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Abstract

Let Q(x, y, z, t, u) be a real indefinite 5-ary quadratic form of type (3,2) and determinant D{> 0). Then
given any real numbers x0, y0, z0, t0, u0 there exist integers x, y, z, t, u such that

0 < Q{x + x0, y + y0, z + z0, t + t0, u + u0)

All the critical forms are also determined.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 E 20.

1. Introduction

Let Q(x1,x2,.,xn) be a real indefinite quadratic form in n variables with signature
(r, n - r), 0 < r < n and determinant D / 0. It is known (see Blaney (1948)) that there
exists a real number K, depending only on n and r, such that given any real numbers
c1,c2,...,c(I the inequality

0 < Q(xt + c , x2 + c2,..., xn + cn) ^ (K ID \)l/"

has a solution in integers xi,x2,—,xn. Let Fr n_r denote the infimum of all such
constants K. Davenport and Heilbronn (1947) proved that I \ t = 4. F2 , = 4 was
proved by Barnes (1961) and I \ 2 = 8 was obtained by Dumir (1967). Dumir
(1968a, b) has also shown that F3 x = -^ and T2 2 = 16. In this paper we shall prove
that T3 2 = 16. All the critical forms are also obtained. In a later paper we shall
prove that F4 , = 8. More precisely here we prove :

THEOREM. Let Q(x, y, z, t, u) be a real indefinite 5-ary quadratic form of type (3,2) and
determinant D(> 0). Then given any real numbers x0, y0, z0, f0, u0 there exist integers
x, y, z, t, u such that
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(1.1) 0 < Q(x + x0,y + y0,z + zo,t + to,u + uo) *S (16Z))1/5.

The sign of equality in (1.1) is necessary if and only if either

(1.2) Q{x,y,z,t,u)~ pQl =p(x2+yz + tu)

or

(1.3) Q(x,y,z,t,u)~pQ2 = P(x2 + y2-2z2-2tu),

where p > 0. For Qt, the sign of equality in (1.1) is necessary if and only if
(x0,yo,zo,to,uo) = (0,0,0,0,0)(mod 1) while for Q2 it is so if and only if
(x0, y0, z0, t0, u0) = (i, i, | , 0,0) (mod 1).

2. Some lemmas

In the course of the proof we shall use the following lemmas :

LEMMA 1. IfQ is as in the theorem, there exist integers xuyl,zutl,ul such that

(2.1) 0<Q(xuyl,zi,tl,ul)^(l6D)i'5.

The sign of equality in (2.1) is necessary if and only if Q ~ pQlt p > 0.

This follows from some results of Watson (1958, 1968), Jackson (1969) and
Oppenheim (1953a).

Let <p(y, z, t, u) be a real indefinite quaternary quadratic form of type (2,2) and
determinant D( > 0). We shall need the following results :

LEMMA 2. Given any real numbers y0, z0, t0, u0, there exist

(y, z, t, u) = (y0, z0, t0, u0) (mod 1)

such that

(2.2)

This is a theorem due to Birch (1958).

LEMMA 3. There exist integers y2, z2, t2, u2 such that

(2.3) 0<<p(y2,z2,t2,u2)^mDr14

except when (p(y, z, t, u) ~ p(yz + tu), p > 0.

https://doi.org/10.1017/S1446788700021601 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021601


[3] Inhomogeneous 5-ary quadratic forms 441

This is a theorem of Oppenheim (1953b).

LEMMA 4. There exist (y, z, t, u) = (y0, z0, t0, u0) (mod 1) such that

(2.4) 0 1 1 4

This is a theorem of Dumir (1968b).

LEMMA 5. Let \j/(z,t,u) be an indefinite ternary quadratic form of type (1,2) and
determinant D(> 0). TTien given any real numbers zo,to,uo there exist
(z, t, u) = (z0, t0, u0) (mod 1) such that

(25)

This is a theorem of Davenport (1948).

LEMMA 6. Let \j/(z, f, M) be as in Lemma 5. T/ien giren any real z0, t0, u0 there exist
(z, t, u) = (z0, t0, u0) (mod 1) such that

(2.6) -(Z)/16)1/3 < Kz,t,u) < 3.(Z)/16)I/3.

T/ie sign of equality in (2.6) is necessary if and only ifi// ~ p^ix or pil/2, P > 0; where
tj/t = —{z2+tu),ip2 = — 2z2— t2+u2. Forty v, the sign of equality in (2.6) is necessary
if and only if(z0,t0,u0) = (i,0,0) (mod 1), while for \jtz it is necessary if and only if

l
This follows from the theorem of Dumir (1969).

LEMMA 7. Let a, /?, d, be a real numbers with d ^ 1. Then given any real number x0,
there exists x = x0 (mod 1) such that

(2.7) 0 •

provided

' (d-\^2

if d is an integer,
\ *• J

(2.8)
/ r J-|\ 1

< I ~y-1 if d is not an integer.

Further strict inequality in (2.8) implies strict inequality in (2.7).

This is Lemma 6 of Dumir (1968a).
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LEMMA 8. Let a, p, d, be as above. Then given any real y0, there exists y = y0 (mod 1)
such that

(2.9) 0^{y + <x)2-p2 <d

provided

if d is an integer,
\ ^ J

(2.10)

—^ I if d is not an integer.

Further strict inequality in (2.10) implies strict inequality in (2.9).

This lemma is a simple modification of Lemma 7 stated above, so we omit the
proof.

LEMMA 9. Let n be an integer ^ 1. If for d > n,f(d) is an increasing function ofd and

if

(2.11) /(rf)<fcij ford^n+l,

then for n < d < n+1, we have

This obvious result is useful in many calculations.

3. Proof of the Theorem

Let

(3.1) m= inf Q(x,y,z,t,u)

By Lemma 1,

x, y,z, t, u integers
Q(x,y,z,t,u)>0

0 s: m < (16D)1'5.

If m = 0, the result follows from a result of Watson (1960). So we can suppose m > 0.
Let 0 < e0 < jg be a sufficiently small number. Then we can find integers
x1,yl,zl,tl,u1 such that
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where 0 ^ e < e0. Since e < -^, we have g.c.d.{x^y^z^t^u^) = 1. By a suitable
unimodular transformation we can suppose that

(2(1,0,0,0,0) = m

1-e

and write

Q(x, y, z, t, u) = j ^ {(x + hy + gz + h't + g'uf + q>{y, z, t, u)},

where

and where <p(.y, z, t, u) is a real indefinite quadratic form of type (2,2) with
determinant

Equality in (3.2) occurs if and only if Q ~ pQfoy Lemma 1). Also by the definition of
m, for any integers x, y, z, t, u, we must have either Q(x, y, z, t, u )< 0 or

Because of homogeneity it suffices to prove

THEOREM A. Let Q(x, y, z, t, u) = (x + hy + gz + h't + g'u)2 + q>(y, z, t, u) where

ip(y, z, (, u) is a real indefinite quaternary quadratic form of type (2,2) and determinant
D such that

(3.3) D^is, (D=±ifandonlyifQ~Ql)

and

(3.4) \h\ < * , \g\^h \h'\^h \g'\m

Suppose further that for integers x,y,z,t,u we have either

(3.5) Q(x,y,z,t,u) < 0 or Q(x,y,z,t,u)^l-e

where 0 < e < jg is sufficiently small.
Let

(3.6) d = (16D)1/5.

Then given any real x0, y0, z0, t0, u0, we can find
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(x, y, z, t, u) = (x0, y0, z0, t0, u0) (mod 1)

satisfying

(3.7) 0<Q(x,y,z,t,u)^d.

The sign of equality in (3.7) is necessary if and only ifQ~Qi or Q2.

3.1. Proof of Theorem A.

LEMMA 10. IfQ[x, y, z, t, u) is as defined in Theorem A, then for integers y, z, t, u we
have either

(3.8) q>(y,z,t,u)^0 or

This result is similar to Lemma 4.1 of Dumir (1969), so we omit the proof.

LEMMA 11. ifQ = Qu then (3.7) holds with strict inequality unless
(x0, y0, z0, to,uo) = (0,0,0,0,0) (mod 1).

PROOF. Here D = j ^ , so that d = 1.

Case (i) (yo,zo,to,uo) # (0,0,0,0) (mod 1).
Without loss of generality we can suppose that t0 # 0 (mod 1). Choose
(x, y, z) = (x0, y0, z0) (mod 1) arbitrarily, t = t0 (mod 1) such that 0 < | r | < i and
then choose u = u0 (mod 1) to satisfy

0 < x2+yz + tu s£ \t| < i < d.

Case (ii) (y0, z0, t0, u0) = (0,0,0,0) (mod 1).
Take y — z = t = u = 0 and choose x = xo (mod 1) such that 0 < x ^ 1, so that

0 < x2+yz + tu = x2 < 1 = d.

Strict inequality holds if x0 =£ 0(mod 1). If x0 = 0 (mod 1), then the sign of equality is
necessary because x2 +yz + tu takes only integral values.

So we can now suppose that Q -/< Qv By (3.3) d ^ 1, and d = 1 if and only if
Q ~ (?!. Thus we have d > 1 in the rest of the paper.

LEMMA 12. Let vx = d — \ and v2 > 0 be a real number satisfying
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(3.9) V2 S

Inhomogeneous 5-ary quadratic forms

if d is an integer,

445

< ( KA I if d is not an integer.

Suppose that we can find (y, z, t, u) = (y0, z0, t0, uQ) (mod 1) such that

(3.10) - v 2 ^ cp(y,z,t,u)<vi

then for any x0, there exists x = x0 (mod 1) satisfying (3.7). Further strict inequality in
(3.10) implies strict inequality in (3.7).

PROOF. If 0 < <p(y, z,t,u) < v,, choose x = x0 (mod 1) such that

\x + hy + gz + h't + g'u\ < i,

so that

0<Q(x,y,z,t,u)<]( + v1 =d.

If — v2 < <p(y, z, t, u) ^ 0, then the result follows from Lemma 7 with
<x = hy + gz + h't + g'u and ji2 = —q>(y,z,t,u).

LEMMA 13. If d > 8, then (3.7) is true with strict inequality.

PROOF. By Lemma 4 applied to — <p(y, z, t, u), there exist (y, z, t, u) =

(yo>
 zo> ' o uo) (m°d !) such that

i.e. -d51* = -(16D)1/4 ^ cp(y,z,t,u) < 0. The result will follow from Lemma 12ifwe
have

d514 <

d~\
if d 5= 9

f(d) = d51* is an increasing function for d > 1. By Lemma 9 it is enough to verify the
inequality for d ^ 9, which can be easily done.

LEMMA 14. / / 3 < d ^ 8, then again (3.7) is true with strict inequality.

PROOF. By Lemma 2, there exist (y, z, t, u) = (y0, z0, l0, u0) (mod 1) such that

https://doi.org/10.1017/S1446788700021601 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021601


446 R. J. Hans-Gill and Madhu Raka [8]

The result will follow from Lemma 12, if we have

(3.H)

and

^ 1 i f 3 . , < 4 .

We observe that by Lemma 9, it is enough to verify (3.12) for 4 ^ d ^ 8. Verifications
of these inequalities are easy and are left to the reader.

REMARK. For 1 < d ^ 3, we shall repeat the procedure of reduction described in
Section 3. We use Lemma 3 on the homogeneous minimum of positive values of
quaternary forms of type (2.2). So we first dispose of the exceptional forms.

LEMMA 15. Ifcp(y,z,t,u) ~ p(yz + tu), p > 0 and 1 < d < 3, then (3.7) is true with
strict inequality.

PROOF. Without loss of generality we can suppose that q>(y, z, t, u) = p(yz + tu). So

Q(x, y, z, t,u) = (x + hy+gz + h't+g'uf + p{yz + tu).

By (3.4), 0 < Q(0,1,0,0,0) = h2 < ± < 1 - e . Therefore (3.5) implies h = 0. Similarly

g = g' = W = 0. Therefore Q(x,y,z,t,u) = x2 +p(yz + tu) and D = p*/16. Here
p/2 = i(16D)1/4 = \dil4- < d, for d ^ 3. Now one can easily verify that (3.7) is
satisfied with strict inequality (proof is similar to that of Lemma 11).

3.2. Proof of Theorem A continued

From now on we can suppose that 1 < d ^ 3 and q>(y, z, t, u) -/• p(yz + tu), p > 0.
By Lemmas 3 and 10, there exist integers y2>

z2>f2>M2 w i t n g-cd. (y2, z2,12, u2) = 1
such that

l-s^a = q>{y2,z2,t2,u2)

By a suitable unimodular transformation we can suppose
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^(1,0,0,0) = a.

So we can write

q>(y, z, t, u) = a{{y +fz +f't +f"uf + \j/(z, t,«)}

where

(3.13) f-£<a<fd5/4

and \l/(z,t,u) is a real indefinite ternary quadratic form of type (1,2) and
determinant D/a*. In view of Lemma 12, it is enough to prove that there exist
(y, z, t, u) = (y0, z0, t0, u0) (mod 1) such that

(3.14) - v- K (y +fz +f't +f"uf + Mz, t, u) < ^~±

and that strict inequality holds if d is not an integer; where

Let

4d-l~a , , 4d-l v
Hi = -. and A = —: 1—.

4a 4a a

Using (3.13) one can easily verify that nl > 0 and X > 1. The proof of the following
lemma is similar to that of Lemma 12 and is omitted. (Here we use Lemma 8 instead
of Lemma 7.)

LEMMA 16. Let

+ - if X is an integer
2 I a

(3.16) 0 < ^
m\ 2 v
^~-I + ~ if X is not an integer.

Suppose that we can find (z, t, u) = (z0, t0, u0) (mod 1) such that

(3.17) - / i 2 <^(z,t, «)<//!

and strict inequality holds in (3.17) i/a1 is wot aw integer. Then there exists y = y0 (mod
1) such that (3.14) holds. Further strict inequality in (3.17) implies strict inequality in
(3.14).

LEMMA 17. If 2 < d ^ 3, t/ien (3.17) and hence (3.14) is true with strict inequality.
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PROOF. In this case v = 1, so that X = (3 + 4d)/4a. By Lemma 5, we can find
(z, t, u) = (z0, t0, M0) (mod 1) such that

27 '3 / 27d5 V ' 3

Then (3.17) will hold with strict inequality if we have

and

I H— if X is an integer
a

~~ I H— if X is not an integer.

Verification of (3.18) is straightforward. So we proceed to verify (3.19). Let

. 3+4rf . . .
n < X = — - z — ^ n + 1 , n= 1,2,3,...

Then (3.19) will be satisfied if we have

/ 27d5 \113 . n2 . 1

That is,

1600a4/ 4 a

g(a) is an increasing function of a and a ^ (3 +4d)/4(n +1), therefore

J3+4d

So we shall have (3.20) if

}3
 4 27

> 4 -25"

As the left-hand side of (3.21) is clearly a decreasing function of d and d < 3, one can
easily check that (3.21) is true for all n ^ 1. This proves (3.20) and hence (3.19).

LEMMA 18. If I < d ^ 2, t/ien again (3.17) and /jence (3.14) is true. Moreover (3.14)
/JOWS with strict inequality unless d = 2, a = 1 and \j/, y0, z0, t0 are such that equality is
necessary in (2.6).
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PROOF. In this case v = $, so that X = dja. By (3.13),

aa^3/4-e •"

for sufficiently small e. We distinguish two cases :

Case (i) 2 < A < 3.
In this case

2 J a 4a 4a

So we have to prove that there exist (z, t, u) = (z0, t0, u0) (mod 1) such that

,„ „ . l + 4 a .. . 4d—\ — a
(3.22) j — < i>(z, t, u) < j .

By Lemma 5, we can find (z, t, u) = (z0, t0, u0) (mod 1} such that

\H3
(3.23)

Therefore (3.22) follows from (3.23) if we have

/ 27d5 V/ 3 • (l+4a4d-l-aI <minl
4a ' 4a

This inequality can be easily checked.

Case (ii) 1 < 1 < 2.
In this case we have to prove that there exist (z, t, u) = (z0, t0, uQ) (mod 1) such that

/T*A\ l+a ^ a \ 4d —a—1(3.24) —-.— < wz, t, u) < ;

and strict inequality holds if d is not an integer. By Lemma 6, there exist
(z, t, u) = (z0, t0, M0) (mod 1) such that

1/3

Therefore (3.24) will hold if we have

•
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and

with strict inequality if d # 2.
Now

Ad-\-a \+a c ^d , , .
—r^ =S —.— for a ̂  x and d s% 2.

12a 4a 2

Equality holds if and only if d = 2, a = \d — 1. Therefore it is enough to prove that
(3.25) holds and equality is necessary only for d = 2. We shall have (3.25) if and only
if

(3.27) ^d^a(^d-l-^J = g(a) (say)

g(a) increases or decreases according asa < d-ior a> d-$ and since \d <
(3.27) will be true for d/2^a< frf5'4 if

(3.28) min[ g[^\g{ld^))>^d\

Now

if

f(d) increases for d ^ f and decreases for d ^ f, therefore for 1 < d ̂  2,

/(<*) ̂  min(/(l),/(2)) =/(2) = 33.4,

and strict inequality holds unless d = 2. The inequality fl(|d5/4) > ̂ ?d5 can be easily
verified.

Therefore (3.27) is satisfied with strict inequality unless d = 2, a = id = 1. Hence
(3.24) is satisfied. Equality holds in (3.24) only if d = 2, a = 1 and \f/, z0, t0, u0 are such
that the sign of equality is necessary in (2.6).

This completes the proof of the lemma.
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4. The case of equality

LEMMA 19. The sign of equality in (3.7) is necessary if and only ifQ ~ Q2. For Q2 it is
necessary if and only if

(*o, )>o> zo>l o> "o) = (h h h 0,0) (mod 1).

PROOF. Equality can be necessary in (3.7) only if it is necessary (3.14). This happens
only if d — 2, a = 1 and \J/, z0, t0, u0 are such that equality is necessary in (2.6) (see
Lemma 18). Thus we must have i// ~ pt//1 or p\j/2, p > 0. For i/^ we must have
(zo.fo."o) = (iO.O), while for \jt2 we have (zo,to,uo) = ( i , i , i ) (mod 1).

Case (i). i^(z, t, u) = - p(z2 + tu), (z0, t0, «0) = (\, 0,0) (mod 1). Then

3 _ D d \ -2

so that p = 2. Therefore

y, z, r, u) = (y +fz +f't +f"u)2 — 2z2 — 2tu.

By a suitable unimodular transformation we can suppose that

(4-1) |/N±,|/'N±,|/"|*Si.
If/" ^ 0, then

This contradicts (3.8) Therefore/" = 0. Similarly, consideration of <p(0,0,1,0) and
<JO(O, 1,-1,1) gives/ ' = / = 0. Hence q>(y,z,t,u) = y2-Iz2 — 2tu. For equality to
occur in (3.14), the inequality

(4.2) - i < { y + yof-2(z + l)2-2tu<d-i = l

should have no solution in integers y, z, t and u. Take z = t = u = 0 and choose the
integer y such that l y + J o l ^ i , then (4.2) is solvable unless y0 = i (modl ) .
Therefore,

Q(x, y, z, t, u) = (x + hy + gz + h't + g'uf +y2- 2z2 - 2tu;

(y0, z0, t0, u0) = (I, i, 0,0) (mod 1).

Considering Q(0,0,0,0,1), Q(0,0,0,1,0) and g(0,0,1, - 1 , 1 ) and using (3.4), (3.5) we
get g = W = g' = 0. Therefore Q(x, y, z, t, u) = (x + hy)2 + y2- 2z2 - 2tu. If equality is
to be necessary in (3.7), the inequality
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(4.3) 0 < F(x,y,z,t,u) 2 2

-2{z + $)2-2tu<d = 2

should have no solution in integers x, y, z, t, u. Now 0 < F{x, 0,0,0,0) < 2 is solvable
for integer x unless x0 + %h = \ (mod 1). Also 0 < F(x, —1,0,0,0) < 2 is solvable in
integer x unless x0 — \h = ^(modl). Thus (4.3) is solvable unless h = 0(mod 1).
Since | h | < | from (3.4), we must have h = 0 Then x0 = \ (mod 1). Hence

Q(x, y, z, t, u) = x2+y2- 2z2 - 2tu = Q2

and

(x0, y0, z0, t0, M0) = (i, i, i, 0,0) (mod 1).

Considering congruence module 8, one can see that the sign of equality is necessary
in this case.

Case (ii). «A2(z, t, u) = - p{2z2 + t2- u2), (z0, t0, u0) = (|, i,}) (mod 1)
Proceeding as above, one can see that equality is necessary in (3.7) if and only if

Q = x2+y2-2z2-t2 + u2

and

(*o> yo> zo> fo> "o) = (i. i» h i, i) (mod 1).

Since

x2 + y2-2z2-t2+u2 = {x-t-u)2 +f -2z2 + 2(x-t){t + u),

Q ~ x2 + y2 — 2z2 + 2tu ~ Q2. Therefore this case does not give us a new form.

The proof of Theorem A follows from Lemmas 10 to 19 and thus our theorem is
proved.
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