Bull. Austral. Math. Soc. Vol. 55 (1997) [321-325]

THE WEYL FUNCTIONAL CALCULUS AND TWO-BY-TWO SELFADJOINT MATRICES

WERNER J. RICKER

Let D be a (2×2) matrix with distinct eigenvalues λ_1 and λ_2 . There is a basic and well known functional equation which provides a formula for constructing the matrix g(D), for any C-valued function g defined on a subset of C containing $\{\lambda_1, \lambda_2\}$, namely

$$g \mapsto g(D) = (\lambda_1 - \lambda_2)^{-1} \{g(\lambda_1) \cdot (D - \lambda_2 I) - g(\lambda_2) \cdot (D - \lambda_1 I)\}.$$

This equation is used to give a direct and transparent proof of the following fact due to Anderson: A pair of (2×2) selfadjoint matrices A_1 and A_2 commute if and only if the Weyl functional calculus of the pair (A_1, A_2) , which is a matrix-valued distribution, has order zero (that is, is a measure).

Given two selfadjoint matrices in $\mathcal{H} = \mathbb{C}^2$, say A_1, A_2 , the Weyl calculus for the pair $A = (A_1, A_2)$ is an $L(\mathcal{H})$ -valued distribution which is a particular rule allowing the construction of certain functions of the pair (A_1, A_2) . For $\xi = (\xi_1, \xi_2) \in \mathbb{R}^2$, the matrix $\langle \xi, A \rangle = \xi_1 A_1 + \xi_2 A_2$ is again selfadjoint and hence $||e^{i\langle \xi, A \rangle}|| = 1$. Let $\mathcal{S}(\mathbb{R}^2)$ denote the Schwartz space of C-valued, rapidly decreasing functions on \mathbb{R}^2 . More precisely then, the Weyl calculus for A, [1, 6, 7], is the $L(\mathcal{H})$ -valued distribution T(A) defined by

(1)
$$T(A)f = \frac{1}{2\pi} \int_{\mathbb{R}^2} e^{i\langle \xi, A \rangle} \widehat{f}(\xi) d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^2);$$

here \hat{f} denotes the Fourier transform of f and $L(\mathcal{H})$ is the space of all (2×2) matrices over \mathbb{C} . The following result connects an analytic property of T(A) with a purely algebraic property of A.

THEOREM 1. Given a pair $A = (A_1, A_2)$ of selfadjoint matrices in $\mathcal{H} = \mathbb{C}^2$ the following statements are equivalent.

- (i) The matrices A_1 and A_2 commute.
- (ii) The associated Weyl calculus $T(A) : S(\mathbb{R}^2) \to L(\mathcal{H})$ is a distribution of order zero.

Received 4th June, 1996

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

W.J. Ricker

322

There are several proofs of this theorem in the literature. The first proof given of this result is due to Anderson, [2, Theorem 2], and applies in \mathbb{C}^m , not just \mathbb{C}^2 . It is based on properties of the numerical range and the theory of multivariable differential calculus. A completely different proof (also applying in \mathbb{C}^m), which is based on certain aspects of matrix-valued harmonic analysis in L^p -spaces (see [3]), is given in [5]. A third proof, specific to the case of \mathbb{C}^2 , was given in [4]. This proof is essentially computational and is based on an elegant formula of Anderson, [1, Theorem 4.1], which expresses the Weyl calculus T(J) of the triple $J = (J_1, J_2, J_3)$ whose entries are the classical spin 1/2-matrices in $L(\mathbb{C}^2)$, in terms of an integral formula over the unit sphere S^2 (in \mathbb{R}^3) with respect to normalised surface measure μ .

The aim of this note is to present another proof of Theorem 1. The proof is again computational in nature, but has the advantage over [4] in that it is based on a much more elementary and very well known functional equation. Namely, for a (2×2) -matrix D with distinct eigenvalues λ_1 and λ_2 and any \mathbb{C} -valued function g defined on a subset of \mathbb{C} containing $\sigma(D) = \{\lambda_1, \lambda_2\}$, the matrix g(D) is given by the formula

(2)
$$g(D) = \frac{g(\lambda_1)}{(\lambda_1 - \lambda_2)} \cdot (D - \lambda_2 I) - \frac{g(\lambda_2)}{(\lambda_1 - \lambda_2)} \cdot (D - \lambda_1 I).$$

In particular, the proof given below provides an interesting and non-trivial application of (2).

To establish (i) \Rightarrow (ii) is elementary and can be found in [4], for example. So let A_1 and A_2 be selfadjoint matrices in $L(\mathcal{H})$ which do not commute. To establish (ii) \Rightarrow (i) it is to be shown that the distribution $T(A) : S(\mathbb{R}^2) \to L(\mathcal{H})$ has positive order. If U is any orthogonal (2×2) -matrix, define $UAU^{-1} = (UA_1U^{-1}, UA_2U^{-1})$. Then $T(UAU^{-1})f = U(T(A)f)U^{-1}$, for every $f \in S(\mathbb{R}^2)$, [1, Theorem 2.9(e)]. So, choose for U an orthogonal transformation such that the matrix B_1 of UA_1U^{-1} with respect to the basis of \mathcal{H} consisting of the orthonormal eigenvectors of A_1 is diagonal, say $\begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}$. Then the matrix B_2 of UA_2U^{-1} with respect to this basis is of the form $\begin{pmatrix} \beta_1 & w \\ \overline{w} & \beta_2 \end{pmatrix}$ for some $w \in \mathbb{C}$ and $\beta_1, \beta_2 \in \mathbb{R}$. Since $A_1A_2 \neq A_2A_1$ it follows that $B_1B_2 \neq B_2B_1$ and moreover, that $\alpha_1 \neq \alpha_2$ (with $\alpha_1, \alpha_2 \in \mathbb{R}$) and $w \neq 0$. Since the order of the distribution T(B) is the same as that of T(A) it suffices to show that T(B) has positive order.

Fix $\xi = (\xi_1, \xi_2) \in \mathbb{R}^2$. For each $\lambda \in \mathbb{C}$, it follows that

(3)
$$\det (\lambda I - \langle \xi, B \rangle) = \lambda^2 - (\xi_1 \alpha_2 + \xi_2 \beta_2 + \xi_1 \alpha_1 + \xi_2 \beta_1) \lambda + (\xi_1 \alpha_1 + \xi_2 \beta_1) \cdot (\xi_1 \alpha_2 + \xi_2 \beta_2) - |w|^2 \xi_2^2.$$

Let $h = (\alpha_1 - \alpha_2)/2$ and $k = (\beta_1 - \beta_2)/2$, in which case $k \in \mathbb{R}$ and $h \in \mathbb{R} \setminus \{0\}$. Direct calculation shows that the solutions of (3) are given by

(4)
$$\lambda(\xi) = \frac{1}{2} (\xi_1[\alpha_1 + \alpha_2] + \xi_2[\beta_1 + \beta_2]) \pm \{\Delta(\xi)\}^{1/2},$$

where $\Delta(\xi) = (h\xi_1 + k\xi_2)^2 + |w|^2 \xi_2^2$. Since $\Delta(\xi) = 0$ if and only if $\xi = 0$, it follows from (4) that $\langle \xi, B \rangle$ has two distinct eigenvalues, say $\lambda_1(\xi)$ and $\lambda_2(\xi)$, whenever $\xi \neq 0$. The identity (2), with $D = \langle \xi, B \rangle$ and $g(z) = e^{iz}$, implies that

(5)
$$e^{i\langle\xi,B\rangle} = \frac{e^{i\lambda_1(\xi)}}{(\lambda_1(\xi) - \lambda_2(\xi))} \cdot (\langle\xi,B\rangle - \lambda_2(\xi)I) - \frac{e^{i\lambda_2(\xi)}}{(\lambda_1(\xi) - \lambda_2(\xi))} \cdot (\langle\xi,B\rangle - \lambda_1(\xi)I),$$

for every $\xi \neq 0$. Of course, $e^{i(0,B)} = I$. Substituting (5) into (1), with A replaced by B, shows that the (1,2)-entry of the matrix T(B)f is given by

(6)
$$L(f) = \frac{w}{2\pi} \int_{\mathbb{R}^2} \frac{\left(e^{i\lambda_1(\xi)} - e^{i\lambda_2(\xi)}\right)\xi_2 \widehat{f}(\xi)}{(\lambda_1(\xi) - \lambda_2(\xi))} d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^2)$$

If $\lambda_1(\xi)$ denotes the eigenvalue of $\langle \xi, B \rangle$ corresponding to the + sign in front of $\{\Delta(\xi)\}^{1/2}$ in (4), then it follows from (4) that (6) simplifies to

$$L(f)=\frac{iw}{2\pi}\int_{\mathbb{R}^2}\frac{\xi_2e^{i\langle\xi,u\rangle}\widehat{f}(\xi)\sin\{\Delta(\xi)\}^{1/2}}{\{\Delta(\xi)\}^{1/2}}\ d\xi,\qquad f\in\mathcal{S}(\mathbb{R}^2),$$

where $u = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)/2$. If $f_u(\eta) = f(u+\eta)$, for $\eta \in \mathbb{R}^2$, then $\hat{f}_u(\xi) = e^{i\langle \xi, u \rangle} \hat{f}(\xi)$ and so

$$L(f) = \frac{iw}{2\pi} \int_{\mathbb{R}^2} \frac{\xi_2 \widehat{f_u}(\xi) \sin\{\Delta(\xi)\}^{1/2}}{\{\Delta(\xi)\}^{1/2}} \ d\xi = \frac{w}{2\pi} \int_{\mathbb{R}^2} \frac{(D_2 f_u) \widehat{}(\xi) \sin\{\Delta(\xi)\}^{1/2}}{\{\Delta(\xi)\}^{1/2}} \ d\xi,$$

where D_2 denotes differentiation with respect to the second variable. By making the linear change of variables in \mathbb{R}^2 given by $y = M\xi$, where $M = \begin{pmatrix} h & k \\ 0 & |w| \end{pmatrix}$ and elements of \mathbb{R}^2 are interpreted as column vectors, it follows that

(7)
$$L(f) = \frac{h |w| w}{2\pi} \int_{\mathbb{R}^2} \frac{(D_2 f_u) \left(M^{-1} y \right) \sin \left(y_1^2 + y_2^2 \right)^{1/2}}{\left(y_1^2 + y_2^2 \right)^{1/2}} \, dy, \qquad f \in \mathcal{S}(\mathbb{R}^2).$$

The Fourier-Stieltjes transform $\hat{\mu}$ of the measure μ (recall that $\operatorname{supp}(\mu) = S^2 \subseteq \mathbb{R}^3$) is easily computed via spherical polar coordinates and is given by

$$\widehat{\mu}(\gamma) = rac{\sin\left(\gamma_1^2 + \gamma_2^2 + \gamma_3^2
ight)^{1/2}}{\left(2\pi
ight)^{3/2}\left(\gamma_1^2 + \gamma_2^2 + \gamma_3^2
ight)^{1/2}} \;, \qquad \gamma \in \mathbb{R}^3 ackslash \{0\},$$

with $\widehat{\mu}(0) = (2\pi)^{-3/2}$. Let \mathbb{D} be the closed unit disc in \mathbb{R}^2 . Define a measure ν on the Borel subsets $\mathcal{B}(\mathbb{R}^2)$ of \mathbb{R}^2 by

$$u(E) = \mu((E \cap \mathbb{D}) \times \mathbb{R}), \qquad E \in \mathcal{B}(\mathbb{R}^2).$$

Given a function $\varphi : \mathbb{R}^2 \to \mathbb{C}$, let $\tilde{\varphi} : \mathbb{R}^3 \to \mathbb{C}$ be the function defined by $\tilde{\varphi}(x,y,z) = \varphi(x,y)$. A routine calculation shows that $\int_{\mathbb{R}^2} s \, d\nu = \int_{\mathbb{R}^3} \tilde{s} \, d\mu$, for every $\mathcal{B}(\mathbb{R}^2)$ -simple function $s : \mathbb{R}^2 \to \mathbb{C}$. It follows from the dominated convergence theorem that $\int_{\mathbb{R}^2} \varphi \, d\nu = \int_{\mathbb{R}^3} \tilde{\varphi} \, d\mu$ for every bounded Borel function $\varphi : \mathbb{R}^2 \to \mathbb{C}$. In particular, putting $\varphi_{\xi}(x) = e^{i(\xi,x)}$, for each fixed $\xi \in \mathbb{R}^2$, it follows that $\hat{\nu}(\xi) = \hat{\mu}(\xi, 0)$. That is,

$$\widehat{
u}(\xi) = rac{\sin\left(\xi_1^2 + \xi_2^2
ight)^{1/2}}{\left(2\pi
ight)^{3/2} \left(\xi_1^2 + \xi_2^2
ight)^{1/2}}, \qquad \xi \in \mathbb{R}^2 ackslash \{0\},$$

with $\hat{\nu}(0) = (2\pi)^{-3/2}$.

Now, the function $\Phi = \hat{\nu}$ is locally integrable (as it is a continuous function vanishing at ∞) and hence, can be interpreted as a distribution in the usual way, that is, $\langle g, \Phi \rangle = \int_{\mathbb{R}^2} g(\xi) \Phi(\xi) d\xi$, for $g \in S(\mathbb{R}^2)$. Accordingly, the distributional Fourier transform $\hat{\Phi}$ of Φ is given by

$$\langle p, \widehat{\Phi}
angle = \langle \widehat{p}, \Phi
angle = \int_{\mathbb{R}^2} \widehat{
u}(\xi) \widehat{p}(\xi) \, d\xi = \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}^2} e^{i \langle \xi, x \rangle} d
u(x) \right) \widehat{p}(\xi) \, d\xi$$

for each $p \in S(\mathbb{R}^2)$. Applying Fubini's theorem and the Fourier inversion formula $\int_{\mathbb{R}^2} e^{i\langle \xi, x \rangle} \widehat{p}(\xi) d\xi = 2\pi p(x)$ shows that

(8)
$$\langle p, \widehat{\Phi} \rangle = 2\pi \int_{\mathbb{R}^2} p(x) d\nu(x), \qquad p \in \mathcal{S}(\mathbb{R}^2)$$

Accordingly, the Fourier transform of Φ is the measure $2\pi\nu$ (acting on $\mathcal{S}(\mathbb{R}^2)$ via the right-hand-side of (8)).

For $g \in \mathcal{S}(\mathbb{R}^2)$, let $g \circ M^t \in \mathcal{S}(\mathbb{R}^2)$ denote the function $x \mapsto g(M^t x)$, for each $x \in \mathbb{R}^2$, where M^t is the transpose of the matrix M. Direct calculation shows that

$$(D_2f_u)^{(M^{-1}y)} = \frac{1}{h|w|} \cdot (D_2f_u \circ M^t)^{(y)}, \qquad y \in \mathbb{R}^2,$$

for each $f \in \mathcal{S}(\mathbb{R}^2)$. It follows from (7), (8) and the definition of distributional Fourier transforms that

(9)
$$L(f) = w(2\pi)^{3/2} \int_{\mathbb{R}^2} (D_2 f_u \circ M^t)(x) d\nu(x), \quad f \in S(\mathbb{R}^2).$$

Since $f \mapsto f_u$ and $f \mapsto f \circ M^t$ are bicontinuous isomorphisms of $\mathcal{S}(\mathbb{R}^2)$ onto itself, it is clear from (9) that the distribution L(f) has positive order. Since L is the (1,2)-entry of T(B)f, for each $f \in \mathcal{S}(\mathbb{R}^2)$, it follows that T(B) also has positive order.

The identity (9) shows that the support of L is a translate of the image of \mathbb{D} under a non-singular transformation in \mathbb{R}^2 (with positive determinant). In particular, $\operatorname{supp}(L)$ is an infinite subset of \mathbb{R}^2 . Since $\operatorname{supp}(L) \subseteq \operatorname{supp}(T(B)) = \operatorname{supp}(T(A))$ we have also given an alternative proof of the fact that $A_1A_2 = A_2A_1$ if and only if $\operatorname{supp}(T(A))$ is a finite subset of \mathbb{R}^2 , [4, 5].

References

- [1] R.F.V. Anderson, 'The Weyl functional calculus', J. Funct. Anal. 4 (1969), 240-267.
- [2] R.F.V. Anderson, 'On the Weyl functional calculus', J. Funct. Anal. 6 (1970), 110-115.
- P. Brenner, 'The Cauchy problem for symmetric hyperbolic systems in L_p', Math. Scand. 19 (1966), 27-37.
- [4] B.R.F. Jefferies and W.J. Ricker, 'Commutativity for systems of (2 × 2) selfadjoint matrices', Linear and Multilinear Algebra 35 (1993), 107–114.
- [5] W.J. Ricker, 'The Weyl calculus and commutativity for systems of selfadjoint matrices', Arch. Math. 61 (1993), 173-176.
- [6] M.E. Taylor, 'Functions of several selfadjoint operators', Proc. Amer. Math. Soc. 19 (1968), 91-98.
- [7] H. Weyl, The theory of groups and quantum mechanics (Dover Publ., New York, 1950).

School of Mathematics The University of New South Wales Sydney NSW 2052 Australia 325