ISOMETRIES OF $H^{p}\left(U^{n}\right)$

R. B. SCHNEIDER

1. Forelli in [1] has described the isometries of $H^{p}(U)$ into $H^{p}(U)$ for $p \neq 2,0<p<\infty$. We shall extend his methods to characterize the isometries of $H^{p}\left(U^{n}\right)$ onto $H^{p}\left(U^{n}\right)$.

The notation we shall use can be found in Rudin [3].
2. Let Π represent a permutation that induces a map on functions of n complex variables by

$$
\Pi \cdot f\left(z_{1}, \ldots, z_{n}\right)=f\left(z_{i_{1}}, \ldots, z_{i_{n}}\right)
$$

Clearly Π is an isometry of $H^{p}\left(U^{n}\right)$ onto $H^{p}\left(U^{n}\right)$.
Theorem. Suppose $p \neq 2,0<p<\infty$ and T is a linear isometry of $H^{p}\left(U^{n}\right)$ onto $H^{p}\left(U^{n}\right)$. Then there is a permutation Π such that
(1) $\Pi \cdot T(f)=b\left(\frac{\partial \varphi_{1}}{\partial z}\right)^{1 / p}\left(z_{1}\right) \ldots\left(\frac{\partial \varphi_{n}}{\partial z}\right)^{1 / p}\left(z_{n}\right) f\left(\varphi_{1}\left(z_{1}\right), \varphi_{2}\left(z_{2}\right), \ldots, \varphi_{n}\left(z_{n}\right)\right)$
where the φ_{i} are conformal maps of the unit disc onto itself and b is a unimodular complex number. Conversely, (1) defines a linear isometry of $H^{p}\left(U^{n}\right)$ onto $H^{p}\left(U^{n}\right)$.

Proof. The converse is trivial. For the first part, let $F=T(1) \in H^{p}$. Let v be the measure $d v=|F|^{p} d m_{n}$ where m_{n} is Lebesque measure on the n-dimensional torus with

$$
\int_{T_{n}} d m_{n}=1 .
$$

Since $F \not \equiv 0$ and is in H^{p}, the linear transformation $S(f)=T(f) / F$ is well defined taking $H^{p}\left(U^{n}\right)$ into $L^{p}(v)$ isometrically with $S(1)=1$, and v and m_{n} are mutually absolutely continuous.

Let $\psi_{m}(z)=z_{m}$ where $z=\left(z_{1}, \ldots, z_{m}\right)$. Then $\int\left|S\left(\psi_{m}{ }^{l}\right)\right|^{p} d v=1$ for all powers l as S is an isometry. From [1, Proposition 1] we see that since S is an isometry

$$
\int\left|S\left(\psi_{m}{ }^{l}\right)\right|^{2} d v=1
$$

Received November 22, 1971. This research was supported by NSF Grant GP-28251.
and since $p \neq 2,\left|S\left(\psi_{m}^{l}\right)\right|=1$. In particular S takes the algebra generated by all the ψ_{m} into $L^{\infty}(v)$.
By [1, Proposition 2] we see that S is multiplicative on this algebra.
We claim $S\left(\psi_{m}\right)$ is the boundary value of an analytic function in U^{n}. First note that

$$
\begin{aligned}
\left(T\left(\psi_{m}\right)\right)^{l} & =F^{l}\left(S\left(\psi_{m}\right)\right)^{l}, \\
T\left(\psi_{m}^{l}\right) & =F S\left(\psi_{m}^{l}\right)=F\left(S\left(\psi_{m}\right)\right)^{l}
\end{aligned}
$$

a.e. on the distinguished boundary T^{n}. Therefore

$$
\left(T\left(\psi_{m}\right)\right)^{l} / F^{l}=T\left(\psi_{m}^{l}\right) / F
$$

a.e. on the distinguished boundary T^{n} or

$$
F\left(T\left(\psi_{m}\right)\right)^{l}=F^{l} T\left(\psi_{m}^{l}\right) \quad \text { a.e. }
$$

but since both sides are in $N\left(U^{n}\right)$ they are equal as analytic functions in U^{n}. Now for $l \geqq 2$ this implies

$$
\begin{equation*}
\left(T\left(\psi_{m}\right)\right)^{l}=F^{l-1} T\left(\psi_{m}^{l}\right) \text { in } U^{n} \tag{2}
\end{equation*}
$$

We wish to show that $T\left(\psi_{m}\right) / F$ is analytic in U^{n}. Since $S\left(\psi_{m}\right)$ is the boundary value function of $T\left(\psi_{m}\right) / F$ we will then have proved our assertion.
Suppose there is a point $p \in U^{n}$ where $T\left(\psi_{m}\right) / F$ is not analytic. We look at (2) in the local ring at the point p which is a unique factorization domain [2]. If Q is an irreducible factor of F then by (2) Q must be a factor of $\left(T\left(\psi_{m}\right)\right)^{l}$ and by unique factorization a factor of $T\left(\psi_{m}\right)$. Therefore there must exist a positive t and s and some irreducible factor Q with Q^{t} and Q^{s} being the highest powers of Q in the factorization of $T\left(\psi_{m}\right)$ and F respectively with $t \leqq s-1$. Pick l large enough so that $l t<(l-1) s$. Then from (2) $Q^{(l-1) s}$ must be a factor of $\left.T\left(\psi_{m}\right)\right)^{l}$ but in its unique factorization. $Q^{l t}$ is the highest power of Q which gives a contradiction that shows $T\left(\psi_{m}\right) / F$ is analytic, and our original claim is proven. We shall show now that $S\left(\psi_{m}\right)$ is inner. Except for ω in a set of measure zero, for all $l F_{\omega}\left(S\left(\psi_{m}\right)\right)_{\omega}^{l}$ is in $H^{p}(U), F_{\omega}$ is in $H^{p}(U)$, and $S\left(\psi_{m}\right)_{\omega}$ is of modulus one a.e. on T. Now by the reasoning found in [1, p. 725], $\left(S\left(\psi_{m}\right)\right)_{\omega}$ is inner for ω a.e.; but then for all $r<1$

$$
\left|\left(S\left(\psi_{m}\right)\right)_{r}(\omega)\right|=\left|\left(S\left(\psi_{m}\right)\right)_{\omega}(r)\right|
$$

Therefore $\left.\mid S\left(\psi_{m}\right)\right)_{r}(\omega) \mid \leqq 1$ for ω a.e. and by continuity for all ω. Hence $S\left(\psi_{m}\right)$ is in H^{∞} and is inner.

Call $S\left(\psi_{m}\right)=\varphi_{m} . S$ is multiplicative on the algebra generated by ψ_{m}. Since polynomials are dense in $H^{p}, p<\infty$, and T is bounded, T is given by

$$
T(f)=F \cdot f\left(\varphi_{1}\left(z_{1}, \ldots, z_{n}\right), \ldots, \varphi_{n}\left(z_{1}, \ldots, z_{n}\right)\right)
$$

for all $f \in H^{p}\left(U^{n}\right)$. Since T^{-1} is an isometry there are $\theta_{1}, \ldots, \theta_{n}$ inner functions so that $T^{-1}(f)=G \cdot f\left(\theta_{1}, \ldots, \theta_{n}\right)$ all $f \in H^{p}\left(U^{n}\right)$.

Now $T T^{-1}(f)=T^{-1} T(f)=f$. Let $f=1$ and we see that

$$
F \cdot G\left(\varphi_{1}, \ldots, \varphi_{n}\right)=G \cdot F\left(\theta_{1}, \ldots, \theta_{n}\right)=1
$$

Therefore

$$
\begin{align*}
& f\left(\varphi_{1}\left(\theta_{1}, \ldots, \theta_{n}\right), \ldots, \varphi_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)\right) \tag{3}\\
&=f\left(\theta_{1}\left(\varphi_{1}, \ldots, \varphi_{n}\right), \ldots, \theta_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)\right)=f
\end{align*}
$$

for all $f \in H^{p}$. Let

$$
\begin{aligned}
& \Phi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): U^{n} \rightarrow U^{n} \\
& \Theta=\left(\theta_{1}, \ldots, \theta_{n}\right): U^{n} \rightarrow U^{n} .
\end{aligned}
$$

Therefore (3) implies $\Phi \cdot \theta=\theta \cdot \Phi=$ the identity and since Φ is then an automorphism of U^{n} the Corollary of [3, p. 167] gives

$$
\Phi(z)=\left(\varphi_{1}\left(z_{i_{1}}\right), \ldots, \varphi_{n}\left(z_{i_{n}}\right),\right.
$$

where the φ_{i} are conformal maps of U onto U.
There is then a permutation Π such that

$$
\Pi \cdot T(f)=H \cdot f\left(\varphi_{1}\left(z_{1}\right), \ldots, \varphi_{n}\left(z_{n}\right)\right)
$$

where $H \in H^{p}$ and the φ_{i} are conformal maps of U onto U that are permutations of the original φ. We shall abuse notation and denote these permutation as φ_{i} also. For all $f \in H^{p}$,

$$
\begin{equation*}
\int_{T^{n}}|H|^{p}|f \cdot \Phi|^{p} d m_{n}=\int|f|^{p} d m_{n}=\int\left|\prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z}\left(z_{i}\right)\right||f \cdot \Phi|^{p} d m_{n} \tag{4}
\end{equation*}
$$

Let \mathscr{O} be any open set on T^{n}. Let g_{m} be the function equal to 1 on \mathscr{O} and $1 / m$ off \mathscr{O}. By [3, Theorem 3.53], $g_{m}=\left|h_{m}{ }^{*}\right|$ for some $h_{m} \in H^{\infty}\left(U^{n}\right)$. But $h_{m}=f \cdot \Phi$ for some $f \in H^{\infty}\left(U^{n}\right)$. Using (4) we see that

$$
\int_{T^{n}}|H|^{p}\left|h_{m}\right|^{p} d m_{n}=\int_{T^{n}}\left|\prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z}\left(z_{i}\right)\right|\left|h_{m}\right|^{p} d m_{n}
$$

and letting m go to infinity we obtain

$$
\int_{\mathcal{O}}|H|^{p}=\int_{\mathscr{O}}\left|\prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z}\left(z_{i}\right)\right|
$$

for all open sets \mathscr{O}. By standard measure theoretic arguments this shows

$$
|H|^{p}=\left|\prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z}\left(z_{i}\right)\right| \text { a.e. }
$$

Now $H \cdot f \cdot \Phi=1$ for some $f \in H^{p}\left(U^{n}\right)$. Since $f \cdot \Phi$ is in $H^{p}\left(U^{n}\right)$ we see that $1 / H$ is in $H^{p}\left(U^{n}\right)$. This shows that H is outer. $\left(\partial \varphi_{i} / \partial z\right)^{1 / p}$ is also outer. By [3, Lemma 4.4.4], almost every slice function H_{ω} and

$$
\prod_{i=1}^{n}\left(\frac{\partial \varphi_{i}}{\partial z}\right)_{\omega}^{1 / p}
$$

is outer, and almost everywhere for almost all ω

$$
\left|H_{\omega}\right|=\left|\prod_{i=1}^{n}\left(\frac{\partial \varphi_{i}}{\partial z}\right)_{\omega}^{1 / p}\right| .
$$

Thus for almost all ω,

$$
H_{\omega}=b_{\omega} \Pi\left(\frac{\partial \varphi_{i}}{\partial z}\right)_{\omega}^{1 / p}
$$

where the b_{ω} are unimodular complex numbers. But $H(0)=b_{\omega} \Pi\left(\partial \varphi_{i} / \partial z\right)^{1 / p}(0)$ for almost all ω implies that $b_{\omega}=b$ and $H=b \prod\left(\partial \varphi_{i} / \partial z\right)^{1 / p}\left(z_{i}\right)$.

References

1. Frank Forelli, The isometries of H^{p}, Can. J. Math. 16 (1964), 721-728.
2. Robert Gunning and Hugo Rossi, Analytic functions of several complex variables (Prentice Hall, New York, 1965).
3. Walter Rudin, Function theory on polydiscs (Benjamin, New York, 1969).

Cornell University, Ithaca, New York

