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Abstract. Given a compact (two-sided) flow, an isolated invariant set S and a
Morse-decomposition (Mu ..., Mn) of S, there is a generalized Morse equation,
proved by Conley and Zehnder, which relates the Alexander-Spanier cohomology
groups of the Conley indices of the sets Mk and S with each other. Recently,
Rybakowski developed the technique of isolating blocks and extended Conley's index
theory to a class of one-sided semiflows on non-necessarily compact spaces, including
e.g. semiflows generated by parabolic equations. Using these results, we discuss in this
paper Morse decompositions and prove the above-mentioned Morse equation not only
for arbitrary homology and cohomology groups, but also in this more general semiflow
setting.

0. Introduction
In his CBMS notes [5] C. Conley develops concepts and ideas which are designed
for the qualitative study of stable phenomena of flows. In order to outline briefly
in particular the index theory for flows we consider a continuous flow on a locally
compact and metric space X. A compact and invariant subset S <= X is called isolated,
if it admits a compact neighbourhood N such that S is the maximal invariant subset
which is contained in N. With such an isolated invariant set S a pair (Nu N2) of
compact spaces can be associated, where N2 <= Nt is roughly the 'exit set' of AT,
and where Scint (N{\N2) is the maximal invariant set contained in N{. For a
precise definition of such an index pair we refer to § 3 below. The homotopy type
of the pointed space (Nt/ N2, [N2]) then does not depend on the particular choice
of the index pair for S, and is called the index of S. It is denoted by h(S) := [(N,/ N2,
[N2])]. Therefore, to an isolated invariant set S we can assign the algebraic invariant
p(t, h(S)), which is the power series in t, whose coefficients are the ranks of the
Alexander-Spanier cohomology modules of any index pair (NUN2) for S. We
assume that the isolated invariant set admits a Morse decomposition, that is, there
is an ordered family (M, , . . . , Mn) of finitely many subsets of S, which are disjoint,
compact and invariant. Moreover, for every x e S \ { U M,, 1 <y < n} there is a pair
of indices i <j such that for the limit sets of x we conclude w(x) c M, and <o*(x) c Mj.
The algebraic invariants of S are related to the algebraic invariants of the elements
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Mj of its Morse decomposition. More precisely, the following identity is proved in
[6]:

j ( 1 )
7=1

Q(t) is a power series in / having only non-negative integer coefficients. The terms
in Q measure the number of cohomologically non-trivial connections between pairs
M, and M, of the decomposition.

The identity can be viewed as a generalization of the classical Morse inequalities
for the gradient flow on a manifold. In fact let X = S = Md be a d-dimensional
compact manifold, and let / be a C2 function on M and consider the gradient flow
x = -Vf(x) on M. Assume the critical points to be isolated, then the family
(xu... ,xn) of all critical points is a Morse decomposition of the manifold M if
we order them in such a way that /(*,) £/(*,) for isj. This is an immediate
consequence of the gfadient structure of the flow. Since the critical points {*,} are
compact and isolated invariant sets we conclude from (1) the equation:

I p(t,h({Xj}))=p{t,h(M)) + (l + t)Q(t). (2)
J = I

As (M, 0 ) is an index pair for the invariant set M, the first term on the right hand
side is the Poincare polynomial

the pk being the Betti numbers of the manifold M. If we assume now that, in
addition, the critical points are non-degenerate, then the manifold M is the union
of the stable and unstable invariant manifolds of the critical points and their indices
can easily be computed. Observe that in this case the only local topological invariant
of a critical point x}, which is a hyperbolic equilibrium point of the flow, is the
dimension of the unstable invariant manifold, which is equal to the Morse index d,-
of the critical point x}. It is easy to show (see [6], for instance), that the Conley
index of the set {xj} is given by h({xj}) = [(Sd>, p)] where p is a distinguished point
of the dj-dimensional sphere Sd'. Therefore, p(t, h({xj})) = td>. Summarizing we find
for the Morse decomposition of the manifold M indeed the clasical equation of
Morse theory:

(3)
j=\ k=0

Q{t) being a polynomial having non-negative integer coefficients only. (See [4]
about the work of Marston Morse).

Hence the index theory outlined above can be viewed as a generalization of the
classical index theory for flows other than gradient flows on spaces other than
manifolds. An index is associated not only with critical points but also with every
compact and isolated invariant set of the flow. It is the homotopy type of a pair of
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compact spaces. In addition, an analogue of the 'Homotopy Axiom' of the Leray-
Schauder degree theory is possible in this generalized Morse theory, see [5]. With
this addition the theory becomes a useful tool in problems of non-linear functional
analysis and we should mention that it has already allowed many applications in
differential equations. The index is used for instance to find special shocks [12], it
is used to prove existence and multiplicity results for systems of non-linear elliptic
boundary value problems [2]. In [3] and [6] the index theory allows one to find
periodic solutions of time-dependent Hamiltonian equations. Also, the existence of
heteroclinic orbits for semilinear parabolic equations is based on the index [11].

Recently, the first author extended in [9] and in [10] the outlined index theory
to continuous local semiflows on metric spaces, which are not assumed to be locally
compact. Of course, some compactness condition has still to be imposed and we
refer to § 1 below. This extension allows direct applications to partial differential
equations of parabolic type, and even to some hyperbolic equations, see [11].

It is the aim of this paper to prove the above Morse equation (1) for a Morse
decomposition of a compact invariant set in the general setting of a local semiflow
on a metric space (theorem 2). Moreover, the equation will be proved for every
homology and cohomology theory, not only for the Alexander-Spanier cohomology
theory (theorem 3). The crucial step is the construction of an index triple for a
repeller-attractor pair, which consists of isolating blocks rather than general index
pairs (theorem 2). This result might be of interest in its own right.

The organisation of the paper is as follows. In the first two sections the concept
of a Morse decomposition of a compact invariant set is extended to the general
setting described in § 1. In § 3 a special index triple is constructed for a repeller-
attractor pair. The construction relies on the existence theory of isolating blocks as
presented in [9]. This result is then used for the proof of the Morse equation in §§ 4, 5.

1. Set-up and definitions
We shall consider on a metric space X a continuous local semiflow. This is a
continuous map <t>: D-» X where D is an open subset of U+ xX with the property
that for every xeX there is an wx,0<wx<oo such that (t,x)eD if and only if
0< t< (ox. Moreover, abbreviating <f>(t, x)=: x-1, a semiflow is required to satisfy:

x-0 = x for every xeX,

= (x-t)-s,

whenever {t, x), (s, x-1) and (t + s,x)eD.

(1) Solutions. Let x e X, then a left solution through x is a continuous map o~. I -* X,
with / = (a, 0] for some a in —oo< a < 0 such that

(i) cr(0) = x, and
(ii) for all tel and s > 0 with s + t<0 it follows that s<<o{rU) and <x(f)-s =

<r(t + s).
If a = -oo then we call <J a full left solution. We can extend a left solution through
x onto / u [0, <ox) by setting a(t) = x-1 for 0< t < iox. The extended o- is then called
a solution through x, and if a = -oo and <ox = +oo, it is called a full solution.
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(2) Invariant sets, isolating neighbourhoods, limit sets. For a subset Y c X we set
A+{y) = {xe Y\x-[0, a>x)c Y} and A"(y) = {xe Y|there exists at least one full left
solution a through x satisfying <r(IR~) c y}. Y is then called positively invariant if
Y = A+( Y), negatively invariant if Y = A~( Y) and invariant if Y = A~( Y) = A+( Y).

The following concept is crucial for Conley's index theory. If N <= X is a closed
subset, such that the largest invariant set K contained in N is disjoint from the
boundary of N, KndN = 0, then N is called an isolating neighbourhood (of K).
K may of course be the empty set. If, on the other hand, K is a closed invariant
set for which there is a neighbourhood U of K such that K is the largest invariant
set in U, then K is called an isolated invariant set.

For a subset Y c X satisfying <ox .= oo for all x e Y, the w-limit set of Y is denned
to be the set

io(Y):=r\cl{Y-[t,co)}.

The w*-limit set is defined for a full left solution a through xe X as

a>*(<7):=ncl{a((-oo,-,])}.

We point out that left solutions are not necessarily unique for one-sided semiflows,
so w*(<r) depends on the whole left solution cr rather than just on the point x. This
contrasts with the situation for two-sided flows, where the set w*(x) is'well defined.

(3) Compactness condition: admissible sets. The existence statements later on require
a compactness condition, which restricts the class of subsets under consideration
or the class of flows. A closed subset N c X is called admissible if

(i) for every two sequences {*„} in N and {tn} in R+ satisfying xn-[0, fn]c N
and tn -»oo, it follows that the sequence {*„• <„} is pre-compact;

(ii) for x e N with cox <oo we have x- [0, o)x) <£ N.

(4) Example. In order to illustrate the concepts we consider the equation

— U - A M = / ( U ) on ft
of

w = 0 on dil,

where ft is a bounded domain in W having a smooth boundary aft. In order to
formulate the problem as an abstract evolution equation in a Banach space we set

W:={«e W2
p(il)\u = 0 on aft}

for some p> n. The operator A:— —A with domain D(A) '•= W generates an analytic
semigroup in Lp (ft). Set X° = Lp (ft) and denote its norm by | |. Define for 0 < a < 1
the scale of Banach spaces Xa := D(Aa) with norms \u\a := \Aau\. Then j8 > a implies
that Xp <= X" continuously and densely. Moreover, as the resolvent of the operator
A is compact, this embedding is compact. In addition, X" <= C(ft) continuously,
provided a >5. For details and references we refer to [1] and [7, chap. 1-3].
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Now set X = Xa* for some fixed a*>^ and assume the function / : R -» R to be
locally Lipschitz continuous. It can then be shown by means of the integral equation

) = e-
A'u+\ e-A('-s>f(u(s))ds

and by means of the standard estimates for linear analytic semigroups, that the
equation defines a continuous local semiflow on X. We claim that the closed set

for some C > 0 is an admissible subset for this local semiflow. Indeed, assume xn € N
and /„ e R+ with /„ -* oo and with xn • [0, tn] <= N. Since the pieces of solutions under
consideration are contained in N we may assume that / is bounded. Observe that
there is a constant C, > 0 such that |M| < C, for every « e TV. It then follows by means
of the integral equation that for every p > 0 there is a Cp > 0 such that |w(f)U ^ Cp

for all t > 1 and all initial conditions u e N. Now choose j8 > a*, then in particular

| x n - ' n U - Q for every n,

hence there is a subsequence converging in X = Xa* as Xp is compactly embedded
in X" . This proves part (i) of the definition of admissibility. A similar argument
proves part (ii).

2. Morse decompositions
We shall next extend some concepts and results given in [5] for flows to our setting
of a semiflow on a metric space X.

Definition 1. Let S c X b e a compact and invariant subset with tox = oo for every
x e S. A subset A c S is called an attractor (in S) if there is a neighbourhood U of
A such that (o(UnS) = A. If A is an attractor, then the set

A*:={xeS\a>(x)nA = 0}

is called the repeller dual to A (relative to S), and the pair {A*, A) is called a
repeller-attractor pair in S.

PROPOSITION 1. Let (A*, A) be a repeller-attractor pair in S. Then
(i) A and A* are disjoint, compact and invariant;
(ii) if a: U-* S is a full solution throughyeS, then the following holds true:

(a) ify e A* or if<o(y) nA**0, then o-(R) c A*;
(b) i / w * ( o - ) n A ^ 0 r/ien<r(R)cA;
(c) ify £ A* u A, f/ien <o*(cr) c A* and <o(y) <= A.

fVoo/ (i) Clearly AnA* = 0, and it follows from definition 1 and from the compact-
ness of S that A is compact and invariant. Hence A* too is invariant. Assume
xne A* and x n -»xe S, then a>(x)n A = 0 . In fact otherwise x-reU for some T > 0 ,
with £/ as in definition 1. Hence xn-reU for large n and so w(xn) =
o(xn-T)c(o(UnS) = A, contradicting the assumption a>(xn)n A = 0 . This proves
that A* is closed, hence compact. In order to prove (ii) we make use of the following
simple fact (see [10, Lemma 3.1]).
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LEMMA 1. Let (A*, A) be an attractor-repeller pair in S. Let B be closed and BnA = 0.
Then for every e > 0 there is a r = r(e) such that for xeS and ( > n v e conclude from
x- te B that d(x, A*) < e, where d denotes distance in the metric space X.

To prove (a) let ye A* or o(y) n A* ^ 0 and pick a closed neighbourhood B of
A* with Br\A = 0. Then there is a sequence fn->oo such that o-(tn)e B. Let teU
and let e > 0 , then f n - t > r ( e ) for n large with T(E) as in the lemma. Since
o-(')' (tn ~t) = o-(tn) e B we conclude d(<r(t), A*) < e. This holds true for every e > 0
hence a(t)eA*. To prove (b) assume co*{a-)n A # 0, so that there is a sequence
fn-»oo with cr(-tn)e UnS, U being as in definition 1. Pick teU, then for n large
fn + f>0, and so ar{t) = cr(-tn)-(tn + t). Therefore cr(t)ew(UnS), i.e. <r(t)eA.
Finally, to prove (c) assume that y£ A*u A, and let xea>*(cr), so that cr(-tn)->x
for some sequence tn -* oo. It then follows from lemma 1 applied to B = {y}, that for
£ > 0 , d(o-(-tn), A*)< E if n is sufficiently large, hence x e A*. If on the other hand
x e (o(y), then cr(fn) -» x for a sequence fn -> oo. We claim that for some t^ we have
o-(rno)e [/ with [/ as in definition 1. In fact otherwise o-(tn)eS\U for all n, and
we conclude by lemma 1, choosing B = c\(S\U), that ye A* contradicting the
assumption on y. From a-{t^)e UnS and w(UnS) = A we conclude xe A. This
completes the proof of proposition 1. •

Definition 2. Let S be a compact and invariant subset of X with wx = oo for every
xeS. An ordered collection ( M , , . . . , M n ) of subsets Mj<=S is called a Morse
decomposition of S, if there exists an increasing sequence

0 = Aoa A,|= A 2 c • • • c: An = S

of attractors (in S), such that

For example, if A is an attractor in S, then (A, A*) is a Morse decomposition of S.
In fact, set Ao = 0, A, = A and A2 = S, then M, = A and M2 = A*.

PROPOSITION 2. //" ( M , , . . . , Mn) is a Morse decomposition ofS, then Mj is compact
and invariant, 1 < j < n. Moreover, if S has an isolating neighbourhood which is
admissible, then the same holds true for the subsets Mj, 1 s_/< n.

Proof. Since Mj = Aj n Ajt, we conclude from proposition 1 that M, is compact and
invariant. To prove the second part, let N be an isolating neighbourhood of S.
Choose some j , 1 < j £ n. Since Aj nAf = 0 there is an e > 0 such that d(x, y)^e
for x e Aj and y e AJ, 1 <_/ s n. Choose some j , 1 ^j £ M, and choose 0 < S s e/2 so
that N := cl (Ua(Mj)) c int (TV). Clearly M, c int (JV). Let K be the largest invariant
set contained in JV, then Mj<=K<^S. Suppose X \ M 7 5 ^ 0 and choose yeK\Mj
and let tr: U -* JV be a full solution through y. Since yiMjV/t have y £ Aj; or y & A/_,.
If y & Aj then by proposition 1 co*(cr)<= Af and so Af n JV ^ 0 . Therefore there are
x e A* and x0 e M! = Aj n A*_, with d(x, x0) < 5 contradicting d(x, x0) s e. If on the
other hand yi A*_1; then by proposition 1 we have (o(y)e Aj_{ and so A,., n N ^0.
It follows that there are x e A^_, and x0 e M, = A, n A^_| with d(x, x0) < 5, again a
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contradiction. We conclude that N is an isolating neighbourhood of Mh which, in
addition, is admissible if N is admissible. •

PROPOSITION 3. Let (Mu . . . , Mn) be a Morse decomposition of S and let 0 =
Aoc A, <= • • • c An = S be an associated sequence of attractors. Then:

(i) The sets Mj are pairwise disjoint.
(ii) Let yeS and let a:R-> S be any full solution through y, then either o-(IR) c Mj

for some j or there are indices i <j such that &>*(cr) c M,- and <o(y) c M,.
(iii) The attractors are uniquely determined by (M{,..., Mn), namely Ak =

{y 6 S\ there is a full solution er: IR -» S through y with w*(cr) c M, u • • • u Mfc} /or
l<fc<n.
Proo/ (i) Let i <j , then

Mj n Mj = A, n Af_, n A,- n A?.,

= A, n A^_, c A,-_, n A/_, = 0 ,

hence the sets M, are pairwise disjoint.
(ii) Let yeS and let cr:R^S be any full solution through y. Since An = S and

Aj = S there is a smallest integer, i, such that <o{y) <= Af, and there is a largest integer,
7, such that w*(o-)cA*. Clearly i>0 andy<M. Now a>(y)<£ A,_, hence ygA, ,
and also ^6Af_,. In fact, if _yfSAf_, then >'^A,_,uAf_1 and by proposition
l(ii(c)) we conclude (o(y)a A,_,, a contradiction. Therefore o-(IR)c:Af_, and so
w(_y) c A, n Af_! since by proposition l(i) the set Af_t is closed. On the other hand
w V ) ^ * n and we claim that o-(R)c AJ+l. In fact, otherwise o-(t)£Aj+x for some
t € R. If now a(t) & Af+i then by proposition l(ii(c)) we conclude that <o*{a) c Af+l

a contradiction, hence o-(t)eAf+l and by proposition l(ii(a)) we have
ff(K)cAj^| hence w(o-)c Af+l, again a contradiction. Hence indeed cr(R)c AJ+1.
Now _ /> i - l , in fact otherwise j + l < i - l and thus AJ+, c A,., and therefore
<r(R) c A,_, n Af_, = 0 . If j = i - 1, then

o-(R)cA*_,nA, = M1,
I f ; > j - l , t h e n

w (y)c Af_! n A, = M, and (o*(o-)a Af nAj+l = Mj+l.

(iii) Let ye Ak. Since Ak is invariant, there is a full solution o-:R-»Ak through
y and so w*(o-)c Ak. Let /'< fe be the smallest integer such that «*(o-)c A,. Then
i>0 and W*(CT-)^ A{_X and hence &>*(o-)ci Af_i. Therefore

w*(or)c^n Af_, = Mf c (M, u • • • u Mk).

Conversely, suppose that there is a solution o-:U^ S through y such that &>*(cr)c:
M,u---uMf c . Then w*(o-)cM, for some jsfc, hence <w*(o-)c A^c At and so
o-(IR) c Afc by proposition l(ii(b)). This completes the proof of proposition 3.

•
The above proposition admits the following converse.

PROPOSITION 4. Let S be as in proposition 3 and let (M, , . . . , Mn) be an ordered
collection of pairwise disjoint compact and invariant subsets of S. Suppose that for
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every yeS and every full solution o-:U-* S through y either cr(IR) <= Mj for some j or
else there are indices i <j such that a>*(o-) c M, and (o(cr) c M,. Then (M,,..., Mn)
is a Morse decomposition ofS.

Proof. Set A o : = 0 and for l < / c s n Ak := {y e S|there is a full solution o-.U^S
through y satisfying w*(o-) c (M, u • • • u Mk)}. We shall show that Ao<= A, c A 2 c
• • • c An = S is a sequence of attractors in S such that A, n A*-\ = M,, thus proving
the statement.

Step 1. The sets Ak, 1 < k < n are closed. Since by definition An = S, the set An is
closed. We now proceed inductively and assume Ak+X to be closed for some
1 < fes n - 1. Let ym G Ak with }>m-»j€S. Then ye Ak+l since Afc <= Ak+} and Afc+,
is closed. There are full solutions o-m:U-*S with crm(0) = ym and &)*(o-m)cM,u
• • • u Mk. Using the compactness of S and the properties of a full solution one finds
a subsequence, again denoted by {crm}, which converges pointwise to a solution
o-:IR-»S through >> and it remains to prove that «*(er)c(M, u - • - u M k ) . Indeed,
since crm(IR)c A k c Ak+1 and Afc+1 is closed, we conclude o-(U)c: Ak+I and so
w*(cr)c Ak+l. Observe that MJnAj.+ r = 0 fo r7>fc+ l since Mj is invariant. On
the other hand w*(cr)c M, for somey by our assumptions and therefore

<w*O)c M , u • • •uMf cuMf c + 1 .

Hence either o>*(cr) o M] u • • • u Mk in which case we are done, or else o>*(cr) a
Mk+l. In the latter case, let V=> Mk+, be an open neighbourhood of Mk+I such that
cl (V) n Mj, = 0 for 7 ̂  fc + 1. There is a sequence tv -» oo and a z e M -̂,., such that
o-(-t,,)e V and d(<r(-rr), z )< v~l for all »>> 1. Therefore, for every v there is an
mv>v such that amv( —Oe V a n d

Since w V J u ( f l W c ( M | U ' • • u Mk) for every m, there are T,, <(„<«„ such
that crm(-sv) and o-m ( - r J e d V a n d o-m^(-f)ecl (V) for T,,< / < sp. The invariance
of Mfc+1 now implies that tv — rv-*oo. Let x,,:= o-m„(-«„), then x ( e S and since 5 is
compact we may assume *„-»x65V. It then follows that x - / e c l ( V ) for all / > 0
and so w(x)ecl (V) which implies by our hypothesis that w(x)c Mk+I. Since Ak+l

is closed we have x e Afc+1 and so there is a full solution (?:IR-»S through x with
co*{a) <= M, u • • • u Mk+1. From the ordering of the sets M} it follows that a(R) <=•
Mk+l hence x e Mk+1. This however contradicts xeaV, since Mk+I n 3 V = 0 . Hence
step 1 is proved.

Step 2. Ak is an attractor i nS , l s / c < n . This, in fact, is true for k= n. We proceed
by induction and assume Ak+l to be an attractor in S for some /c< n — 1. Choose a
neighbourhood £4+, =>Afc+1 of Afc+1 such that w ( [ 4 + , n 5 ) = /4 t + 1 . Since Ak is
closed, Mfc+, u Afc cz Ak+l and Mk+1 nA|, = 0 , we can choose a neighbourhood I/*
of Ak and a neighbourhood V of Mfc+1 both contained in [/k+, such that cl (Uk)n
cl(V) = 0 . Since Ak is invariant and contained in Uk we have Ak<= co(UknS).
Suppose a)(Ukn S)\Ak ^ 0 , and choose y e a>( Uk n S ) \ A t , then there are sequen-
ces xne UknS and /„ -» oo such that xn • („ -»_y. We may assume that xn • (tn +1) -> cr( ()
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for every t e U with a solution <r: R -» S through y. With

w( UknS)c o)( Uk+l nS) = Ak+X

we conclude a ( R ) c Ak+U hence, by step 1, w*(o-)cAfc+, and so w*(o-)c
( M , u • • u Mfc+1). But_yg A^ and hence o>*(o-)c Mk + I . There is a sequence p,,->°o
and a z e Mfc+, such that cr{-pv)e V and d{o-{-pv), z )< p~' for every v. Therefore
for every v there \% nv>v such that fnv>pv and xn/(fn >,-pv)e V and </(*„„•(*„„-
pr) , z) < 2v"'. We will show that by choosing Uk small enough, we can arrange that
o)( Uk n S) = Ak. In fact, if this is not true, then there is a sequence £„ -» 0 such that

d (l/8,,(Ak)) nc l (V) = 0 , and [/s>(Ak)c Uk+l and o>( £/8,,(Afc)n S ) \ A k * 0 , where
l/^(Ak) is the 5,,-neighbourhood of Ak. Using what we have proved thus far, it is
easily seen that there are sequences xv& l/6v(Afc), sv>Q such that xv-sve V and
d(xv-sv, Mk+i)<2v~x. There are sequences TV<SV<TV^<X> such that xv-r^edV,
XV-[TV,TV)<=C\(V) and either f,, = oo or xv-fvedV. Set XV = XV-TV, then we may
assume xv-> xe S. The invariance of Ak and xv -»Ak easily imply TV -* oo, hence
xe (o(Uk+lnS) = Ak+l. On the other hand, xv- sv-* Mk+l and the invariance of Mk+]

imply fv^oo, hence x-[0,oo)ccl (V). Therefore w(x)<=Mk+1 and xeAk+l. Now
this obviously implies x e Mk+U a contradiction since x e d V. Hence, indeed, t/fc can
be chosen such that a){Ukn S) = Ak, i.e. Afc is an attractor.

Step 3. Mj = Aj n A*_i. Indeed, if y e Mj, then there is a solution o-\ U-» M, through
_V and therefore j ' e Aj. Suppose y£Af_u then w(y) <= A,_, and therefore wC^) <= Mfc

for some fc<j — 1. Since w(y)<=MJ we find w(_y)c M k n M, = 0 , a contradiction.
Hence Af, c Aj n A/_,. If _y G A, n A^_,, then there is a solution <r: IR -» S through _y
such that a)*(cr)c M, u • • • u Mj. From j e A j t , we conclude (o(y)n
(M, u • • • u M;_,) = 0 and hence <o{y) c Mk for some k >_/. But then by the ordering
fc =7 and o-(IR) c My, hence in particular y e M,, completing the proof of the proposi-
tion. •

PROPOSITION 5. Let ( M , , . . . , Mn) be a Morse decomposition of a compact isolated
invariant set S, and let 0 = A o c A, c • • - c An = S be the associated sequence of
attractors. Let 1 <_/ < «, f/»e/i A7 is a compact invariant and isolated set and {Mj, A7_,)
is a repeller-attractor pair in Aj. If S admits an admissible isolating neighbourhood,
then so does Aj.

Proof. Aj is clearly invariant and compact, and since Mj = Ajr\Af^] the pair
(My, AJ_I) is a repeller-attractor pair in Aj. To show that Aj is isolated let N be an
isolating neighbourhood of S. Since Aj nAf = 0 we can choose a closed neighbour-
hood N of Aj such that Nc N and Nn Af = 0 . Let K be the largest invariant set
contained in N, then A j C ^ c S , We claim that Aj = K. In fact suppose K\Aj ^ 0
and pick yeK\Aj and let o~.U-» K be a full solution through y. Since 7<£ Aj u Af
we conclude from proposition 1 that w*(a) <= AJ" and hence Af n N 7*0 in contra-
diction to the choice of N. Since N <= N, N is admissible if JV is admissible. •

3. Isolating blocks and index triples
The aim of this section is the construction of a very special index triple for an
attractor-repeller pair. It will be built by means of isolating blocks rather than
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general index pairs as it is done for our setting in [10]. This special construction
will allow us later on to formulate the Morse theory for arbitrary (co)homology
modules and not only for the Alexander-Spanier cohomology theory. We first recall
some of the relevant concepts from [9].

Let B c X be a closed set and xedB a boundary point. Then x is called a strict
egress (resp. strict ingress, resp. bounce-off) point of B, if for every solution
o-:[-8, ,S2]^X through x = a(0), with 8,2=0 and 82>0 there are 0 < e , < 8 , and
0 < e2 =£ S2 such that for 0 < t < e2:

<r{t)£B (resp. cr{t) eint (B), resp. o-(t)£ B),

and for - e , < t <0:

o-(r) e int (B) (resp. <T(0£ B, resp. cr(/)£ B).

We use Be (resp. B\ resp. B*) to denote the set of all strict egress (resp. strict
ingress, resp. bounce-off) points of the closed set B. We finally set B+ = B' u Bb

and B=Beu Bb.

Definition 3. A closed set £<= X is called an isolating block if
(i) dB = Be VJ B'KJ Bb

(ii) B~ is closed.

Remark. We point out that in the definition of an isolating block,in [9, definition
2.1] only condition (i) is required. However, the isolating block constructed in [9,
theorem 2.1 ] meets conditions (i) and (ii), and actually only such blocks occur in [9].

If 5 <= B is the largest invariant set in the isolating block B, then clearly S is an
isolated invariant set and B is an isolating neighbourhood of 5. Therefore B is
called an isolating block for S. If B is an isolating block for S, then the pair (B, B')
of closed spaces is an example of a so-called index pair for S. This concept, which
is stable under perturbation of the semiflow, is defined as follows.

Definition 4. If S c X is an isolated invariant set and if TV, and TV2 with TV2
 c TV,

are two closed sets in X, then the pair (TV,, TV2) of closed spaces is called an index
pair for S (in N{) if the following properties are satisfied:

(1) TV, is an isolating neighbourhood of S;
(2) Sc in t (N, \7V 2 ) ;
(3) N2 is positively invariant relative to Nu i.e. if xe N, and x-[0, f ] c N2 for

some t > 0, then x • [0, t] c JV,;
(4) if x e N , and X-T£NX for some 0<T<OX, then there is a K T such that

x-[0, t]ci TV, and x- te N2.

We point out that there is always an admissible index pair for S in fact even an
isolating block for S, provided there exists an admissible isolating neighbourhood
for 5 (see [9, theorem 2.1]). We call the index pair (TV,, N2) admissible, if N, is an
admissible set.

Definition 5. Let S be an isolated invariant set and let (A*, A) be a repeller-attractor
pair in 5. Let TV,, TV2 and TV3 be three closed sets satisfying TV, => TV2=> TV3. Then
(TV,, TV2, TV3) is called an index triple for (A*, A) relative to S, if the following
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properties hold:
(1) {Nu N3) is an index pair for S;
(2) {N2, N3) is an index pair for A;
(3) If U is a relatively open set in N, satisfying A <= U <= 7V2 then (N{\U, N2\ U)

is an index pair for A*.

We are ready to formulate the result of this section.

THEOREM 1. Let S be an isolated compact and invariant subset of X and let {A*, A)
be a repeller- attractor pair in S. Assume there exists an isolating neighbourhood N of
S which is admissible. Then there are two sets B{ and B2 in N such that:

(i) Bt is an isolating block for A*, B2 is an isolating block for A and B := Bx u B2

is an isolating block for S.
(ii) {B, B2\j B~, B~) is an index triple for {A*, A) relative toS.

(iii) B,nB2cB[nB2-

Schematically:

1 1

FIGURE 1

Proof. We may assume A ̂  0 and A* ̂  0 , otherwise the statement is an immediate
consequence of [9, theorem 2.1]. Since An A* = 0 we may choose a closed isolating
neighbourhood N ,c N of A* satisfying NinA = 0. We set U = 'mt(Ni) so that
A*c 1/cJV,.

We shall need the function g = g~ti'- U^>U+ introduced in [9]. It is defined as
follows. Let

G(x) = d(x, A*) • {d(x, A*) + d(x, X\Nl)}~1

and define t+: U -> R+ u {oo} by

f+(x) = sup{f|O<f<wxandx-[O, t]<= N,}.

Set for xe U:
g(x) = inf {(1 + t)~lG(x- ss t<
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By [9, lemma 2.1] we can find open sets V and W satisfying A* c Vc cl (V) c Wa
cl (W) c U, such that g|cl (W) is continuous. For e > 0 we define

Ge = cl{>>eV|g(y)<e}.

Clearly A*c int (GJ. We claim.

LEMMA 2. TTiere is an isolating neighbourhood N<= N ofS such that N n 3Ge <= Vfor
some e>0.

Proof of lemma 2. We first claim that there is an e > 0, such that

(S\A)ndGec V.

Indeed, otherwise there are sequences en -» 0 and xn -> x with xn e (S\A) n 3G£n n
d V. It then follows from the continuity of g|cl (W) that xe(S\A)ndV and g(x) = 0.
Therefore by [9, lemma 2.1] w(x) c A* and hence, by proposition l , x e A*, contra-
dicting A* n 8V = 0. Now let e > 0 be as in the above claim and assume the lemma
not to be true. Then there is a sequence xn e dGE n d V such that xn -*xe S and so
xedGe n d V n S . Since A n a V = 0 w e conclude xt A and hence xe S\A, which
contradicts the claim. •

In view of lemma 2 we conclude from [9, theorem 2.1]:

LEMMA 3. There exists an isolating block Ba N for S satisfying (BndGe)c Vfor
some e > 0.

We now set

Bx:=Br\GE and B 2 : = c l ( B \ G J

and verify that for these two sets all the requirements of theorem 1 are satisfied.

LEMMA 4. B, is an isolating block for A*, and B\ = dBt n (B~ u dGe).
Proof. To prove that Bx is an isolating neighbourhood of A* assume Kx to be the
largest invariant set in B,. Since A*c int (B)nint (Ge)c Bx we have A*c K{. On
the other hand, Ge is an isolating neighbourhood of A* hence X, c A* and so
Kt = A*. In order to verify that Bx is an isolating block, let x e dBt and let
o-:[-5,, 52]-»X be a solution through x, where —5, < 0 < S2.

(a) Assume xe int (Ge). If 5, and S2 are small, and - 5 , < /< S2, then cr(f)e int (B)
implies o-(0eint(B,) and a{t)eX\B implies a(t)eX\Bl. Therefore xeB1

(resp. xe B€, resp. xe Bb) implies xe B\ (resp. xe Bf, resp. xe B?).
(b) Assume x e dGe. If 5, and 82 are sufficiently small, then <r( t) e Vfor - 5 , < / < 52

by lemma 3, hence cr(f) is in the domain of definition of g. It follows from [9,
lemma 2.1], that g(a(t))<e if t<0, and g(a(t)) = e if f = 0, and g(o-(f))>e if
f>0. Consequently o-([-5,,0))cint (GJ and o-((0,52])<= X \ G e . Hence xe
int (B) u Be (resp. x e B' u B6) implies x e B\ (resp. x e Bf). We conclude that B,
is an isolating block for A*, and that

Br = 5B ,n (B 'u3GJ .

The proof of the lemma is finished. •

LEMMA 5. B2 is an isolating block for A and B^ = B~ ndB2.
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Proof. To prove that B2 is an isolating neighbourhood of A, let K2 be the largest
invariant set in B2. From Ac int (B)n(X\Gc)a B2 we find A<= K2. Since (A, A*)
is a Morse decomposition of S we have K2 c A, hence K2 = A. To verify that B2 is
an isolating block, choose XG3B2 and a solution o-:[-5,, S2]-»X through x, with
-5 ,<0<5 2 .

(a) Assume xe(X\Ge). Then xGdB. If S,,S2 are small then o-(t)e'mt(B)
implies o-(t)e'mt(B2) and a{t)eX\B implies a-(t)eX\B2. Therefore xeB'
(resp. XG Be, resp. xe Bb) implies that xe B2 (resp. XG B2, resp. xe B2).

(b) Assume x G Ge. Then x e dGc and as in the proof of the previous lemma we
conclude o-([-S,, 0)) c int (Ge) and o-((0, 5,]) <= ( X \ G J . Therefore xe int (B) u Bf

(resp. xef l 'uB*) implies that x e B'2 (resp. x e B2). It follows that B2 is an isolating
block with B2=B~n 8B2. D

LEMMA 6. B,nB2c: BJ nB2.

Proof. Clearly B{nB2cBndGe, we show that B, n B2^dB,ndB2. In fact assume
XG(B,n B2) and xeint B,. Then there is a sequence xnG B\Ge with xn->x, hence
for n large xnGintB, which is contained in int(Ge) a contradiction, hence B^n
B2 c 3B,. If on the other hand x e int B2, then x e dGe and there is a sequence xn -> x
with xnGint (Gc), therefore if n is large xnGint B2nint Ge and so xn ^ cl (B\G e ) =
B2 a contradiction, hence B{n B2cz dB2. The statement now follows from the parts
(b) in the proofs of lemmas 4 and 5. •

LEMMA 7. (B, B2u B~, B~) is an index triple for (A*, A) relative to S.

Proof. Clearly (B, B~) is an index pair for S. We prove that (B2u B~, B~) is an
index pair for A. Clearly B~ is positively invariant relative to B2uB", also Ac
int((B2uB")\B~). Now, let X G B 2 U B " andx-f£B2uB~ for some f>0and set

T = sup {s\x- [0, s] c B2 u B~}.

Then x-r=: y Gd(B2u B~). We have to show that yeB~. Assume y&B~. Then
obviously y e 8B2 and since B2 is an isolating block we conclude y G B2 = B~ n aB2,
a contradiction. We have verified that (B2u B~, B~) is an index pair for A

Finally, let U be any open set with A <= (U n B) c B2 u B_. It remains to prove
that {B\U, (B 2 ,uB") \ t / ) is an index pair for A*. We claim that B\U is an
isolating neighbourhood of A*. Indeed, by proposition 1, the w-limit set of every
trajectory not in A* is in A, and since A* a (int Ge)n int B and

int Ge n int B n 1/ <= int G t nB 2 = 0

the claim follows. We claim next that (B2u B~)\U is positively invariant relative
to B\U. In fact, let XG (B 2 uB") \ t / and x[0, l ] c f l \ ( / . Suppose xt£B2vB~
and define T as above. We conclude that T < f and x- r e B~ contradicting the fact
that x-[0, 0 c ^- Hence the claim is proved. Clearly:

A* c int (B\(B2vB-)) = int { (B \ { / ) \ ( ( B 2 u B ' ) \ I/)}.

In order to verify the last condition of an index pair, let x G B \ U and x- T<£ B \ U
for some r>0. Set

[0,r]c B \ t / } ,
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and put y = xs. Then y e d ( B \ U) and we have to show that y e (B 2 u f l " ) \ U. We
distinguish three cases.
(1) y e int B n d U. Then there is a sequence xn -» _y with xneU and xn € int B. Hence
x , e ( [ / n f l ) c B 2 u r and so ye{B2\j B ~)\ U.
(2) y € dB\cl (U). Then j> e B~, for otherwise y e B' and therefore there is a t > 0
such that y[0, t]c B\U, contradicting the definition of y. Therefore ye B~\U.
(3) yedBndU. Then either yeB~ and hence yeB~\U or yeB'. In the latter
case y • [0, f*]c B for some t* > 0. Hence by the definition of y there is a sequence
sn -* 0 such that

y s , E ( B n U)<= B2KJ B~

which implies y € B2 and since >> e 9 U we again find )> e (B2 u £ ") \ U. This concludes
the proof of the lemma. •

The proof of theorem 1 is complete.

4. The Morse equation for the Alexander-Spanier cohomology
On a metric space X we consider a continuous local semi-flow. Following [9] we
single out the following family 91 of isolated invariant sets:

&•= {Sc X\S is a compact, isolated invariant set, for which
there exists an admissible isolating neighbourhood}

For S e 9" an index can be defined, which is the homotopy type of a pointed
topological space. This is done as follows. If 5 6 91 then there exists an admissible
index pair (JV,, JV2) for 5 (see [9, theorem 2.1]). Moreover, if (TV,, JV2) is any other
admissible index pair for S, then, by [9, theorem 4.1], the pairs

(AT,/A/2,[N2])~(NI/N2,[N2]) (4-1)

are homotopically equivalent. We recall that if (A, B) is a pair of closed sets in X
with A=> B, then A/ B is the quotient space of A obtained by collapsing all points
of B to one point. More precisely A/B is the quotient space A/~ where the
equivalence relation identifies all points in B: if x,,x2eA then x ,~x2 if either
x, =x 2 e A\B, or x, and x2 are in B. As a set A/B is the disjoint union of A\B
and a distinguished point [B].

Now, by (4.1) we can associate to Setf the homotopy type, denoted by h(S),
of a pair (NJN2, [AT2]), where (Nu N2) is any admissible index pair for S:

N2,[N2])]. (4.2)

The algebraic invariants of S to be considered in this section are the Alexander-
Spanier cohomology modules. For a closed pair (A, B) with A => B in X we denote
by Hq(A, B) = Hq(A, B; G) the cohomology modules, where G is an i?-module,
R being an integral domain. (See [13, chap. 8].) Assuming the ranks of the modules
to be finite we set

rq(A, B) = mnkHq(A,B). (4.3)
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The algebraic invariants of 5 e Zf can then be represented by the following formal
power series having non-negative integer coefficients

p(t,h(S))= I rqt", (4.4)

where rq = rank Hq(NJN2, [JV2]), (Nu N2) being any admissible index pair for S.
We point out that by (4.1) the right hand side of (4.4) does not depend on the
particular index pair chosen.

As an illustration we consider the flow of the linear equation x= Ax in a Banach
space E, where A e 3?(E) is continuous. We shall assume the spectrum of A to be
bounded away from the imaginary axis. Then E = E+® E_ with two closed subspaces
E+ and £L which are invariant under A and which have the property that the real
part of the spectrum of A\E_ (resp. A\E+) is positive (resp. negative). It is easily
seen that Oe £ is an isolated invariant set for the flow <f>(t, x) = e'Ax. If dim E <oo,
then every closed and bounded neighbourhood of 0 is an admissible isolating
neighbourhood. It is then easy to see that with d := dim £_ < oo, the homotopy type
of 0 is given by

where Sd is the d-dimensional sphere and p e Sd a distinguished point. Therefore
p(t,h({O})) = td.

Now let SeS^ and let (M,,..., Mn) be a Morse decomposition of S with
associated sequence of attractors 0 = Ao<^ At c • • • c An = S. We have seen in propo-
sition 2 and proposition 5, that AjtSf and also MjtSf. Hence h(S), h(Mj) and
h(Aj) are defined. The Morse equation now relates the algebraic invariants of S to
the algebraic invariants of the elements M, of the Morse decomposition. The result
is the following:

THEOREM 2. Let Se^f and let ( M , , . . . , Mn) be a Morse decomposition of S with
associated sequence 0 = Ao^ A{ <= • • • c= An = S of attractors. Assume the modules
Hq(h{S)), H"(h(Aj)) and Hq(h(Mj)) to be of finite rank for q>0 and l^j^n. Then

(i)

I p{t,h(Mj))=p(t,HS)) + (l + t)Q(t),
J = I

where Q{t) is a formal power series in t having only non-negative integer coefficients.

<?(0=i;=, <?;(') where:

(1 + T)Qj(t)=p(t, h(Mj))+p(t, /i(A/._1))-p(», h(Aj)).

(ii) IfQj(t) # 0, then there is a solution a:U-* S such that w*(o-) c Mj and w(o-) c
M, for some i <j.

In view of the last statement, the terms Q measure the number of cohomologically
non-trivial connections between pairs M, and M,, i^j.

Proof. We make use of some cohomology theory. If A => B => C are closed subsets
of a topological space X we have an exact sequence of R-modules and
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homomorphisms

^ > Hq(A, B) - X H"(A, C) — »̂ Hq(B, C) - X Hq+\A, B) > • • • (4.5)

where aq and fiq are induced by the corresponding inclusion maps of pairs. We
also set Hq = 0 for q <0. If the ranks of the modules are finite we set rq(A, B) =
rank Hq(A, B) and dq(A, B, C) = rank (im yq), and introduce the formal power
series:

p(t,A,B)= I rq{A,B)tq

«-° (4.6)
Q(t,A,B,C)= I dq(A,B,C)t".

LEMMA 8. Let A^> B=> C be closed subsets. Assume the cohomology modules to be of
finite rank, then:

p(t,A,B)+p(t,B,C)=p(t,A,C) + (l + t)Q(t,A,B,C).

Proof of lemma 8. We first make a simple observation. Consider any sequence of
R-modules and homomorphisms:

/, h h h
• • • > E2 * £3 * £4 * • • •

and assume the sequence to be exact and the modules Ek, 2 < k < 4 of finite rank, then

rank (im/,) + rank (im/4) = rank (E2) - r ank (£3) + rank (£4). (4.7)

In fact if E is of finite rank and F c E is a submodule then both F and E/F, the
quotient module, are of finite rank, and rank (£ ) = rank (F) + rank (E/F). From
this remark (4.7) follows easily. In order to prove the lemma we conclude by this
observation from the exactness of the sequence (4.5) that

rq{A, B)-rq(A, C) + rq(B, C) = dq(A, B, C) + dq^{A, B, C).

If we multiply by tq and sum over g > 0 and observe that Hq = {0} for q<0, we
obtain the assertion. •

We now use the fact that we are dealing with the Alexander-Spanier cohomology
theory and recall (see [8, theorem 8.7]):

LEMMA 9. Let (A, B) with A^> B be a pair of closed subsets of a metric space. Then
the projection map p: (A, B) -* (A/B, [B]) induces the isomorphisms:

Hq(A,B) = Hq(A/B,[B]), q > 0

for the Alexander-Spanier cohomology.

This lemma allows us to express the algebraic invariants of h(S) up to isomorphisms
in terms of the invariants of any admissible index pair (JV,, 7V2) of 5. In particular
we conclude from (4.4) that

p(t,h(S))= I TankHq(Nl,N2)t'
1, (4.8)

with an index pair (Ni, N2) for S.
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Now let (M, , . . . , Mn) be the Morse decomposition of S with associated sequence
Aj, 0 < j < n, of attractors as in the statement of the theorem. Then, by proposition 5,
Aj&y and (MJt A,.,) is a repeller-attractor pair in A,. By theorem 1 we find an
index triple (Nj

u NJ
2, N{) for this attractor-repeller pair in Aj. We conclude that

(N\, N{) is an index pair for A, and (N{, NJ
3) is an index pair for A,-_,. Moreover,

if U is an open set with A,_, c U c cl (U) c int (JV2), then (N J , \ t/, AT2\ C/) is an
index pair for Mj. In view of lemma 9 and using the excision axiom of cohomology
theory we find

LEMMA 10. For the repeller-attractor pair (Mj, A,_,) in Aj there exists a triple
N{ => NJ

2 => N{ of closed sets, such that:

= Hq(N{\U, JV2\U)

From lemma 8, lemma 10 and (4.8) we conclude that

p(t,h(Mj)) + p(t,h(Aj.l))=p(t,h(Aj)) + (l + t)Q(T,N{,Ni,Ni). (4.9)

Summation over 1 ~^j^ n gives:

p(t,h(A0))+i p(t,h(Mj))=p(t,h(An)) + (l

with <?(0 = Z;_, QC M , N{, N{). Now An = S and hencep(t, h{An))=p{t, h(S)).
Moreover Ao = 0 and hence h(A0) is the homotopy type of a pointed one point
space ({/>}, p), with p being any point. Hence Hq(h(Ao)) = 0 for all q. This proves
the first part of theorem 2.

Now assume Q(t, N\, N{, N{) # 0, and assume that there is no solution o-: R-» S
satisfying (o*(a) c M, and oi(o-) c M, for some ; <j. We shall obtain a contradiction.
We conclude from proposition 1 that A, is the disjoint union of A,_, and M,, i.e.
Aj = Aj_xOMj. Now according to (4.9) Q{t, NJ

U NJ
2, N

J
3) depends only on

h(Mj), /i(Aj_,) and h(Aj). We can therefore choose the index triple for the repeller-
attractor pair (Mj, A;_,) in A, in such a way that

where B = Btu B2 and B{n B2 = 0. B is an isolating block for A,-, S, is an isolating
block for Mj and B2 an isolating block for A,_,. But B = BtO B2 and B~ = BJO B2,
and therefore

( M , JV2, M ) = (B, 0 B2, B2u Br, B.OBi).

Application of the sequence (4.5) to this triple gives:

Recall that the map aq is the map i* induced by the inclusion i: {B2^J Bu B2 u B]~)-»
(B2uB,, B2uB7). Let e be the inclusion map e:(B{, B^)^(B2u Bu B2uB7).
Since Bxr\B2 = 0 , the induced map e* is an isomorphism. Suppose first B2 u Z?i~ ^ 0
and let r:(B2O Bu B2O B~^)-> (B2O Bu B2O Bj~) be any continuous map satisfying
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r(x) = x for all xeB\. Then clearly i° r° e = e and so e*° r*° i* = e* and therefore
r*°a , = id, as e* is an isomorphism. Now if B^\jB2 = 0 , then let h:(Bt,0)-*
(B2u Bi ,0 ) and j:(Bu 0)-*(B2u Bu B2) be inclusion maps. Then, by excision, j *
is an isomorphism, and obviously i ° h °j =j. Hence as before h* ° aq = id. It follows
in both cases that ker (aq) = 0, and since the sequence is exact we find im {yq-\) =
ker (aq) = 0. This holds true for all q and hence Q(t, N\, NJ

2, N{) = 0 in contradiction
to the assumption. This finishes the proof of theorem 2. •

5. The Morse equation for an arbitrary homology and cohomology theory
Let {Hq} (resp. {Hq}) be any (unreduced) homology (resp. cohomology) theory
with coefficients in an R-module G, where R is an integral domain [13, chapter 9].
The aim is to prove that the statement in theorem 2 holds true for any homology
and cohomology theory, not just for the Alexander-Spanier cohomology. We point
out that the latter theory was used only in order to prove lemma 9. We shall prove
below that for the special index pairs constructed in theorem 1 and used in theorem
2 the statement of lemma 9 holds true with respect to any cohomology or homology
theory.

If (A, B) with A=> B is a pair of topological spaces, then B is called a strong
deformation retract of a neighbourhood of itself, if there is an open neighbourhood
V<= A of B, and a continuous map H: Vx[0, l]-» A such that

H(x,l)eB forallxeV,

H(x,0) = x for all xe A,

H(y,t) = y forallyefi.

We shall make use of the following well known result.

LEMMA 11. Let Abe a metric space and Be A a closed subset. Assume B is a strong
deformation retract of some neighbourhood of itself. Then the projection mapp: (A, B) -*
(A/B,[BJ) induces an isomorphism

Hq(A,B)^Hq(A/B,[B]),

resp. Hq(A, B) = Hq(A/ B,[BJ), of the homology, resp. cohomology modules.

We shall show that the special index pairs of theorem 1 meet the assumptions of
lemma 11.

LEMMA 12. Let Set? and {A*, A) be a repeller-attractor pair in S. Let (B, B2u
B~, B~) be the index triple of theorem 1 for (A*, A) relative to S. Let U be an open
set such that

Then the pairs (B, B~) and (B2uB~,B~) and (B\U, (B2u B')\U) meet the
requirements of lemma 11, i.e. the second space is a strong deformation retract of some
open neighbourhood in the first space.
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Postponing the proof of lemma 12, we first prove the main result:

THEOREM 3. Let SeSf and let ( M , , . . . , Mn) be a Morse decomposition of S with
associated sequence 0 = Aoc A,c • • -c An = S of attractors. Assume the cohomology
modules Hq(h(S)), Hq(h{Aj)) and Hq{h{Mj)), (resp. the homology modules
Hq(h(S)), Hq(h(Aj)) and Hq(h(Mj))) are of finite rank for all q^O and 1 < ; < n.
Then the statement of theorem 2 holds true with respect to the cohomology theory
{Hq}, (resp. with respect to the homology theory {Hq}).

Proof of theorem 3. In view of (4.1) the algebraic invariants of K e if can be computed
up to isomorphisms with respect to any index pair for K. Therefore, if we use for
the repeller-attractor pair (M,, A,_,) in A} the special index triple of theorem 1, the
required statement of lemma 10 follows in view of lemma 11 and lemma 12. The
proof is then identical to the proof of theorem 2. •

It remains to prove lemma 12. For an admissible set Be X we define the function
sB:B^U+u{oo} by

sB(x) = sup{*>0|x-[0, t]^B}.

LEMMA 13. The function sB is continuous if B is admissible and an isolating block.

Proof. Let xm x e B and xn -* x. Assume first that sB(x) ¥• oo. Since B is admissible
and an isolating block we conclude sB(x)<cox and x-sB(x)e B~. If e > 0 is small
then x-(sB{x) + e)eX\B and therefore xn-(sB(x) + e)eX\B, by the continuity
of the semiflow, and hence sB(xn) < sB(x) + e, if n is large. Similarly one proves
SB(Xn)>sB(x)-e for large n, hence sB is continuous at x. Suppose now that
sB(x) = oo. Then o>x=oo and x-[0, oo)<=B. Hence x-(0, oo)<= int (B) as B is an
isolating block. Therefore, for any e,T>0 there is an integer n(e, T) such that
xn-[e, T]<= int (B) for n s n{e, T). If sB is not continuous at x we can therefore find
a sequence 5n|0 such that xn- Sn & B. Since solutions can leave B only through B~
we find another sequence 0< en < Sn satisfying xn- en e B~. Since B~ is closed we
conclude from x n e n -»x that xeB~. But then sB(x) = 0, a contradiction. Hence,
indeed, sB is continuous. •

Proof of lemma 12. (1) (B, B~): Let V=B\A+(B) and define H: Vx[0, l]-»Bby

H{x,t) = x-(fsB(x)).

By lemma 13, sB is continuous. Moreover sB(x) = 0 for x e B~, since B is an isolating
block. It follows that H is the required retraction map onto B~, since V is a
neighbourhood of B~ in B.
(2) (B2u B~, B~): Observe that B2<j B~ is positively invariant relative to B. There-
fore, with V = (B2<J B~)\A+(B), the above map H: Vx[0,1]^ V is the required
retraction in this case.
(3) (B\U, (B2uB-)\U): Let V:= (B\U)\A+(Bt) and define H: Vx[0,1]^
(B\U) by

•sB(x))f* . ( . ,
lxH(x,t)- , .

otherwise.
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Clearly V is a neighbourhood of (B2u B~)\U in B\U. H is well denned and
H(x, 0) = x for all xeV.We claim that H(x, t) = x for all xe (B2u B )\Lf and all
0< (< 1. Indeed, let xe (B2u B~)\U and X E B , . If xe B2 it follows from theorem
1 (iii) that x e B\ and so sBl (x) = 0 implying that H(x, t) = x for 0 < f < 1 in this case.
If however x£ B2, then x e B~ and hence for some T > 0 we have

But this again implies sB](x) = 0, and the claim is proved.
Next we claim that H(x, l)e (B2u B ~ ) \ t / for all xe V. If xeB, n V then

H(x, l) = x-sB,(x)eB7\cl([ /)

since cl (U) c int B2 and B! n int B2 = 0 . Set y-=x- sBl (x) and assume y & B~; then
for some T > 0

j-(0, T]C int ( B ) n ( X \ B , ) ^ B 2 .

Hence y e B2. We have shown that H(x, 1) e (B2u B~) \ 1/ if x e B, n V. Assume
now xe V\BU then xe B2\U and //(x, l) = x by definition of H. This proves the
claim.

It remains to prove that H is continuous. We only have to consider the case
xn e V \ B , with xn -* x e B, and tn -* t. In this case H(xn, tn) = xn, we have to show
that xe B^ in order to complete the proof. Indeed, since xn e V \ B , it follows that
xn e B2 as B = B, u B2. Therefore xeB{r\B2 and hence by theorem 1 (iii) x e Bj~ n
B2. The proof of the lemma is complete. •

Remark. The continuity of sB was used (without proof) in the sketch of a proof of
proposition 2.1 in [9]. We point out that an assumption is missing in the statement
of that proposition, namely that the semiflow does not explode in B, i.e. if x e B
and a)x < oo then xtiB for some / < wx. Without this assumption our proof of the
continuity is incorrect, since it may happen that sB(x) = <ox such that x- sB{x) is not
denned. The hypothesis, however, that the semiflow does not explode in B is part
of our definition of admissibility.
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