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ISOMETRIES OF H»(Uv)
R. B. SCHNEIDER

1. Forelli in [1] has described the isometries of H?(U) into H?(U) for
p # 2,0 < p < 0. We shall extend his methods to characterize the isometries
of H?(U") onto H?(U™).

The notation we shall use can be found in Rudin [3].

2. Let II represent a permutation that induces a map on functions of #»
complex variables by

M- f(z1y . 32) = f(Biny o vy Zip)-
Clearly II is an isometry of H?(U") onto H? (U").

THEOREM. Suppose p # 2,0 < p < © and T is a linear isometry of H? (U™)
onto H? (U"). Then there is a permutation 11 such that

1/p 1/p
W 17 = 5(32) "6 - (22) G, e, )

where the ¢, are conformal maps of the unit disc onto itself and b is ¢ unimodular
complex number. Conversely, (1) defines a linear isomeiry of H?(U"™) onto
Hr(U™).

Proof. The converse is trivial. For the first part, let F = 7°(1) € H?. Let v
be the measure dv = |F|?dm, where m, is Lebesque measure on the n-dimen-
sional torus with

dm, = 1.

Since F # 0 and is in H?, the linear transformation S(f) = T(f)/F is well
defined taking H?(U") into L?(v) isometrically with S(1) = 1, and v and m,
are mutually absolutely continuous.

Let ¢,(2) = 2z, where 2= (21,...,32,). Then f[S(‘//m’)[pdv =1 for all
powers [ as S is an isometry. From [1, Proposition 1] we see that since S is an
isometry

f|5(¢m‘)|2dv =1
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and since p # 2, |S@»')| = 1. In particular S takes the algebra generated
by all the ¢, into L®(v).

By [1, Proposition 2] we see that .S is multiplicative on this algebra.

We claim S(¢,,) is the boundary value of an analytic function in U”. First
note that

I

(TEn))' = F'(SHn))",
T(Ym') = FSWn') = F(SWn))"

a.e. on the distinguished boundary 7™. Therefore
(TWm))'/F' =T Wm")/F
a.e. on the distinguished boundary 7™ or
F(IT'Wm)' = F'T@Wn') ae.

but since both sides are in N(U") they are equal as analytic functions in U".
Now for ! = 2 this implies

@) (TWm))' = F'T(Yn') in U™

We wish to show that 7°(¥,,)/F is analytic in U". Since .S(¢») is the boundary
value function of 7'(¢,,)/F we will then have proved our assertion.

Suppose there is a point p € U" where T"({,,)/F is not analytic. We look at
(2) in the local ring at the point p which is a unique factorization domain [2].
If Q is an irreducible factor of F then by (2) Q must be a factor of (7' (¢,))*
and by unique factorization a factor of T'(y,,). Therefore there must exist a
positive ¢ and s and some irreducible factor Q with Q* and Q° being the highest
powers of Q in the factorization of 7' (¥,,) and F respectively with ¢ < s — 1.
Pick [ large enough so that It < (! — 1)s. Then from (2) QY% must be a
factor of T (y,,))* but in its unique factorization. Q'! is the highest power of Q
which gives a contradiction that shows 7"(¢,)/F is analytic, and our original
claim is proven. We shall show now that S(¢,,) is inner. Except for w in a set
of measure zero, for all | F,(S(¥m))d is in H?(U), F, is in H?(U), and S (¥ )s is
of modulus one a.e. on 7. Now by the reasoning found in [1, p. 725], (S¥n))e
is inner for w a.e.; but then for all r < 1

|S@m))r(@)] = [(SWm))a ()]

Therefore |S¥m)),(w)] =1 for w a.e. and by continuity for all w. Hence
© S@n) is in H* and is inner.
Call SW¥n) = ¢n. S is multiplicative on the algebra generated by y,. Since
polynomials are dense in H?, p < o0, and 7" is bounded, 7" is given by

T(f) = F'f(¢1(zly---yzn):"' :‘Pn(zls'--’zn))

for all f € H?(U™). Since 7! is an isometry there are 6y, . . . , 6, inner functions
so that T-1(f ) = G- f(0y,...,0,) all f € H*(U").
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Now I'T-Y(f) = T'T(f) = f. Let f = 1 and we see that
F'G(¢1:"')§0n) =G'F(011"-76n) = L
Therefore
(B)  flea(By ..., 60,), ..oy @aOs, ..., 00))

=f0(e1, oo s @a)s ooy 0u(Pr, ooy 00)) = f
for all f € H?. Let

¢ = (901!"‘!977&): ur—u
0 =(1,...,0,): Ur— U

Therefore (3) implies ® - © = O - & = the identity and since ® is then an
automorphism of U” the Corollary of [3, p. 167] gives

®(z) = (e1(201),++ -, 0n(21a),

where the ¢; are conformal maps of U onto U.
There is then a permutation II such that

I-7T(f) =H-flei(z1), - - -, ¢a(2a))

where H € H? and the ¢; are conformal maps of U onto U that are permuta-
tions of the original ¢. We shall abuse notation and denote these permutation
as ¢; also. For all f € H?,

@ [ 1mPis - atam = [15vam = (1122 Gol11 - opam,

Let & be any open set on 1™ Let g, be the function equal to 1 on & and
1/m off O. By [3, Theorem 3.53], g, = |hn*| for some %k, € H*(U"). But
hp = f+ ® for some f € H*(U"). Using (4) we see that

[ vapam, = [ T12 @) lhalims,
il =1
and letting m go to infinity we obtain
8
f IH lp = f ¢i %)
01 i=

for all open sets @. By standard measure theoretic arguments this shows

a.e.

? _ q 904
]Hl - ] 9z (z'i)

Now H -f - ® = 1 for some f € H?(U"). Since f - & is in H?(U") we see that

1/H is in H?(U"). This shows that H is outer. (d¢;/33)1” is also outer. By
[3, Lemma 4.4.4], almost every slice function H, and

& (a‘(’i)llp
I3,
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is outer, and almost everywhere for almost all w

n a_ga—i)llp
H (az

i=1 2]

\H| =

Thus for almost all w,

1/p
’
w

= o1 (%)

where the b, are unimodular complex numbers. But H(0) = b,11(8¢:/82)12(0)
for almost all w implies that b, = b and H = bI1(8¢./82)1(z,).
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