Can. J. Math., Vol. XXV, No. 1, 1973, pp. 92-95

ISOMETRIES OF $H^p(U^n)$

R. B. SCHNEIDER

1. Forelli in [1] has described the isometries of $H^p(U)$ into $H^p(U)$ for $p \neq 2, 0 . We shall extend his methods to characterize the isometries of <math>H^p(U^n)$ onto $H^p(U^n)$.

The notation we shall use can be found in Rudin [3].

2. Let Π represent a permutation that induces a map on functions of n complex variables by

$$\Pi \cdot f(z_1,\ldots,z_n) = f(z_{i_1},\ldots,z_{i_n}).$$

Clearly II is an isometry of $H^p(U^n)$ onto $H^p(U^n)$.

THEOREM. Suppose $p \neq 2$, $0 and T is a linear isometry of <math>H^p(U^n)$ onto $H^p(U^n)$. Then there is a permutation Π such that

(1)
$$\Pi \cdot T(f) = b \left(\frac{\partial \varphi_1}{\partial z} \right)^{1/p} (z_1) \dots \left(\frac{\partial \varphi_n}{\partial z} \right)^{1/p} (z_n) f(\varphi_1(z_1), \varphi_2(z_2), \dots, \varphi_n(z_n))$$

where the φ_i are conformal maps of the unit disc onto itself and b is a unimodular complex number. Conversely, (1) defines a linear isometry of $H^p(U^n)$ onto $H^p(U^n)$.

Proof. The converse is trivial. For the first part, let $F = T(1) \in H^p$. Let v be the measure $dv = |F|^p dm_n$ where m_n is Lebesque measure on the *n*-dimensional torus with

$$\int_{T_n} dm_n = 1.$$

Since $F \neq 0$ and is in H^p , the linear transformation S(f) = T(f)/F is well defined taking $H^p(U^n)$ into $L^p(v)$ isometrically with S(1) = 1, and v and m_n are mutually absolutely continuous.

Let $\psi_m(z) = z_m$ where $z = (z_1, \ldots, z_m)$. Then $\int |S(\psi_m^l)|^p dv = 1$ for all powers l as S is an isometry. From [1, Proposition 1] we see that since S is an isometry

$$\int |S(\psi_m{}^l)|^2 dv = 1$$

Received November 22, 1971. This research was supported by NSF Grant GP-28251.

and since $p \neq 2$, $|S(\psi_m^{l})| = 1$. In particular S takes the algebra generated by all the ψ_m into $L^{\infty}(v)$.

By [1, Proposition 2] we see that S is multiplicative on this algebra.

We claim $S(\psi_m)$ is the boundary value of an analytic function in U^n . First note that

$$(T(\boldsymbol{\psi}_m))^{l} = F^{l}(S(\boldsymbol{\psi}_m))^{l},$$

$$T(\boldsymbol{\psi}_m^{l}) = FS(\boldsymbol{\psi}_m^{l}) = F(S(\boldsymbol{\psi}_m))^{l}$$

a.e. on the distinguished boundary T^n . Therefore

$$(T(\boldsymbol{\psi}_m))^{l}/F^{l} = T(\boldsymbol{\psi}_m^{l})/F$$

a.e. on the distinguished boundary T^n or

$$F(T(\boldsymbol{\psi}_m))^{l} = F^{l}T(\boldsymbol{\psi}_m^{l}) \quad \text{a.e.}$$

but since both sides are in $N(U^n)$ they are equal as analytic functions in U^n . Now for $l \ge 2$ this implies

(2)
$$(T(\psi_m))^l = F^{l-1}T(\psi_m^l)$$
 in U^n .

We wish to show that $T(\psi_m)/F$ is analytic in U^n . Since $S(\psi_m)$ is the boundary value function of $T(\psi_m)/F$ we will then have proved our assertion.

Suppose there is a point $p \in U^n$ where $T(\psi_m)/F$ is not analytic. We look at (2) in the local ring at the point p which is a unique factorization domain [2]. If Q is an irreducible factor of F then by (2) Q must be a factor of $(T(\psi_m))^l$ and by unique factorization a factor of $T(\psi_m)$. Therefore there must exist a positive t and s and some irreducible factor Q with Q^t and Q^s being the highest powers of Q in the factorization of $T(\psi_m)$ and F respectively with $t \leq s - 1$. Pick l large enough so that lt < (l-1)s. Then from (2) $Q^{(l-1)s}$ must be a factor of $T(\psi_m))^l$ but in its unique factorization. Q^{lt} is the highest power of Q which gives a contradiction that shows $T(\psi_m)/F$ is analytic, and our original claim is proven. We shall show now that $S(\psi_m)$ is inner. Except for ω in a set of measure zero, for all $l F_{\omega}(S(\psi_m))^l_{\omega}$ is in $H^p(U)$, F_{ω} is in $H^p(U)$, and $S(\psi_m)_{\omega}$ is of modulus one a.e. on T. Now by the reasoning found in [1, p. 725], $(S(\psi_m))_{\omega}$

$$|(S(\boldsymbol{\psi}_m))_r(\boldsymbol{\omega})| = |(S(\boldsymbol{\psi}_m))_{\boldsymbol{\omega}}(r)|.$$

Therefore $|S(\psi_m)\rangle_{\tau}(\omega)| \leq 1$ for ω a.e. and by continuity for all ω . Hence $S(\psi_m)$ is in H^{∞} and is inner.

Call $S(\psi_m) = \varphi_m$. S is multiplicative on the algebra generated by ψ_m . Since polynomials are dense in H^p , $p < \infty$, and T is bounded, T is given by

$$T(f) = F \cdot f(\varphi_1(z_1, \ldots, z_n), \ldots, \varphi_n(z_1, \ldots, z_n))$$

for all $f \in H^p(U^n)$. Since T^{-1} is an isometry there are $\theta_1, \ldots, \theta_n$ inner functions so that $T^{-1}(f) = G \cdot f(\theta_1, \ldots, \theta_n)$ all $f \in H^p(U^n)$.

Now $TT^{-1}(f) = T^{-1}T(f) = f$. Let f = 1 and we see that

$$F \cdot G(\varphi_1, \ldots, \varphi_n) = G \cdot F(\theta_1, \ldots, \theta_n) = 1.$$

Therefore

(3)
$$f(\varphi_1(\theta_1,\ldots,\theta_n),\ldots,\varphi_n(\theta_1,\ldots,\theta_n))$$
$$=f(\theta_1(\varphi_1,\ldots,\varphi_n),\ldots,\theta_n(\varphi_1,\ldots,\varphi_n))=f$$

for all $f \in H^p$. Let

$$\Phi = (\varphi_1, \ldots, \varphi_n) \colon U^n \to U^n$$

$$\Theta = (\theta_1, \ldots, \theta_n) \colon U^n \to U^n.$$

Therefore (3) implies $\Phi \cdot \Theta = \Theta \cdot \Phi =$ the identity and since Φ is then an automorphism of U^n the Corollary of [3, p. 167] gives

$$\Phi(z) = (\varphi_1(z_{i_1}), \ldots, \varphi_n(z_{i_n}),$$

where the φ_i are conformal maps of U onto U.

There is then a permutation Π such that

$$\Pi \cdot T(f) = H \cdot f(\varphi_1(z_1), \ldots, \varphi_n(z_n))$$

where $H \in H^p$ and the φ_i are conformal maps of U onto U that are permutations of the original φ . We shall abuse notation and denote these permutation as φ_i also. For all $f \in H^p$,

(4)
$$\int_{T^n} |H|^p |f \cdot \Phi|^p dm_n = \int |f|^p dm_n = \int |\prod_{i=1}^n \frac{\partial \varphi_i}{\partial z} (z_i)| |f \cdot \Phi|^p dm_n$$

Let \mathcal{O} be any open set on T^n . Let g_m be the function equal to 1 on \mathcal{O} and 1/m off \mathcal{O} . By [3, Theorem 3.53], $g_m = |h_m^*|$ for some $h_m \in H^{\infty}(U^n)$. But $h_m = f \cdot \Phi$ for some $f \in H^{\infty}(U^n)$. Using (4) we see that

$$\int_{T^n} |H|^p |h_m|^p dm_n = \int_{T^n} \left| \prod_{i=1}^n \frac{\partial \varphi_i}{\partial z} (z_i) \right| |h_m|^p dm_n,$$

and letting m go to infinity we obtain

$$\int_{\sigma} |H|^{p} = \int_{\sigma} \left| \prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z} (z_{i}) \right|$$

for all open sets \mathcal{O} . By standard measure theoretic arguments this shows

$$|H|^{p} = \left| \prod_{i=1}^{n} \frac{\partial \varphi_{i}}{\partial z} (z_{i}) \right|$$
 a.e.

Now $H \cdot f \cdot \Phi = 1$ for some $f \in H^p(U^n)$. Since $f \cdot \Phi$ is in $H^p(U^n)$ we see that 1/H is in $H^p(U^n)$. This shows that H is outer. $(\partial \varphi_i/\partial z)^{1/p}$ is also outer. By [3, Lemma 4.4.4], almost every slice function H_{ω} and

$$\prod_{i=1}^{n} \left(\frac{\partial \varphi_{i}}{\partial z}\right)_{\omega}^{1/z}$$

https://doi.org/10.4153/CJM-1973-007-0 Published online by Cambridge University Press

94

is outer, and almost everywhere for almost all ω

Thus for almost all ω ,

where the b_{ω} are unimodular complex numbers. But $H(0) = b_{\omega} \prod (\partial \varphi_i / \partial z)^{1/p}(0)$ for almost all ω implies that $b_{\omega} = b$ and $H = b \prod (\partial \varphi_i / \partial z)^{1/p}(z_i)$.

References

- 1. Frank Forelli, The isometries of H^p, Can. J. Math. 16 (1964), 721-728.
- 2. Robert Gunning and Hugo Rossi, Analytic functions of several complex variables (Prentice Hall, New York, 1965).
- 3. Walter Rudin, Function theory on polydiscs (Benjamin, New York, 1969).

Cornell University, Ithaca, New York