, and l im^ = \\mh~x(xn) = /Ç1^) = y. Therefore, y ED and 
D is decreasing. • 

PROPOSITION 3.4. 7f T w generated by a coboundary d(x,y) = b(y) — b(x), then 
for each r, b~l(—oo, r) is an open decreasing set and b~\—oo, r] is a closed decreasing 
set. Similarly, each b~l(r, oo) is an open increasing set and each b~l fr, oo) is a closed 
increasing set. In addition, the open decreasing and increasing sets separate the points 
ofX in the sense that if(x,y) E rP, x ^ y, then there is an open decreasing set D and an 
open increasing set I such that x G D, y G /, and DDI = 0. 

PROOF. Straightforward. • 

It follows that an analytic algebra generated by a coboundary induces lots of decreas­
ing and increasing sets in X. 

EXAMPLE 3.5. In [V2, Example 5.1], it was shown that the maximal triangular subal-
gebra of a UHF algebra generated by the standard embeddings and the upper triangular 
matrices is analytic, but that the given cocycle cannot be represented by a cobound­
ary. The previous proposition, however, shows that there is no coboundary which gener­
ates the algebra, because every open decreasing or increasing set has measure 1. To see 
this, represent T as \Jn % with % = span{é^n) : / < j}. If W is open and decreasing, 
then W contains some ê(

k
n\ and therefore [j{ê\n\ ••^ê{n)} S W9 so /J(W) > k/[n]. But 

(*„-i o • • • oan)(e[n)) = Zto * £ U w h e r e 4 = M/M. s o U{̂ m), • • •, # . W } £ W 

and therefore fi(W) > ((q - l)[n] + k)/[m] > 1 - [n]/[m] —> 1 as m —• oo. A similar 
proof shows that every open increasing set also has measure 1. Now if T is generated 
by a coboundary d(x, v) = b{y) — b(x), choose sets D and / as in Proposition 3.4. Then 
/x(D) = /i(7) = p(X) = 1 and D C\ I = 0, a contradiction. 

PROPOSITION 3.6. IfT is a closed subalgebra of ÎI containing 2), then P is an 
invariant projection for 11 if and only ifP is a clopen decreasing set. 

PROOF. Suppose P is an invariant projection, y G P, and x <C y. Then {x,y) G v for 
some matrix unit v E ^T, and therefore (x,y) E vP. But vP = PvP since P is invariant, 
sox E P. Hence, P is decreasing, and it is clopen since P is a projection. 

https://doi.org/10.4153/CJM-1993-056-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-056-0


1022 J. R. PETERS, Y. T. POON AND B. H. WAGNER 

On the other hand, if P is decreasing but P is not invariant, then PLvP ^ 0 for some 
matrix unit v G T . But then it follows that there is some (x, y) G (PLvP)A. Since PLvP G 
T, we have x <C y and y G P, but x ^ A a contradiction. • 

Thus, in the case of the canonical nest fA£ with *T = Alg fA£, X has lots of clopen 
decreasing sets. However, as the next example shows, the existence of clopen decreasing 
sets is not necessary. 

EXAMPLE 3.7. There is a TUHF algebra which is analytic via a coboundary but 
which has no nontrivial invariant projections (and therefore in particular it is not a nest 
algebra). Let %n = M4«, % — {upper triangular matrices in îï„}, and let Un be the 
permutation matrix which satisfies 

Undvdg(a\,...,a4n)U*n 

= diag(fli, «2, a3, a5, a4, a6, 07, a9, a%,..., a^- i , ^u+i, tf4£, <z4fc+2, . • •, «4"), 

where diag(- • •) denotes the diagonal matrix with the given entries. Letyn = Ad Un+\ ovn, 
j\,m = jm° ' • • °7i, and note thatjn: % -̂> %+\, so we can define T = limCl^j,,)-

Now T has no nontrivial invariant projections. For if P G 3)n is invariant for %, P ^ 
0,1, then F = é?(;° + . • - + ef for some £ < 4n. But then jn(P) = e\n+l) + - • . + ̂ + \ ) + ̂ +1

1
), 

so jn(P) is not invariant for %+\, and thus not for GT as well. 
Let &(rc) = (4W — 1 ) / 3 and/n = E ^ / e\n). Then for every n,fn is an invariant projection 

for % and fn <fn+\- The set W = \JT=\fn ls therefore open and decreasing, and /i(W) — 
lim^oo iiifn) = limn^oo tr(fn) = l i n v ^ ^ " - l)/(3 • 4n) = ±. Thus, X has a nontrivial 
(neither null nor conull) open decreasing set. Similar arguments show that X has lots of 
such sets, and in fact it will follow from Theorem 3.16 that T is induced by a real-valued 
coboundary (see Example 3.17). 

DEFINITION 3.8. For x = (ê\,ê2,...), set EHjX = UveTrYMA{v^v*} and ^ = 
C\^L\ En^. Then E„j is the smallest open decreasing set containing ên, so Ex is a de­
creasing Gfr subset of X containing {x}. Similarly, letting JnyX — Uve<rn^{v*^v} anc* 
h = n ^ i Jnj* it follows that Jx is an increasing G^ set containing {JC}. Equivalently, Ex 

is the intersection of all open decreasing sets containing x, since each open decreasing set 
contains some EntX, and likewise/* is the intersection of all open increasing sets contain­
ing x. Thus, it is clear that Ex and Jx are independent of the sequence {11 n : 1 < n < ex)}; 
that is, if {©„ : 1 < n < 00} is another such sequence with 6 „ n î a masa in &n, then 
Ex({®n}) = Ex({lln}). 

PROPOSITION 3.9. If*! is strongly maximal triangular in 11, then Ex U Jx — X for 
each x G X. 

PROOF. Suppose x = {ê\, ê^,...)» a nd let y be any point in X. For each n, there is 
some zn ^ en such that (y, z„) G ^ , since ^ is minimal. Now if (y, zn) G fP, then y G £,M-. 
Likewise, if (zn,y) £ P̂» t n e n 3; G /WrX. Thus, y G £nrX: U /Wr]C for all n, and therefore 

OO , OO X • OO X 

y e fi (£«,< uy,M) = fi Enjc) u 1 fi -Aw = & u / v 
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since the sets {EUjX : 1 < n < 00} and {JntX : 1 < n < 00} are nested. It follows that 
X = EXUJX. m 

From now on, we will assume that ÎI has a faithful trace, and \i will denote the measure 
on X induced by the normalized trace tr. Let T be a strongly maximal TAF algebra in M, 
and define bo: X —-> [0,1] by /?oW = M(£*)« 

LEMMA 3.10. If/i(Ex n /*) = 0/or a// * G X, rtéw b0 G C(X). 

PROOF. Suppose* = (êuê2,.-.). Since//(£*) = / / ( f l ^ i ^ ) = linw-00M(^), it 
follows that given e > 0, there is an TV such that if n > N, then \/i(EntX) — &o(*)| < e. 
Thus if j G ên, then /?o(y) < ii(EntX), and hence fcoOO < ^oW + e- Therefore bo is upper 
semicontinuous. Now the same argument shows that the function x —> fi(Jx) is upper 
semicontinuous (replace EntX and Ex by Jn^ and Jx). Since fi(ExP\Jx) = 0 by hypothesis, 
and Proposition 3.9 implies that fi(Ex UJX) = fi(X) — 1, it follows that fc0(*) = 1 — M/*) 
is also lower semicontinuous, and hence continuous. • 

REMARK 3.11. The converse of the lemma is false. If T is the algebra in Example 
3.5, then every nonempty open decreasing or increasing set in X has measure one. There­
fore, p(Ex) = p(Jx) = 1 and necessarily p,(ExnJx) = 1. Thus, in this case, bo G C(X) is 
constant. 

PROPOSITION 3.12. Suppose c is a continuous function such that c(x) < c(y) if 
(x,y) G rP. Then for each y G X we have 

(a) c~{(—oo,c(v)) Ç Ey Ç c~x[—oo,c(v)] 

(b) c_1(c(y),oo) Ç Jy Ç c~l[c(y)9 00) 

PROOF. First, we claim c(x) < c(y) for all x G Ey. Given e > 0 there is, by continuity 
of c, a projection e G X) with y G ê such that |C(JC) — c(y)\ < e for all x e ê. Now 
Ey Ç F = UveW^nTi^v*}- Thus, if x G F, then x <C x; for some x' G é. Hence 
c(x) < c(xf) < c(y) + e. As e > 0 was arbitrary, c(x) < c(y). Similarly, it can be shown 
that c(x) > c(y) for all x G Jy. Since X= EyU /v, (a) and (b) follow. • 

In particular, the preceding proposition is true for c = bo if fi(Ex DJX) — 0 for all x. 

LEMMA 3.13. There is a countable collection {rn : 1 < n < 00} of measure-
preserving homeomorphisms ofX such that for each x G X, 

(i) (x,T„(xj) e It and 
(ii) rn(x) ^ rm(x) ifn^m. 

PROOF. We first prove the result in the UHF case, so assume that 31 = \Jn Hn where 
the ÎI„'s are factors. If ef = e^+{) + • • • + e("+l\ set vn ,- = £*r/ e^l) + eftX) and vn = 

l l\ Ifr ' J—1 ljlj+\ lkl\ 

^1=1 vnj- Observe that vn G (W^ is unitary, so that if rn is the partial homeomorphism 
corresponding to vn, defined by Tn(x)(d) — x(vndvl), then rn is a homeomorphism of X. 
lie G !P(1)), then n(rn{e)) = tr(v*evn) = tr(^v„v*) = tr(<?) = 11(e). As any open set in 
X is a union of a countable number of clopen subsets, rn is measure-preserving on open 
sets and hence measure-preserving. 
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Let* G X,JC G é^ \jher\Tn(x) £ êjn+ \ but if m > n it follows from the construction 

that Tm{x) G ̂ n + 1 ) . Thus rn(x) ^ rm{x). It is clear that (x,rn{x)) G %,. 

Now suppose that ÎI is a simple AF algebra which is not UHF. Then there exists a 

sequence {9I„} such that 5t„ = © ^ M ^ m ) with £(n) > 1. Fix n. By [Br, Corollary 3.5], 

there is some r > n such that the multiplicity of the embedding of each Mk(n^m) in each 

Mfc(r,/>) (in the sense of the Bratteli diagram of ÎI) is at least 1. Consequently, there is 

some s > r such that the multiplicity of the embedding of each Mk(n>m) in each Mk(^q) is 

at least 2. It follows that efm) = E ^ ^ + • • • + 4 ^ ) w i t h Qk > 2 f o r e a c h 9- N o w v" 

can be defined in a similar manner as before, and the result follows. • 

COROLLARY 3.14. Let E Ç X be measurable with \i(E) > 0. Then there are distinct 

points x,y G E such that (x, y) G %^ 

PROOF. Suppose E contains no two points x, y such that (x, y) G %,. Then, with 

notation as in Lemma 3.13, rn(E) (1 rm(E) = 0 for n ^ m. For if there exist x,y G E 

such thatTn(x) = rm(y), then (x,y) G ̂  since (A:,T„(JC)) G ̂  and (rm(j) ,y) G ̂ . Thus, 

1 = ti(X) > ti(UZiTn(E)) = E ^ , ^ ( r „ ( £ ) ) = E ~ ! / i ( £ ) = oo. This contradiction 

completes the proof. • 

LEMMA 3.15. Suppose T is analytic with cocycle d(x,y) — c(y) — c(x), c G C(X). 

Then p(Ex n Jx) = Ofor all x G X. 

PROOF. Let 2> = (Tl[0,oo), soVU(P~l = 1l and IP n ^P"1 = X = £/_1({0}). 

Suppose that ii(EXo P\JXo) > 0 for some xo G X. By the last corollary, there is a pair 

(x,y) G (P,x ^ >>, such that I J G £^0 Pi 7^. Hence c(x) < c(y). Now exactly one of the 

following holds: (i) c(y) < cOo); (ii) c(x) < C(XQ) < c(y)\ or (iii) C(XQ) < c(x). In case (i), 

let a G R satisfy c(x) < a < c(y). Then c~l(a, oo) is open, increasing, and contains JCO. 

Thus JXQ Ç c~l(a, oo). But x $ c - 1 ( a , oo), whereas x G 7^ . The other cases are treated 

similarly. • 

We can now prove the main result. 

THEOREM 3.16. Let 91 be a simple AF algebra with faithful trace, and let T = 

&(<£) Ç 11 be a strongly maximal TAF algebra. With T) = T H T* am/ X = T>, to 

{7 n}^= 1 (N < oo) be an enumeration of the increasing clopen subsets ofXy and set 

b(x) = ii(Ex)+Y,2~nXJn(x). 
n=\ 

Then ¥ is analytic via a real-valued coboundary iff 

(i) fi(ExnJx) = Ofor all x G X, and 

(ii) if(x,y) £&,x^y, then b(x) < b{y). 

If(i) and (ii) are satisfied, then d(x,y) = b(y) — b(x) is a coboundary for T ; that is, b is 

continuous and (P = d~x [0, oo). 

PROOF. Suppose first that T is analytic with cocycle d'(x,y) = c(y) — C(JC), where 

c G C(X). By Lemma 3.15, condition (i) is satisfied. Thus by Lemma 3.10, the function 
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bo(x) — fi(Ex) is continuous. Now £^ = 1 2~n\jn is continuous, if TV is finite, since Jn is 

clopen; but if N = oo, the sum is the uniform limit of partial sums and thus is again 

continuous. It follows that b G C(X). 

Let (x, y) G Û?, x ^ y. If there is an n such that y belongs to the increasing set Jn andx $ 

Jn, then b(y)—b{x) > 2~n. So we may suppose that every increasing clopen set containing 

y also contains x. It follows that Range(c)H (<?(*), c(y)) ^ 0, for otherwise c_1[c(y),oo) = 

c~l(c(x), oo) is a clopen increasing set containing y but not x. So let a G Range(c), 

c(x) < a < c(y). By Proposition 3.12, c_1(—oo, c(y)) Ç Ey and c - 1(—oo, C(JC)1 2 Ex. 

Thus 

£y \ ^ 2 c~l ( - o o , cW) \ ç"1 ( - oo , c(x)] D c- 1 (c(x\ c(y)) 

which is a nonempty open subset of X and consequently has positive measure. As Ex Ç 

£y , M ( ^ ) - ii(Ex) = ii(Ey \Ex)>fi(c~l (c(x), c(y))) > 0. This implies b(y) - b{x) > 0. 

For the other direction, if (i) and (ii) are satisfied, then we know from the above that 

b is continuous, and (ii) implies (P = d~l[0, oo), so T = % is the analytic TAF algebra 

with cocycle d(x,y) = b(y) — b(x). m 

EXAMPLE 3.17. We will use Theorem 3.16 to show that the TAF algebra T given 

above in Example 3.7 is analytic via a real-valued coboundary. Note that b(x) = ii(Ex) 

since X has no clopen decreasing sets. Now if (x,y) G fP, x ^ y, then (x,y) G éfl for 

some /rt, &„, n, with /„ < £„. It then follows from the definition of the embedding^ that 

(x,y) G ê^+y with kn+\ > in+\ + 3 . Furthermore, 

LL(EX) < -—r + -;—7 + i—7 + ' " ' — r + 

and 

M^y) > 

4«+i 4/2+2 4«+3 4«+i 3 . 4 « + i 

fez+i - 1 1 1 fc/,+1 - 1 
/|.AI+I 4«+2 4«+3 4«+i 3 . 4 « + i ' 

so /x(£^) < fi(Ey). 

Suppose x = (ê\v\ê^\...), and let % = T n 21 w. For each m > n, define the 

sets 4 » ) = U v ^ n ^ i c k " ^ * ) ^ a n d ^ = Vv^nwji^yf}- N o t e t h a t E»* = 
Um>„ £&> and J„j = \Jm>„J%>. Then for i„ ? ! , [«] , 

^ " n / ; ; 1 ^ 4'u {4"+1)}-

£<;r
+2)n/;;2)- ' t f {ê^+% etc. 

A:=16i„—25 

Thus, n(EnrXr)JnrX) = 4~n + 2- 4~{n+l) + 2 • 4~("+2) + • • • = f 4 ^ . In the other two cases, 

the formulas are similar and n(EnyX D JntX) — \4~n. It follows that fi(Ex HJx) = 0 since 

Ex H Jx = f)n(EnyX n J ,^) . Thus, conditions (i) and (ii) of Theorem 3.16 are satisfied, so 

T is trivially analytic. 
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EXAMPLE 3.18. Consider the algebra %a) in [PW, Theorem 2.24] with 0 < a < 1. 
1(a) is a strongly maximal TAF nest subalgebra of the 2°° UHF algebra which has the 
property sup{tr(P) : P G Lat^ a ) ,P < 1} = a. We will briefly describe the construction. 
Let Q(N) be a permutation matrix in M2jy such that 

G(A0 diagCaV \ a«\ a\2\af\ ..., a\">, a^)Q(N)' 

= diag(a(
I
,,, a(,2),..., a™, d}\ a?,.... o f ) , 

where diag(Z?i ,...,b^) denotes the diagonal matrix with entries b\,...,b^. Let /?(n, m) = 
hm © ô(2n — m) for each n, 1 < m < 2n. If a = E ^ ^ is the nonterminating binary 
expansion of a, let Mn = £"=1 2

n~^- and define the embedding^: M2«
 c—• M2„+i by 

jn = AdR(n,Mn) o vn. Let ÎI = lim(M2« Jnl 

Define P ^ = Hj
i=le\n\j = 1,... ,M„, and <M = {0,l,FJn) :j = l , . . . ,M„,n = 

1,2,...}. Then it was shown in [PW, Theorem 2.24] that W[ is a maximal nest such that 
sup{p G fW :/? < 1} = a, and that (Alg5Vf)nM2« is the set of upper triangular matrices 
in M2* (so 1(a) = Alg 9\{ is a strongly maximal TAF algebra). 

Let E = |JnPj^• M^) — a < 1» so there exists some xo G X \ £ For each n, let /„ be 
the integer satisfying xo G ê\n). Note that /„ > Mn. Now if W is an open decreasing set 
containingx0, then W 2 U{^\ . . . , e{£} for some n. But (/m-i°- • '°jn)(e{^) 2 4™-2"+/„' 
so W D U{^im)» • • • > 4»-2«+I-„}- T h u s ' M^O > (2m - 2n + in)/2

m —• 1 as m -> 00. It 
follows that /x(W) = 1, and therefore fi(EXo) = 1. 

Now suppose V is an open increasing set containing JCO. Every nonempty open set 
intersects E because M is a maximal nest, so therefore there is some x\ G VHE. Let 
4n) be a matrix unit satisfying JCI G ^ £ v n E- T h e n Ui^ • • • ' O ^ V a n d 

U{^ n ) , . . . , 4^1} Ç £• It follows that /x(V) > 1 - a, and therefore //(y^) > 1 - a. 
Consequently, /i(£!r0 H 7^) > 1 — a > 0, so Theorem 3.16 implies that %a) is not 
generated by a real-valued coboundary. 

Since a trivially analytic algebra need not have any increasing clopen sets (Exam­
ple 3.7), the ix(Ex) term in the definition of b(x) in Theorem 3.16 is necessary. The fol­
lowing example shows that the series E^Li 2~nXJn(.

x) *s a^so necessary, even for "nice" 
nest algebras. 

EXAMPLE 3.19. Let 5t„ = M2« with the usual matrix units {ef}}, vn be the nest 
embedding, and 91 = lim(9I„, vn). Define 

, k 2n~x m , 

Mn = 0,1, £ e«\ £ ef + £ 4--,- : 1 < *, m < 2""1 . 
1 ,-=1 i=\ j=\ j 

Note that Mn Ç Mn+U so fW = |j£Li ^ 4 is a nest. Write Alg M as #(!P). 
Let x = (e\l\ ef\ tf\ . . . , ê%>_x,...) and y = (4° , ^2), e(

8
3),..., ê£ \ . . . ) . Then (je, y) G 

fP, x 7̂  y, but /i(£jt) = M ( ^ ) since Ey = EXU {y}. However, Alg fW is analytic via a 
coboundary by Theorem 4.6 below (or 3.16), since C*(5^) = S . It is interesting to com­
pare this with the canonical nest algebra, for which ji{Ex) does generate a coboundary. 
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This illustrates, as seen in [PW], the importance of the embedding of the nest 9v[ in T) 

in relation to the groupoid H^. 

We will conclude this section by developing another method for computing ji(Ex) 

(Proposition 3.20). This is useful in the application of Theorem 3.16, as will be seen in 

Example 3.21. For the remainder of this section, $1 = C*(%) will be UHF and T = 

J2LCP) Ç 91 will be a TAF algebra which is strongly maximal triangular in factors, i.e., 

there is an increasing sequence {lln : 1 < n < oo} of finite dimensional factors such that 

îl = ÎL% and <T H ÎI„ is maximal triangular in l\n. Let © = T H T* and X = f). By 

Lemma 1.1, we can choose a set of matrix units {e^ : 1 < / j < [n], 1 < « < oo} for ÎI 

such th 

define 

v 
such that T n î ln is spanned by ( 4 n ) : 1 < i < j < [«]}. If JC = ( ^ } r ef(

]
2 ) G l , 

*.+/ N r k(n,x) __ . k(n,x) 
b (x) = lim sup , and # (x) = hm inr , 

n M n [n] 

and recall that bo(x) — n(Ex). 

PROPOSITION 3.20. The following are equivalent: 

(a) ii{Ex HJx) = 0for all x G X. 

(b) bo is continuous and b+(x) = b~{x) = bo(x) for all x G X. 

(c) bo is continuous and the sequences {-j^-} and {^(En^)} converge uniformly to 

b0(x). 

(d) bo is continuous and Range(Z?o) — [0,1]-
(e) bo is continuous and fi(bQl ({a})) = 0 for each a G [0,1]. 

PROOF (a) =4> (b). If En^ (resp., JHyX) is the decreasing (resp., increasing) open set 

generated by e^^y then EntX 2 Uj<k(n^ ^f and Jn^ D l)j>kM èf s i n c e T n ^n is the 

full upper triangular subalgebra of the factor lln. Thus, ji(EnrX) > ^ p and fi(JntX) > 

1 — k{jl?„rl • As {EnrX : 1 < n < oo} is nested, Hindoo n(En^) exists, so fi(Ex) = 

l im^oo n(EntX) > l i m s u p ^ ^ ^ = b+(x). Similarly, 

li(Jx) > limsup 1 — 
/i-Kx> V M 

. k{n,x)- 1 
> 1 — liminr 

n->oo [n] 
> 1 - b~(x). 

Since Ex U Jx = X and JJL(EX H JX) = 0, then 1 = ii{Ex) + ii{Jx) > b+(x) + 1 - b~(x), 

i.e., b+(x) — b~(x) < 0. As the opposite inequality is clear, it follows that b+(x) = b~(x), 

and the proof shows that the common value equals bo(x). Finally, bo is continuous by 

Lemma 3.10. 

(b) => (c). The sequence fn(x) — fJ>(Enj) is decreasing to bo(x) = ji{Ex). By Dini's 

Theorem, the convergence is uniform. Similarly, the decreasing sequence fi(JnyX) con­

verges uniformly to fi(Jx) — 1 — bo(x). Because 1 — n(JntX) < ^f^ < n(EnyX), it follows 

that {^rfp : 1 < n < oo} converges uniformly to bo(x). 
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(c) => (d). Since Range(Z?o) is closed, it is enough to show Range(^o) is dense. Let 
a G [0,11 and e > 0 be given. Choose N so that for n > N, | ^ - bQ(x)\ < f for all 
x G X. We may assume [N] > \. Thus, for n > N, there is some k G {1,2, . . . , [n]} with 
\±-a\ < |.Ifjc G e?£\i.e.,k(n,x) = *,then|&0(*)-a| < M * ) - ^ f | + | ^ f -<*| < e. 

(d) => (e). Let a G (0,1), and choose any e G (0,1) and 0 < 7 < a < (5 < 1 with 
(3 - 7 = e. Then there are v,z G X with bo(y) = /3 and £0(z) = 7. Since /?Q !(—oo,/3) Ç 
£ y and £ z Ç b^{(—oo,7] by Proposition 3.12, we have ^ô"1 ({<*}) Ç b^l(—oo,/3) \ 
*ô ] ( -cx) ,7] Ç £ y \ £ z - T h u s > /*(*ô l ({<*})) < V(Ey\Ez) = fi(Ey) - ^Ez) = 0-l = e. 

Since e > 0 was arbitrary, / / ( ^ ( { a } ) ) = 0. The cases a = 0 and a = 1 are treated 
similarly. 

(e) =4> (a). This follows from Proposition 3.12. • 

EXAMPLE 3.21. We will use Theorem 3.16 and Proposition 3.20 to show that the 
TAF algebra in Example 2.3, generated by alternating the standard and nest embeddings, 
is not trivially analytic. Using the notation from Example 2.3 and letting m ~ n/2, 
consider the point x = (êf\ ê ^ , 4?» ^176' • • • > 4 ! ^ ' ' ' ̂ ' w n e r e ^m — 2fcm_i if m is odd 
and km = 2([2m — 2] + km-\) — 2 (4 m _ 1 + km-\) if m is even. Now for m odd, 

km 2km-x = 2(2(4m-2 + km^2)) = 1 1 fcm_2 

[2m] 4m 4m 4 + 4 [2(m - 2)] ' 

Since k\/[l] = 2 / 4 = 1/2, it follows that k3/[3] < 1 / 4 + 1 / 8 = 3 / 8 < 1/2, and 

therefore km/[2m] < 3 / 8 for all odd m. Thus, c~{x) < 3 / 8 . 

On the other hand, if m is even, then 

km 2(4m" 1+/cm_Q = 2 (4 m - 1 +2/c m , 2 ) = 1 | 1 /c„-2 

[2m] 4m 4m 2 4 [ 2 ( m - 2 ] ' 

Sincefc2/[2] - 12/16 = 3/4 > 1 / 2, it follows that k4/ [4] > 1/2+1/8 = 5/8 > 1/2, 
and therefore km/[2m] > 5/8 for all even m. Thus, c+(x) > 5/8. It now follows from 
Proposition 3.20 that \i{Ex C\JX) ^ 0, so Theorem 3.16 implies that *T cannot be trivially 
analytic. 

General alternating algebras were classified in [Po3] and [HP]. The definition is the 
same as in Example 2.3 except that we allow 2In to be any MPn, with pn\pn+\. Then 
Example 2.3 can be generalized to prove that these algebras are analytic, and an argument 
similar to the last example shows that they are not trivially analytic. 

As mentioned in § 1, a bounded cocycle is trivial. A recent result of Solel shows that 
if an analytic subalgebra of a simple AF algebra is generated by an unbounded cocycle, 
then it cannot be trivially analytic [S]. Thus, the conclusion of Example 3.21 also follows 
from this result. 
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4. Analytic nest algebras with trivial real-valued cocycles. As already indicated, 
some nest subalgebras of UHF algebras are analytic, but not all. This raises the question 
of determining which nest algebras are analytic. We will give several results concerning 
this problem, culminating in Theorem 4.6. Again, 21 will always represent a simple AF 
algebra, but the nest algebras we consider will not necessarily be triangular. 

Suppose 94 is a nest. Then 94 induces a partial order on X by x < y if there is some 
P G 94 such thatx G P,y fi P. This is different from the partial order x <C y if (x, y) G P̂ 
(where Alg 94 = &(&)). 

PROPOSITION 4.1. Suppose Alg 94 = A{fP) is a nest subalgebra of % = C*(^J. 
Then 

x < y, ( i , _ y ) G ^ ^ i « j with x ^ y. 

PROOF, X ^ y since x G P and y ^ P. (x, y) G %, implies that (x, y) G ê^ for some 

ij, n, so (x, y) G (Pe^P1)*. Then x < y since PefPL G Alg 94. m 

COROLLARY 4.2. Suppose Alg fW w induced by a real-valued cocycle d. Then 

x < y , (x,y)£^^d(x,y)>0. 

PROOF. By the previous proposition, d(x,y) > 0. If d(x,y) — 0, then (x,y) G v for 
some matrix unit v G (Alg fTVf) D (Alg 94)*. It follows that (jc,y) G (PvJP

1)A for some 
P G fW, so 0 7̂  PvPL. This implies that 0 ^ P±v*P, i.e., v* ^ Alg 94, a contradiction. 
Therefore, d(x, y) > 0. • 

The converse of Proposition 4.1 is false in general. For example, it is false for the 
multiplicity 2 nest algebra in Example 2.29 of [PW]. However, if C*{94) = ®, the 
converse is true by Proposition 4.5 below. 

PROPOSITION 4.3. Suppose 94 is a finite nest: 0 = M0 < M\ < • • • < Mn = 1. 
Then Alg 94 is Z-analytic via the coboundary d(x, y) = z(y) —z(x) with z.X —> Z defined 
by z(x) — va£\k : x G Mk}. 

PROOF. This follows easily from Proposition 4.1 and the fact that for each k, Alg 94 
contains (Mk — Mk^\) Alg94(Mk — Mk_\). m 

On the other hand, 

PROPOSITION 4.4. If 94 is an infinite nest, then Alg 94 is not Z-analytic. 

PROOF. Assume Alg 94 is analytic via an integer-valued cocycle d. Now 94 con­
tains an increasing or decreasing sequence, so suppose {P/ : 1 < /' < oo} is an increasing 
sequence with P\ ^ 0. Set Po = 0. Since X is compact, there is some y G X \ (U£i A)-
By minimality, for each i there is some xi G (P/ — P/-i )A such that (x,,_y) G %,. Now for 
each positive integer k, d(x, y) — Y$=\ d(xi, X[+\ ) + d(xk,y) >kby Corollary 4.2. Since k 
is arbitrary, d(x,y) — oo, a contradiction. A similar argument works if 94 contains only 
decreasing sequences. • 
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PROPOSITION 4.5. Suppose C*(M) = X). Then 

x « y , x^ y => x <y and (x, y) G %,. 

PROOF. Since C*(JM) = 3), AlgfW is triangular (see [PW, § 2]). If x <C y and 
x ^ y, then there exist /, 7, and n such that (x,y) G é ^ with e\^ G Alg fW and / ^ 7. 

g(n) G c*(fW), so [PW, Lemma 3.1] implies that there are projections P,Q G M such 
that x G (P - g)A Ç ^n) (note: the assumption in [PW, Lemma 3.1] that 51 is UHF is 
not necessary; the proof works in the general AF case). Likewise, there are projections 
R,S eM such that y G (R-S)A C ef\ Since (P-Q)(R~S) = 0, either Q<P<S<R 
or S < R < Q < P. But the latter case implies that y G R and x ^ R, so y < x, and 
therefore y <C x by Proposition 4.1, a contradiction. Therefore, x < y since x G P and 

Alternatively, the result can be proved by applying [PW, Corollary 3.12]. Again, the 
proof of that corollary works in the general AF case. • 

In [PW, Corollary 3.13], it was shown that if C*(fW) = D, then Alg Wl is strongly 
maximal triangular. We can now obtain the following stronger result. 

THEOREM 4.6. Suppose 21 is simple and 9vt is a nest satisfying C*{*M) — X). Let 
{Pi : 1 < / < 00} be the set of projections in 9/[. Then Alg 9/[ is analytic via the 
real-valuedcoboundary d(x,y) = b(y) — b{x)y where 

OO 

n=\ 

PROOF. AS in the proof of Theorem 3.16, b G C(X). By Proposition 4.5, if x < y 
and x ^ y, then b(y) — b(x) > 0. If x — y, then certainly b(y) — b(x) — 0. Conversely, 
if (x,y) G %, and b(y) — b(x) > 0, then x < y, so x <C y with x ^ y by Proposition 4.1. 
Finally, suppose (JC, v) G ^ with é(y) — b(x) = 0. Now either (x,y) G P̂ or (V,JC) G îP 
since Alg fW is strongly maximal triangular. But then ifx^y, it follows from the above 
that b(y)—b(x) > 0 in the first case and b(x)—b(y) > 0 in the second case, a contradiction. 
Therefore, b(y) - b(x) > 0 with (JC, y) G %, if and only if (JC, y) G (P. m 

COROLLARY 4.7. If C*(fM) = X), fften AlgtM is analytic via a real-valued 
coboundary d(x,y) = b(y) — b(x) which satisfies 

x < y & b(y) > b(x). 

Note that the function b in Theorem 4.6 is the same as the function b in Theorem 3.16 
without the p,(Ex) term. If C*(5W) = X), there are enough increasing clopen sets so that 
the n{Ex) term is not needed. 

ADDENDUM. In Example 3.18, we showed that the algebra %a) is not trivially ana­
lytic. It has recently been shown in [PWo] that this algebra is not even analytic. Therefore, 
this provides an example of a strongly maximal nest algebra which is not analytic. 
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