THE WEYL FUNCTIONAL CALCULUS AND TWO-BY-TWO SELFADJOINT MATRICES

Werner J. Ricker

Let D be a (2×2) matrix with distinct eigenvalues λ_{1} and λ_{2}. There is a basic and well known functional equation which provides a formula for constructing the matrix $g(D)$, for any \mathbb{C}-valued function g defined on a subset of \mathbb{C} containing $\left\{\lambda_{1}, \lambda_{2}\right\}$, namely

$$
g \mapsto g(D)=\left(\lambda_{1}-\lambda_{2}\right)^{-1}\left\{g\left(\lambda_{1}\right) \cdot\left(D-\lambda_{2} I\right)-g\left(\lambda_{2}\right) \cdot\left(D-\lambda_{1} I\right)\right\} .
$$

This equation is used to give a direct and transparent proof of the following fact due to Anderson: A pair of (2×2) selfadjoint matrices A_{1} and A_{2} commute if and only if the Weyl functional calculus of the pair (A_{1}, A_{2}), which is a matrix-valued distribution, has order zero (that is, is a measure).

Given two selfadjoint matrices in $\mathcal{H}=\mathbb{C}^{2}$, say A_{1}, A_{2}, the Weyl calculus for the pair $A=\left(A_{1}, A_{2}\right)$ is an $L(\mathcal{H})$-valued distribution which is a particular rule allowing the construction of certain functions of the pair $\left(A_{1}, A_{2}\right)$. For $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$, the matrix $\langle\xi, A\rangle=\xi_{1} A_{1}+\xi_{2} A_{2}$ is again selfadjoint and hence $\left\|e^{i\langle\xi, A\rangle}\right\|=1$. Let $\mathcal{S}\left(\mathbb{R}^{2}\right)$ denote the Schwartz space of \mathbb{C}-valued, rapidly decreasing functions on \mathbb{R}^{2}. More precisely then, the Weyl calculus for $A,[\mathbf{1}, 6,7]$, is the $L(\mathcal{H})$-valued distribution $T(A)$ defined by

$$
\begin{equation*}
T(A) f=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{i(\xi, A)} \widehat{f}(\xi) d \xi, \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{1}
\end{equation*}
$$

here \widehat{f} denotes the Fourier transform of f and $L(\mathcal{H})$ is the space of all (2×2) matrices over \mathbb{C}. The following result connects an analytic property of $T(A)$ with a purely algebraic property of A.

THEOREM 1. Given a pair $A=\left(A_{1}, A_{2}\right)$ of selfadjoint matrices in $\mathcal{H}=\mathbb{C}^{2}$ the following statements are equivalent.
(i) The matrices A_{1} and A_{2} commute.
(ii) The associated Weyl calculus $T(A): \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow L(\mathcal{H})$ is a distribution of order zero.

[^0]There are several proofs of this theorem in the literature. The first proof given of this result is due to Anderson, [2, Theorem 2], and applies in \mathbb{C}^{m}, not just \mathbb{C}^{2}. It is based on properties of the numerical range and the theory of multivariable differential calculus. A completely different proof (also applying in \mathbb{C}^{m}), which is based on certain aspects of matrix-valued harmonic analysis in L^{p}-spaces (see [3]), is given in [5]. A third proof, specific to the case of \mathbb{C}^{2}, was given in [4]. This proof is essentially computational and is based on an elegant formula of Anderson, [1 , Theorem 4.1], which expresses the Weyl calculus $T(J)$ of the triple $J=\left(J_{1}, J_{2}, J_{3}\right)$ whose entries are the classical spin 1/2-matrices in $L\left(\mathbb{C}^{2}\right)$, in terms of an integral formula over the unit sphere S^{2} (in \mathbb{R}^{3}) with respect to normalised surface measure μ.

The aim of this note is to present another proof of Theorem 1. The proof is again computational in nature, but has the advantage over [4] in that it is based on a much more elementary and very well known functional equation. Namely, for a (2×2)-matrix D with distinct eigenvalues λ_{1} and λ_{2} and any \mathbb{C}-valued function g defined on a subset of \mathbb{C} containing $\sigma(D)=\left\{\lambda_{1}, \lambda_{2}\right\}$, the matrix $g(D)$ is given by the formula

$$
\begin{equation*}
g(D)=\frac{g\left(\lambda_{1}\right)}{\left(\lambda_{1}-\lambda_{2}\right)} \cdot\left(D-\lambda_{2} I\right)-\frac{g\left(\lambda_{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)} \cdot\left(D-\lambda_{1} I\right) . \tag{2}
\end{equation*}
$$

In particular, the proof given below provides an interesting and non-trivial application of (2).

To establish (i) \Rightarrow (ii) is elementary and can be found in [4], for example. So let A_{1} and A_{2} be selfadjoint matrices in $L(\mathcal{H})$ which do not commute. To establish (ii) \Rightarrow (i) it is to be shown that the distribution $T(A): \mathcal{S}\left(\mathbb{R}^{2}\right) \rightarrow L(\mathcal{H})$ has positive order. If U is any orthogonal (2×2)-matrix, define $U A U^{-1}=\left(U A_{1} U^{-1}, U A_{2} U^{-1}\right)$. Then $T\left(U A U^{-1}\right) f=U(T(A) f) U^{-1}$, for every $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, [1, Theorem 2.9(e)]. So, choose for U an orthogonal transformation such that the matrix B_{1} of $U A_{1} U^{-1}$ with respect to the basis of \mathcal{H} consisting of the orthonormal eigenvectors of A_{1} is diagonal, say $\left(\begin{array}{cc}\alpha_{1} & 0 \\ 0 & \alpha_{2}\end{array}\right)$. Then the matrix B_{2} of $U A_{2} U^{-1}$ with respect to this basis is of the form $\left(\begin{array}{ll}\beta_{1} & w \\ \bar{w} & \beta_{2}\end{array}\right)$ for some $w \in \mathbb{C}$ and $\beta_{1}, \beta_{2} \in \mathbb{R}$. Since $A_{1} A_{2} \neq A_{2} A_{1}$ it follows that $B_{1} B_{2} \neq B_{2} B_{1}$ and moreover, that $\alpha_{1} \neq \alpha_{2}$ (with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$) and $w \neq 0$. Since the order of the distribution $T(B)$ is the same as that of $T(A)$ it suffices to show that $T(B)$ has positive order.

Fix $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$. For each $\lambda \in \mathbb{C}$, it follows that

$$
\begin{align*}
\operatorname{det}(\lambda I-\langle\xi, B\rangle)=\lambda^{2}-\left(\xi_{1} \alpha_{2}+\xi_{2} \beta_{2}\right. & \left.+\xi_{1} \alpha_{1}+\xi_{2} \beta_{1}\right) \lambda \tag{3}\\
& +\left(\xi_{1} \alpha_{1}+\xi_{2} \beta_{1}\right) \cdot\left(\xi_{1} \alpha_{2}+\xi_{2} \beta_{2}\right)-|w|^{2} \xi_{2}^{2}
\end{align*}
$$

Let $h=\left(\alpha_{1}-\alpha_{2}\right) / 2$ and $k=\left(\beta_{1}-\beta_{2}\right) / 2$, in which case $k \in \mathbb{R}$ and $h \in \mathbb{R} \backslash\{0\}$. Direct calculation shows that the solutions of (3) are given by

$$
\begin{equation*}
\lambda(\xi)=\frac{1}{2}\left(\xi_{1}\left[\alpha_{1}+\alpha_{2}\right]+\xi_{2}\left[\beta_{1}+\beta_{2}\right]\right) \pm\{\Delta(\xi)\}^{1 / 2} \tag{4}
\end{equation*}
$$

where $\Delta(\xi)=\left(h \xi_{1}+k \xi_{2}\right)^{2}+|w|^{2} \xi_{2}^{2}$. Since $\Delta(\xi)=0$ if and only if $\xi=0$, it follows from (4) that $\langle\xi, B\rangle$ has two distinct eigenvalues, say $\lambda_{1}(\xi)$ and $\lambda_{2}(\xi)$, whenever $\xi \neq 0$. The identity (2), with $D=\langle\xi, B\rangle$ and $g(z)=e^{i z}$, implies that

$$
\begin{equation*}
e^{i(\xi, B\rangle}=\frac{e^{i \lambda_{1}(\xi)}}{\left(\lambda_{1}(\xi)-\lambda_{2}(\xi)\right)} \cdot\left(\langle\xi, B\rangle-\lambda_{2}(\xi) I\right)-\frac{e^{i \lambda_{2}(\xi)}}{\left(\lambda_{1}(\xi)-\lambda_{2}(\xi)\right)} \cdot\left(\langle\xi, B\rangle-\lambda_{1}(\xi) I\right), \tag{5}
\end{equation*}
$$

for every $\xi \neq 0$. Of course, $e^{i(0, B\rangle}=I$. Substituting (5) into (1), with A replaced by B, shows that the (1,2)-entry of the matrix $T(B) f$ is given by

$$
\begin{equation*}
L(f)=\frac{w}{2 \pi} \int_{\mathbb{R}^{2}} \frac{\left(e^{i \lambda_{1}(\xi)}-e^{i \lambda_{2}(\xi)}\right) \xi_{2} \hat{f}(\xi)}{\left(\lambda_{1}(\xi)-\lambda_{2}(\xi)\right)} d \xi, \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{6}
\end{equation*}
$$

If $\lambda_{1}(\xi)$ denotes the eigenvalue of $\langle\xi, B\rangle$ corresponding to the + sign in front of $\{\Delta(\xi)\}^{1 / 2}$ in (4), then it follows from (4) that (6) simplifies to

$$
L(f)=\frac{i w}{2 \pi} \int_{\mathbb{R}^{2}} \frac{\xi_{2} e^{i(\xi, u)} \widehat{f}(\xi) \sin \{\Delta(\xi)\}^{1 / 2}}{\{\Delta(\xi)\}^{1 / 2}} d \xi, \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right)
$$

where $u=\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right) / 2$. If $f_{u}(\eta)=f(u+\eta)$, for $\eta \in \mathbb{R}^{2}$, then $\widehat{f}_{u}(\xi)=$ $e^{i\langle\xi, u\rangle} \widehat{f}(\xi)$ and so

$$
L(f)=\frac{i w}{2 \pi} \int_{\mathbb{B}^{2}} \frac{\xi_{2} \widehat{f}_{u}(\xi) \sin \{\Delta(\xi)\}^{1 / 2}}{\{\Delta(\xi)\}^{1 / 2}} d \xi=\frac{w}{2 \pi} \int_{\mathbb{R}^{2}} \frac{\left(D_{2} f_{u}\right)(\xi) \sin \{\Delta(\xi)\}^{1 / 2}}{\{\Delta(\xi)\}^{1 / 2}} d \xi
$$

where D_{2} denotes differentiation with respect to the second variable. By making the linear change of variables in \mathbb{R}^{2} given by $y=M \xi$, where $M=\left(\begin{array}{cc}h & k \\ 0 & |w|\end{array}\right)$ and elements of \mathbb{R}^{2} are interpreted as column vectors, it follows that

$$
\begin{equation*}
L(f)=\frac{h|w| w}{2 \pi} \int_{\mathbb{R}^{2}} \frac{\left(D_{2} f_{u}\right)\left(M^{-1} y\right) \sin \left(y_{1}^{2}+y_{2}^{2}\right)^{1 / 2}}{\left(y_{1}^{2}+y_{2}^{2}\right)^{1 / 2}} d y, \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{7}
\end{equation*}
$$

The Fourier-Stieltjes transform $\hat{\mu}$ of the measure μ (recall that $\operatorname{supp}(\mu)=S^{2} \subseteq$ \mathbb{R}^{3}) is easily computed via spherical polar coordinates and is given by

$$
\widehat{\mu}(\gamma)=\frac{\sin \left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)^{1 / 2}}{(2 \pi)^{3 / 2}\left(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}\right)^{1 / 2}}, \quad \gamma \in \mathbb{R}^{3} \backslash\{0\}
$$

with $\widehat{\mu}(0)=(2 \pi)^{-3 / 2}$. Let \mathbb{D} be the closed unit disc in \mathbb{R}^{2}. Define a measure ν on the Borel subsets $\mathcal{B}\left(\mathbb{R}^{2}\right)$ of \mathbb{R}^{2} by

$$
\nu(E)=\mu((E \cap \mathbb{D}) \times \mathbb{R}), \quad E \in \mathcal{B}\left(\mathbb{R}^{2}\right)
$$

Given a function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{C}$, let $\tilde{\varphi}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ be the function defined by $\widetilde{\varphi}(x, y, z)=\varphi(x, y)$. A routine calculation shows that $\int_{\mathbb{B}^{2}} s d \nu=\int_{\mathbb{R}^{3}} \tilde{s} d \mu$, for every $\mathcal{B}\left(\mathbb{R}^{2}\right)$-simple function $s: \mathbb{R}^{2} \rightarrow \mathbb{C}$. It follows from the dominated convergence theorem that $\int_{\mathbb{R}^{2}} \varphi d \nu=\int_{\mathbb{R}^{3}} \tilde{\varphi} d \mu$ for every bounded Borel function $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{C}$. In particular, putting $\varphi_{\xi}(x)=e^{i\langle\xi, x\rangle}$, for each fixed $\xi \in \mathbb{R}^{2}$, it follows that $\widehat{\nu}(\xi)=\widehat{\mu}(\xi, 0)$. That is,

$$
\widehat{\nu}(\xi)=\frac{\sin \left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}}{(2 \pi)^{3 / 2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}}, \quad \xi \in \mathbb{R}^{2} \backslash\{0\}
$$

with $\widehat{\nu}(0)=(2 \pi)^{-3 / 2}$.
Now, the function $\Phi=\hat{\nu}$ is locally integrable (as it is a continuous function vanishing at ∞) and hence, can be interpreted as a distribution in the usual way, that is, $\langle g, \Phi\rangle=\int_{\mathbb{R}^{2}} g(\xi) \Phi(\xi) d \xi$, for $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Accordingly, the distributional Fourier transform $\widehat{\Phi}$ of Φ is given by

$$
\langle p, \widehat{\Phi}\rangle=\langle\widehat{p}, \Phi\rangle=\int_{\mathbb{R}^{2}} \widehat{\nu}(\xi) \widehat{p}(\xi) d \xi=\int_{\mathbb{R}^{2}}\left(\int_{\mathbb{R}^{2}} e^{i(\xi, x)} d \nu(x)\right) \widehat{p}(\xi) d \xi
$$

for each $p \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Applying Fubini's theorem and the Fourier inversion formula $\int_{\mathbb{R}^{2}} e^{i\langle\xi, x\rangle} \widehat{p}(\xi) d \xi=2 \pi p(x)$ shows that

$$
\begin{equation*}
\langle p, \widehat{\Phi}\rangle=2 \pi \int_{\mathbb{R}^{2}} p(x) d \nu(x), \quad p \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{8}
\end{equation*}
$$

Accordingly, the Fourier transform of Φ is the measure $2 \pi \nu$ (acting on $\mathcal{S}\left(\mathbb{R}^{2}\right)$ via the right-hand-side of (8)).

For $g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, let $g \circ M^{t} \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ denote the function $x \mapsto g\left(M^{t} x\right)$, for each $x \in \mathbb{R}^{2}$, where M^{t} is the transpose of the matrix M. Direct calculation shows that

$$
\left(D_{2} f_{u}\right)\left(M^{-1} y\right)=\frac{1}{h|w|} \cdot\left(D_{2} f_{u} \circ M^{t}\right)(y), \quad y \in \mathbb{R}^{2}
$$

for each $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. It follows from (7), (8) and the definition of distributional Fourier transforms that

$$
\begin{equation*}
L(f)=w(2 \pi)^{3 / 2} \int_{\mathbb{B}^{2}}\left(D_{2} f_{u} \circ M^{t}\right)(x) d \nu(x), \quad f \in \mathcal{S}\left(\mathbb{R}^{2}\right) \tag{9}
\end{equation*}
$$

Since $f \mapsto f_{u}$ and $f \mapsto f \circ M^{t}$ are bicontinuous isomorphisms of $\mathcal{S}\left(\mathbb{R}^{2}\right)$ onto itself, it is clear from (9) that the distribution $L(f)$ has positive order. Since L is the (1,2)-entry of $T(B) f$, for each $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$, it follows that $T(B)$ also has positive order.

The identity (9) shows that the support of L is a translate of the image of \mathbb{D} under a non-singular transformation in \mathbb{R}^{2} (with positive determinant). In particular, $\operatorname{supp}(L)$ is an infinite subset of \mathbb{R}^{2}. Since $\operatorname{supp}(L) \subseteq \operatorname{supp}(T(B))=\operatorname{supp}(T(A))$ we have also given an alternative proof of the fact that $A_{1} A_{2}=A_{2} A_{1}$ if and only if $\operatorname{supp}(T(A))$ is a finite subset of $\mathbb{R}^{2},[4,5]$.

References

[1] R.F.V. Anderson, 'The Weyl functional calculus', J. Funct. Anal. 4 (1969), 240-267.
[2] R.F.V. Anderson, 'On the Weyl functional calculus', J. Funct. Anal. 6 (1970), 110-115.
[3] P. Brenner, 'The Cauchy problem for symmetric hyperbolic systems in L_{p} ', Math. Scand. 19 (1966), 27-37.
[4] B.R.F. Jefferies and W.J. Ricker, 'Commutativity for systems of (2×2) selfadjoint matrices', Linear and Multilinear Algebra 35 (1993), 107-114.
[5] W.J. Ricker, 'The Weyl calculus and commutativity for systems of selfadjoint matrices', Arch. Math. 61 (1993), 173-176.
[6] M.E. Taylor, 'Functions of several selfadjoint operators', Proc. Amer. Math. Soc. 19 (1968), 91-98.
[7] H. Weyl, The theory of groups and quantum mechanics (Dover Publ., New York, 1950).

[^1]
[^0]: Received 4th June, 1996
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

[^1]: School of Mathematics
 The University of New South Wales
 Sydney NSW 2052
 Australia

