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A Basis Theorem for the Degenerate Affine
Oriented Brauer-Clifford Supercategory

Jonathan Brundan, Jonathan Comes, and Jonathan Robert Kujawa

Abstract. We introduce the oriented Brauer-Clifford and degenerate affine oriented Brauer-Clifford
supercategories. These are diagrammatically defined monoidal supercategories that provide combi-
natorial models for certain natural monoidal supercategories of supermodules and endosuperfunc-
tors, respectively, for the Lie superalgebras of type Q. Our main results are basis theorems for these
diagram supercategories. We also discuss connections and applications to the representation theory
of the Lie superalgebra of type Q.

1 Introduction
1.1 Overview

Let k denote a fixed ground field" of characteristic not two. In this paper we
study certain monoidal supercategories, that is, categories in which morphisms form
Z,-graded k-vector spaces, the category has a tensor product, and compositions and
tensor products of morphisms are related by a graded version of the interchange law
(see Section 2 for more details). While enriched monoidal categories have been the
object of study for some time, it is only recently that monoidal supercategories have
taken on a newfound importance thanks to the role they play in higher represen-
tation theory. To name a few examples, they appear explicitly or implicitly in the
categorification of Heisenberg algebras [RS], “odd” categorifications of Kac-Moody
(super)algebras (e.g., [EL,KKO1,KKO2]), the definition of super Kac-Moody catego-
ries [BE2], and in various Schur-Weyl dualities in the Z,-graded setting (e.g., [KT]).

In this paper we introduce two monoidal supercategories. They are the ori-
ented Brauer-Clifford supercategory (OBC) and the degenerate affine oriented Brauer-
Clifford supercategory (AOBC). They are defined by generators and relations. For
both monoidal supercategories the generating objects are 1 and |. Hence, objects
in both OBC and AOBC can be viewed as finite words in 1 and | (we write 1 for
the unit object). For OBC the generating morphisms are the three even morphisms
A1 =ty it = 1,5< 11 - 11, and one odd morphism $:1 > 1. For
AOBC, the generating morphisms are those of OBC along with an even morphism
$ : 1 > 1. These generating morphisms are subject to an explicit list of local relations
(see Definitions 3.2 and 3.7 for details). In Section 3 we explain how more compli-
cated diagrams can be interpreted as morphisms in OBC and AOBC. For example,
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here are two diagrams that correspond to morphisms in Homgose (1212, 12131):

In particular, it will be obvious that the Hom-spaces in OBC€ and AOBC are spanned
by the set of all such diagrams they contain. As is often the case, the difficulty is in
identifying a subset of these diagrams that form a basis. The main results of this paper
are contained in Theorems 3.4 and 3.9 in which we provide a diagrammatic basis for
the morphism spaces of these supercategories, and Theorem 7.1 in which we provide
bases for the cyclotomic quotients of AOBC.

L1

1.2 Motivation and Applications

Let us describe the motivation for these supercategories and some consequences of
the aforementioned basis theorems. Let

q=q(n) = {(2 i) ‘ A, B are n x n matrices with entries in k}.

Put a Z,-grading on q = qg ® g; by setting qg (resp. gy) to be the subspace of matrices
with B = 0 (resp. A = 0). Then q is the Lie superalgebra of type Q, where the Lie
bracket given by the graded version of the commutator bracket. See Section 4.1 for
details.

The representations in type Q do not have a classical analogue. Despite the impor-
tant early work done by Penkov-Serganova, and others to obtain character formulas
and other information (see [PS, Brul] and references therein), the representation the-
ory in type Q remains mysterious. For example, only very recently the structure of
category O for q became clear thanks to the work of Chen [Che], Cheng, Kwon, and
Wang [CKW], and Brundan and Davidson [BD2, BD3].

Since the enveloping superalgebra of q, U(q), is a Hopf superalgebra, one can
consider the tensor product of g-supermodules and the duals of finite-dimensional
g-supermodules. Let V denote the natural supermodule for g, that is, column vectors
of height 21 with the action of q given by matrix multiplication. Using the Hopf struc-
ture we can then form tensor products of V and its dual, V"*. For brevity, let us write
V! = Vand V! = V*, and, more generally, given a word a in 1 and |, let V2 denote
the tensor product of the corresponding supermodules (e.g., V™ = V@ V@ V*). The
full subsupercategory of all q-supermodules obtained in this way is a natural object
of study.

Moreover, the translation superfunctors given by tensoring with V’s and V*’s are
a key tool in much of the progress made in the study of type Q representations. That
is, an important role is played by the full subsupercategory of endosuperfunctors of
the form V? ® — as a ranges over all finite words in 1 and |. Given the importance of
these endosuperfunctors, it is of interest to understand this supercategory.
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By design, OBC and AOBC, respectively, are combinatorial models for these two
supercategories. Specifically, there is a monoidal superfunctor

®: OBC — g-supermodules

given on objects by ®(a) = V2. When k is characteristic zero, this superfunctor is
full (see Theorem 4.1). That is, there is a surjective superalgebra homomorphism

Endggpe(a) — Endq(n)(va)

which, moreover, is an isomorphism whenever the length of a is less than or equal to
n (see Remark 4.2).

It follows from our basis theorem that Endpse (17) is isomorphic to the (fi-
nite) Sergeev superalgebra introduced in [Ser2] (see Corollary 3.5). For arbitrary a,
Endgse(a) is isomorphic to the walled Brauer-Clifford superalgebra introduced by
Jung and Kang [JK] (see Corollary 3.6). The fact that Section 1.2 is an isomorphism
whenever the length of a is less than or equal to #n recovers [JK, Theorem 3.5]. We
should point out the definitions given in [JK] are global in nature. For example, it is
not a priori clear their intricate rule defines an associative product. In contrast, our di-
agrammatic description for these superalgebras involves only local relations and leads
to significant simplifications.

Analogously, there is a monoidal superfunctor from AOBC to the supercategory
of endosuperfunctors of g-supermodules, ¥: AOBC — End(U(q) -smod), given on
objects by ¥(a) = V? ® —. When k is characteristic zero, this superfunctor is faithful
“asymptotically” in the sense that given any nonzero morphism in AOBC, its image
under ¥ is nonzero as long as # is sufficiently large. Indeed, this observation is key to
proving the basis theorems. We reduce to showing that the induced map

EndAOB@(Tr) - End&nd(U(q) -smod) (V®r ® _)

is injective for » sufficiently large (e.g., #n > r). This in turn is proven by introducing
a certain q(n)-supermodule M (which we call the generic Verma supermodule) and
proving that the induced map of superalgebras

EndAOBe(T’) — Endq(n)(V‘X” ® M)
is injective.

As an application, in Section 4.4 we use ¥ to compute a family of central elements
in U(q). By the basis theorem End4o5e(1) is known to be a polynomial ring in
Ay, As, As, ..., where Ay is defined by Section 3.5. In Section 4.4, we explicitly com-
pute the central element corresponding to W(Ay) for each k and show that they are

essentially the central elements first introduced by Sergeev [Ser1] after the application
of the antipode of U(q) (see Proposition 4.6).

1.3 Cyclotomic Quotients

Fix nonnegative integers a, b, and m; € k for each 1 < i < a. Using this data, fix the
polynomial of degree € := 2a + b given by f(t) = t* [T;c;c.(t* — m;). The cyclotomic
quotient OBE/ is the supercategory defined as the quotient of AOBC by the left ten-
sor ideal generated by f (% ). Note that OBC/ does not obviously inherit the structure
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of a monoidal supercategory from AOBC, but it is a left module supercategory over
AOBC. In Section 7, we describe a basis for the Hom-spaces of OBC/ (see Theo-
rem 7.1). That this forms a basis was conjectured in a preprint version of this article
(written by the second two authors). The first author provided a proof soon after the
preprint appeared on the ArXiv; see Section 8. Subsequently, Gao, Rui, Song, and Su
posted an independent proof of Theorem 7.1 in [GRSS2]; their proof is in the spirit of
our proof of Theorem 3.9.

1.4 Connection to the Superalgebras of Gao, Rui, Song, and Su

Shortly after the authors released the first version of this paper, Gao-Rui-Song-Su
posted a preprint to the ArXiv in which they describe their independent work on
affine walled Brauer-Clifford superalgebras and their cyclotomic quotients [GRSSI].
In the same spirit as this paper, they define these superalgebras by generators and
relations and provide basis theorems. The key difference is that we choose to work
with the supercategories, whereas they work with superalgebras. In Section 7.2 we ex-
plain the connection between these two approaches and show their superalgebras are
specializations of endomorphism superalgebras in our supercategories. To do so, we
construct explicit superalgebra maps from the Gao-Rui-Song-Su superalgebras to
the endomorphism superalgebras of our supercategories. Using our bases theorems,
one can check that the images under those superalgebra maps of the so-called regular
monomials in the superalgebras of Gao, Rui, Song, and Su are bases of the appropriate
endomorphism superalgebras. Whence, our basis theorems imply the linear indepen-
dence of the corresponding basis theorems of Gao, Rui, Song, and Su ( [GRSS], The-
orems 5.15 and 6.10]). These arguments cannot merely be reversed in order to obtain
our basis theorems from those in [GRSS1]. The main obstacle comes from the fact
that our endomorphism superalgebras do not come equipped with nice descriptions
via generators and relations. Indeed, without already having a basis theorem for the
supercategory, it is difficult to extract a full system of generators and relations for the
endomorphism superalgebras from the defining generators and relations for the mo-
noidal supercategory. Hence, providing a well-defined superalgebra map from our
endomorphism superalgebras to the superalgebras of Gao, Rui, Song, and Su is not
an easy task. In particular, we are unable to conclude Theorem 6.3 from [GRSS], The-
orem 5.14] nor Theorem 7.1 from [GRSSI1, Theorem 6.10].

1.5 Future Directions

There are a number of intereting questions yet to be considered. For example, in his
PhD thesis, Reynolds showed that the locally finite-dimensional representations of a
certain specialization of the oriented Brauer category provide a categorification of the
tensor product of a highest weight representation and lowest weight representation for
a Kac-Moody Lie algebra of type A [Rey]. See [Bru3] for the quantum version of this
story. We expect similar results to hold for OBC where the categorification is of a rep-
resentation for a Kac-Moody algebra of type B. Another natural question is to extend
the results of this paper from the classical to the quantum setting. There is a quan-
tized enveloping superalgebra, U, (q), which is a Hopf superalgebra and one can ask
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for quantum analogues of OBC and AOBC. The quantum walled Brauer-Clifford su-
peralgebras were already introduced in [BGH+]. In a third direction, there should be
representations of AOBC and its cyclotomic quotients related to the representations
of finite W-superalgebras of type Q and to an expected higher level mixed Schur-
Weyl-Sergeev duality (see [BCNR, Section 4.6] where this is explained for type A).
So far as the authors are aware, this theory has yet to be developed.

2 Monoidal Supercategories

In this section we give a brief introduction to monoidal supercategories following
[BEL, §1]. We refer the reader to loc. cit. for more details and further references.

2.1 Superspaces

Letk be a fixed ground field of characteristic not two. A superspace V = V5@ VyisaZ,-
graded k-vector space. As we will also have Z-gradings, we reserve the word degree
for later use and instead refer to the parity of an element. That is, elements of Vi (resp.
Vx) are said to have parity 0 or to be even (resp. parity 1 or odd). Given a homogeneous
element v € V, we write |[v| € Z, for the parity of the element. Given two superspaces
V and W, the set of all linear maps Homy (V, W) is naturally Z,-graded by declaring
that f: V — W has parity € € Z, if f(Ve) € Veye forall ¢’ € Z,. Let svec and svec
denote the categories of all superspaces with Homgy..(V, W) = Homg(V, W) and
Homgyee(V, W) = Homy (V, W)g.

Given superspaces V and W, the vector space tensor product V ® W is also natu-
rally a superspace with Z,-grading given by declaring |v ® w| = |v| + |w| for all homo-
geneous v € V and w € W. The tensor product of linear maps between superspaces
is defined via (f ® g)(v ® w) = (-1)1#IM f(v) ® g(w). This gives svec (but not svec)
the structure of a monoidal category with 1 = k (viewed as superspace concentrated
in even parity). The graded flip map v @ w ()Ml @y gives svec the structure
of a symmetric monoidal category. Here and elsewhere we write the formula only for
homogeneous elements with the general case given by extending linearly.

2.2 Monoidal Supercategories

By a supercategory we mean a category enriched in svec. Similarly, a superfunctor is
a functor enriched in svec. Given two superfunctors F, G: A — B, a supernatural
transformation n: F — G consists of 77, . € Homg (Fa, Ga), for each objecta € A
and ¢ € Z, such that

Mbe o Ff = (-)VIGfons,,

for every f € Homy(a,b). We will write , = 1,5 + 1,7 € Homg (Fa, Ga). The
space of all supernatural transformations from F to G is given the structure of a su-
perspace by declaring a supernatural transformation 7 to be even (resp. odd) if 7, 1 = 0
(resp. 11, 5 = 0) for all objects a.

Given supercategories A and B, there is a supercategory A ® B whose objects are
pairs (a, b) of objects a € A and b € B and whose morphisms are given by the tensor
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product of superspaces
Hom gx5((a,b), (a’,b")) = Homy4 (a,a’) ® Homgp (b, b"),

with composition defined using the symmetric braiding on svec:

(f@g)o(hek)=(-1)¥"(fon)® (gok).
This can be used to give the category scat of all supercategories the structure of a
monoidal category.
By a monoidal supercategory we mean a supercategory A equipped with a super-
functor - ® —: AR A — A, a unit object 1, and even supernatural isomorphisms

(-®-)®- — -®(-®-) and 1®- — -« -®1

called coherence maps satistying certain axioms analogous to the ones for a monoi-
dal category. A monoidal supercategory is called strict if its coherence maps are
identities. A monoidal superfunctor between two monoidal supercategories A and
B is a superfunctor F: A — B equipped with an even supernatural isomorphism
(F-) ® (F-) — F(- ® -) and an even isomorphism 14 — F1 4 satisfying ax-
ioms analogous to the ones for a monoidal functor.

A braided monoidal supercategory is a monoidal supercategory A equipped with
a svec-enriched version of a braiding. More precisely, let T: A ® A — A denote the
superfunctor defined on objects by (a,b) —~ b ® a and on morphisms by f ® g —
(-1)//lslg ® f. A braiding on a A is a supernatural isomorphism y: - ®— — T
satisfying the usual hexagon axioms. A symmetric monoidal supercategory is a braided
monoidal supercategory A with y;}, = yp . for all objects a, b € A.

Given a monoidal supercategory A and an object a € A, by a (left) dual to
a we mean an object a* equipped with homogeneous evaluation and coevaluation
morphisms ev,: a* ® a - 1 and coev,: 1 — a ® a”, respectively, in which ev,
and coev, have the same parity and satisfy the super version of the usual adjunc-
tion axioms. For example, given a finite-dimensional superspace V with homoge-
neous basis {v; | i € I}, V* = Homg(V,k) with evaluation and coevaluation given
by f@v ~ f(v)and1 — Y, v; ® v} respectively, where v € V* is defined by
vi(vj) = d;,j. A monoidal supercategory in which every object has a (left) dual is
called (left) rigid.

The following examples will be relevant for what follows.

(i) Any k-linear monoidal category can be viewed as a monoidal supercategory in
which all Hom-spaces are concentrated in parity 0. If the category is braided, sym-
metric braided, or rigid, then it still is braided as a supercategory.

(ii) The tensor product and braiding defined in Section 2.1 give svec the structure
of a symmetric monoidal supercategory with 1 = k (viewed as a superspace concen-
trated in parity 0). The symmetric braiding yy,w: V® W — W ® V is given by the
graded flip map. The full subsupercategory of finite-dimensional superspaces is rigid.

(iii) Given a Lie superalgebra g = g ® gy over a field k of characteristic not two, let
g-smod denote the supercategory of all g-supermodules. That is, superspaces M =
My © Mj with an action by g that respects the grading in the sense that g..M, ¢
M, The tensor product M ® M’ has action given by x.(m @ m') = (x.m) @ m’ +
(- @ (x.m") for all homogeneous x € g, m € M, and m’ € M’ and the graded
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flip map provides a symmetric braiding. The unit object 1 is the ground field k with
trivial g-action. In this way, g -smod is a symmetric monoidal supercategory. The full
subsupercategory of finite-dimensional g-supermodules is rigid with the action given
on M* by (x.f)(m) = —(~1)¥I1 f(x.m).

(iv) Given a supercategory A, let End(A) denote the supercategory whose objects
are all superfunctors A — A with supernatural transformations as morphisms. We
give End(A) the structure of a monoidal supercategory with 1 = Id as follows. The
tensor product of two superfunctors F, G: A — A is defined by composition F® G =
F o G. Given supernatural transformations #: F — G and 0: H — K, we define
N®0: FoH — GoKbysetting (§#® 0)ae =X e, Ka,e, © FOa,e, for each object
a € A and ¢ € Z,. The coherence maps are the obvious ones.

When working with monoidal supercategories, it will sometimes be convenient to
use the following notation. Given objects a and b in a monoidal supercategory, we

write ab := a ® b. We will also writea” :==a® --- ® a.
——
r times

2.3 String Calculus

There is a well-defined string calculus for strict monoidal supercategories discussed
in [BE], §1.2]. A morphism f: a — b is drawn as

b
@ or simply as ¢
a

when the objects are left implicit. Notice that the convention used in this paper is to
read diagrams from bottom to top. The products of morphisms f ® g and f o g are
given by horizontal and vertical stacking respectively:

Fhb 4 44

Pictures involving multiple products should be interpreted by first composing horizon-
tally, then composing vertically. For example,

5 4

should be interpreted as (f ® g) o (h® k). In general, this is not the same as (foh) ®
(g o k), because of the super-interchange law:

(feg)o(hek)=(-1)M(fon)® (gok).
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In terms of string calculus, the super-interchange law implies that

Rt

2.4 Graded and Filtered Superspaces

By a graded superspace we mean a k-vector space V equipped with a decomposition
V' = ®(i,e)ezxz, Vie- Wewrite V; =V, 5@ V, 1 for the elements of V' that are homoge-
neous of degree i. Given two graded superspaces V and W, we write Homy (V, W), 5
(resp. Homy (V, W), 1) for the space of all k-linear maps that map V. to Wj; .
(resp. W, ; .,7) for each (j, &) € Z x Z,. We let gsvec and gsvec denote the super-
categories of all graded superspaces with

Homgepec (V. W)= €@ Homy(V,W);,,
(i,&)€ZxZ,

Homgsnec(v’ W) = Homk(V’ W)o,ﬁ-

There is a natural way to give gsvec (resp. gsvec) the structure of a monoidal super-
category (resp. monoidal category) with

(Vo W), = @ Vi ® Wizjern-
(jsn)€LXZLy

By a filtered superspace we mean a superspace V = V;® V5 equipped with a filtration

- C Veie © Vaigre © oo such that m(i,s)EZXZZ Veie =0 and U(i,s)erZz Veie = Ve
for each ¢ € Z,. We write Vg; = V_; 5 ® V_, 1 for the elements of V' that are fil-
tered degree i. Given two filtered superspaces V and W, we write Homy (V, W)_; 5
(resp. Homy (V, W)_; 1) for the space of all k-linear maps that map Vg;. to Wejyie
(resp. W_j,; .47) for each (j, &) € Z x Z,. We let fsvec and fsvec denote the supercat-

egories of all filtered superspaces with

Homfﬁbec(v’ W) = @ HOm]k(V, W)Si,ea
(i,e)€ZxZy

Homjspec (V, W) = Homg (V, W) g 5.

There is a natural way to give fsvec (resp. fsvec) the structure of a monoidal supercat-
egory (resp. monoidal category) with

(V ® W)gi,e = @ Vsj,n ® Wsi—j,e+11~
(j-n)eLxZy

Every graded superspace V can be viewed as a filtered superspace by setting V; . =
@j<i Vj, forall (i, ) € Z x Z,. On the other hand, given a filtered superspace V', we
write gr V for the associated graded superspace with (gr V); . := Vi ¢/ V<;i_1,¢ for each
(i,€) € Z x Z,. Given filtered superspaces V and W, a map f € Homy(V, W),
induces a map gr; , f € Homy(gr V,gr W); . in an obvious way.
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2.5 Graded and Filtered Supercategories

By a graded (resp. filtered) supercategory we mean a category enriched in gsvec
(resp. fsvec). Similarly, a graded (resp. filtered) superfunctor is a functor enriched
in gsvec (resp. fsvec). By a graded monoidal supercategory we mean a monoidal su-
percategory that is graded in such a way that f ® g is homogeneous of degree i + j
whenever f and g are homogeneous of degree i and j, respectively. Similarly, a filtered
monoidal supercategory is a monoidal supercategory that is filtered in such a way that
f®ghasfiltered degree i+ j whenever f and g have filtered degree i and j respectively.

Given a filtered supercategory A, the associated graded supercategory gr A is the
supercategory with the same objects as A and with Hom,, 4 (a, b) := grHom 4 (a, b).
The composition in gr.A is induced from the composition in A. Similarly, given a
filtered superfunctor F: A — B, we write gr F: gr A — gr B for the associated graded
superfunctor defined in the obvious way.

For example, gsvec and fsvec are graded and filtered monoidal supercategories re-
spectively. Note that gr fsvec and gsvec are not the same, but there is a faithful super-
functor I': grfsvec — gsvec that maps a filtered superspace to its associated graded
superspace and maps f+Homy (V, W)¢;_y, € Homg(V, W), ./ Homg (V, W)gi1¢

to gri)ef.

3 The Degenerate Affine Oriented Brauer—Clifford Supercategory

In this section we define the monoidal supercategories OBC and AOBC. First, how-
ever, we recall the definition of the supercategory OB from [BCNR]. Our defini-
tions will make use of the string calculus for strict monoidal supercategories (see Sec-
tion 2.3). In particular, each of the supercategories mentioned above admit a dia-
grammatic description. The objects in each of these supercategories are ®-generated
by two objects denoted 1 and |. Hence, the set of all objects can be identified with
the set (1,]) of all finite words in the letters 1 and |. The string diagrams for these
supercategories will be made with oriented strings with an upward (resp. downward)
string corresponding to the object 1 (resp. |). For example, a diagram of the form

3

corresponds to a morphism 1/} — 1{1]1. We will describe classes of diagrams that
give bases for the Hom-spaces of 0BC and AOBC. In this section we will show these
diagrams indeed span the appropriate Hom-spaces. Proof that the diagrams are lin-
early independent will be given in Section 6.

3.1 The Oriented Brauer Category

In [BCNR] the oriented Brauer category is defined diagrammatically and then a pre-
sentation is given in terms of generators and relations [BCNR, Theorem 1.1]. We take
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the latter description as our definition and view it as a supercategory concentrated in
parity 0.

Definition 3.1 The oriented Brauer supercategory OB is the k-linear strict monoidal
supercategory generated by two objects 1, | and three even morphisms\_/: 1 — 1|,
O\ = 17311 - 11 subject to the following relations:

o B

Note that the last relation is the assertion that there is another distinguished gen-
erator

(3.3) ><: 1] — |1, which is a two-sided inverse to>< = fw .

We define rightward cups/caps and downward crossings in OB as follows:

(3.4) U = 6 M= Q X::w.

An oriented Brauer diagram with bubbles of type a — b is any string diagram obtained
by stacking (vertically and horizontally) the defining generators of OB along with the
diagrams (3.3) and (3.4) in such a way that the result can be interpreted as a morphism
in Homo (a, b). For example, here are two oriented Brauer diagrams with bubbles

of type | 1*)? — 13}

o Ol (RN

The term bubble refers to any component of such a diagram without an endpoint. In
the examples above, the left diagram has two bubbles, whereas the right has none.
An oriented Brauer diagram refers to an oriented Brauer diagram with bubbles that
has no bubbles. We say that two oriented Brauer diagrams are equivalent if they are
of the same type and one diagram can be obtained from the other by continuously
deforming its strands, possibly moving them through other strands and crossings, but
keeping endpoints fixed. Moreover, we say two oriented Brauer diagrams with bubbles
are equivalent if they have the same number of bubbles and their underlying oriented
Brauer diagrams (without bubbles) are equivalent. For example, the left (resp. right)
diagram in (3.5) is equivalent to the following diagram on the left (resp. right):

AN R0 AN

Of course, any morphism in OB can be realized as a k-linear combination of ori-
ented Brauer diagrams with bubbles. It follows from [BCNR, Theorem 1.1] that two
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oriented Brauer diagrams with bubbles represent the same morphism in OB if and
only if they are equivalent. Moreover, the set of all equivalence classes of oriented
Brauer diagrams with bubbles of type a — b is a basis for Homo 5 (a, b).

As explained in [BCNR, §1], OB is a rigid symmetric monoidal supercategory.
Briefly, the symmetric braiding on OB is the obvious one given on generating ob-
jects by the crossings ><3<,><, ><. Moreover, the generating objects are dual to
one another with evaluation and coevaluation maps given by, /™ and\_/,\_J,
respectively.

3.2 The Oriented Brauer-Clifford Supercategory
Adjoining “Clifford generators” to OB results in the following definition.

Definition 3.2  'The oriented Brauer-Clifford supercategory OBC is the k-linear
strict monoidal supercategory generated by two objects 1, |; three even morphisms
A1 =ty U = 1,311 - 115 and one odd morphism $:10 51 subject
to (3.1), (3.2), and the following relations:

o B X% o

Note that the last relation in (3.6) makes use of the rightward cup defined by (3.4).
We define the downward analogue of § as follows:

-

There is an obvious monoidal superfunctor OB — OBC that allows us to view
equivalence classes of oriented Brauer diagrams with bubbles as morphisms in OBC.
We define an oriented Brauer-Clifford diagram (resp. with bubbles) to be an oriented
Brauer diagram (resp. with bubbles) with finitely many o’s on its segments, where seg-
ment refers to a connected component of the diagram obtained when all crossings
and local extrema are deleted. For example, here are two oriented Brauer-Clifford

diagrams of type | 1111} = tI11]:

U v,

(3.8) >

With (3.7) in mind, we can interpret any oriented Brauer-Clifford diagram with bub-
bles as a morphism in OBC.

Since § is odd, we must keep the super-interchange law in mind when sliding o’s
along strands. For example, by (2.1) we have

ettt
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For a more complicated example, in (3.8) numerous signs occur if one tries to rewrite
the left-hand diagram into the right-hand diagram. For example, the o in the upper
left corner of the right-hand diagram could be obtained by sliding the corresponding
o in the left-hand digram upward along its strand. In doing so it would have to pass
six of the other o’s in the left-hand diagram. Hence, this move would incur a cost of
scaling by (-1)®. However, the following result shows that o’s are allowed to freely
slide along cups/caps and pass through crossings.

Proposition 3.3  The following relations hold in OBC:

e3) U=, D=0,
a0 J- U -
S XK
MK -,
oy XX, e
o R KX

Proof The left side of (3.9) is verified below; the right side is similar.

lp-t) 1

Next, we prove (3.11)-(3.14). In (3.11)- (3.14) the right equality is obtained from the
left by composing on top and bottom with <, ><, ><, and <, respectively. The left
side of (3.11) is one of the defining relations of OBC. The left side of (3.12) is verified

below:

Similarly, the left side of (3.13) (resp. (3.14)) follows from (3.3) (resp. (3.4)) and the left
side of (3.11) (resp. (3.12)).
Finally, we verify the left side of (3.10) below.

U(?}ﬁl) 5 (3.12) é (3.9) é (3.13) 5 (3.4) U

The right side of (3.10) is similar. [ |

Next, we will flesh out more of the diagrammatic nature of OBC. However, before
doing so we pause to point out that (3.11)-(3.14) imply the symmetric braiding on
O3B extends to a supernatural isomorphism for OBC. In particular, OBC inherits the
structure of a rigid symmetric monoidal supercategory from OB.
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We have a downward analogue of the left relation in (3.6):

(3.15) 6.7 [J{J @1 M ¢.2) m (3.6) m ¢G2) | ‘

In particular, it follows that every oriented Brauer—Clifford diagram with bubbles can
be reduced, up to sign, to a diagram with the same underlying oriented Brauer di-
agram and at most one o on each strand. For example, the two diagrams in (3.8)
represent the same morphism in OBC.

Additionally, we have an even analogue of the right relation in (3.6). Indeed,

0*CG*0*-0*-G>-0

Since chark # 2, the computation above implies that

(3.16) O =o

It follows that any oriented Brauer-Clifford diagram with at least one bubble reduces
to zero in OBC. Hence, the Hom-spaces in OBC are spanned by oriented Brauer-
Clifford diagrams (without bubbles) that have at most one o on each strand. Next, we
refine this spanning set.

We say that an oriented Brauer-Clifford diagram is normally ordered if

o it has at most one o on each strand; all o’s are on outward-pointing boundary
segments (i.e., segments that intersect the boundary at a point that is directed
out of the picture);

o all o's that occur on upwardly oriented segments are positioned at the same
height; similarly, all o’s that occur on downwardly oriented segments are po-
sitioned at the same height.

For example, in (3.8) the diagram on the right is normally ordered, and the one on the
left is not. We say that two normally ordered oriented Brauer—Clifford diagrams are
equivalent if their underlying oriented Brauer diagrams are equivalent (see Section 3.1)
and their corresponding strands have the same number of o’s on them. Note that
two equivalent normally ordered oriented Brauer-Clifford diagrams correspond to
the same morphism in OBC. Moreover, it follows from the discussion above that
the Hom-spaces in OBC are spanned by normally ordered oriented Brauer-Clifford
diagrams. In fact, we have the following theorem.

Theorem 3.4 For any a,b € (1,1), the superspace Homoge(a, b) has basis given
by equivalence classes of normally ordered oriented Brauer-Clifford diagrams of type
a—b.

It is possible to give a straightforward combinatorial proof of Theorem 3.4. How-
ever, we omit such a proof, since Theorem 3.4 is a consequence of our basis theorem
for AOBC as explained in Section 3.4.

Meanwhile, let us point the following consequence of Theorem 3.4. For r > 1, let
C, denote the Clifford algebra generated by cj, ..., c,, subject to the relations ¢? = 1
and ¢;cj = —cjc; for i # j. We view C; as a superalgebra by declaring the generators to
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be odd. Let kX, denote the group algebra of the symmetric group on r letters viewed
as a superalgebra concentrated in parity 0. Then the (finite) Sergeev superalgebra is

Ser, = C, kX,

as a superspace with C, ® 1 = C, and 1 ® k¥, = kX, as subsuperalgebras and with
mixed relation wc; = Cw(iyW fori=1,...,randallw e X,.

Corollary 3.5 Forr>1,Endone (1) 2 Ser, .

Proof The Sergeev superalgebra is generated by si,...,s,-1,¢1,..., ¢, subject to
S% =1, SiSj = SjSi lf|l - ]| > 1, SiSiv1Si = Si+1SiSi+1> C? =1, C,‘Cj = —CjC,‘ ifi # j,
and s;c; = ciys; for all admissible 1 < i, j < r. From this it follows that there is a
well-defined superalgebra map

¢: Ser, — Endopse(1")
given by

@(s;) =171 and  @(c;) =17 8L

Using Theorem 3.4, it is straightforward to see that ¢ is an isomorphism. In particular,
a direct count shows that there are 2" (r!) normally ordered oriented Brauer diagrams
of type 1" — 17, which matches the dimension of Ser,. [ |

More generally, given nonnegative integers 1, s, let BC, ; denote the walled Brauer-
Clifford superalgebra. This superalgebra was introduced in [JK] where it is denoted

B, s and called the walled Brauer superalgebra. Our notation and terminology is cho-
sen so as to be consistent with that of [BGH+]. In the next result, we assume that k

contains \/—1.

Corollary 3.6  Let a be a word consisting of r 1’s and s | 5. Then
Endose(a) 2 BC,
as superalgebras.
Proof We first note that if a and b are two words with r {’s and s |’s, then
Endoge(a) 2 Endose(b).
The isomorphism is given by applying suitable symmetric braidings for OBC. Con-
sequently, assume a = |*1". By [JK, Theorem 5.1], BC, ; is generated by even gen-

erators Sy, ..., Sy—1,Sr+1» - - - » Sr+s—1> €r,r+1 and odd generators cy, . . ., ¢+ subject to an
explicit set of relations. By checking relations, we see that there is a superalgebra map
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a: BC, s > Endose(1°1") given by

sar—i-1 i—1
[T e
a(si) =4 Vrismini i-r-1 >
l ><l T, i=r+1,...,r+s—-1;

sflu -1
o (er,r+1) :l« N\ >

—i i—1

V—_lﬂ, HJ , i=1,...,7;

r+s—i i—-r—1
\/—ll %l T, i=r+1,...,r+s.

As in the previous theorem, one can use Theorem 3.4 to verify that « is an isomor-
phism. We leave the details to the reader. ]

a(ci) =

3.3 The Supercategory AOBC
We now introduce an affine version of OBC.

Definition 3.7 The degenerate affine oriented Brauer-Clifford supercategory AOBC
is the k-linear strict monoidal supercategory generated by two objects 1, |; four even
morphisms®_/: 1 - 1,y \: {1 - 1,3<: 11 > 11,$: 1 > 1; and one odd mor-
phism §:051 subject to (3.1), (3.2), (3.6), and the following relations:

(317) %Z‘i ><_><:T T‘% %

We define the downward analogue of § as follows:

B

We define a dotted oriented Brauer-Clifford diagram (resp. with bubbles) to be an
oriented Brauer diagram (resp. with bubbles) with finitely many o’s and e’s on its seg-
ments. For example, (1.1) shows two dotted oriented Brauer-Clifford diagrams with
bubbles of type |>1% — |213|. Given a nonnegative integer k, we will draw a e labeled
by k to denote k s on a strand, that is, the vertical composition of k §’s or k $’s. For
example, the diagram on the right side of (1.1) could have been drawn as

A N N

O

We can interpret any dotted oriented Brauer-Clifford diagram with bubbles as a mor-
phism in AOBC, and the Hom-spaces in AOBC are certainly spanned by all dotted
oriented Brauer-Clifford diagrams with bubbles. For all a,b € (1, |) and each k € Z,

3

https://doi.org/10.4153/CJM-2018-030-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-030-8

1076 J. Brundan, J. Comes, and J. R. Kujawa

we let Hom go5¢(a, b) ;. 5 (resp. Hom g o3¢ (a, b) . 1) denote the k-span of all dot-
ted oriented Brauer—Clifford diagrams with bubbles of type a — b having at most k
o’s and an even (resp. odd) number of o’s. This gives AOBC the structure of a filtered
monoidal supercategory (see Section 2.5). Given a dotted oriented Brauer-Clifford
diagram with bubbles, d, we will write deg(d) for the number of o's appearing in d.
For example, deg(d) = 7 when d is either of the diagrams in (1.1).

Definition 3.8 A dotted oriented Brauer—Clifford diagram with bubbles is normally
ordered if the following hold:

o removing all bubbles and all s results in a normally ordered oriented Brauer-
Clifford diagram;

o each bubble has zero o’s and an odd number of o', are crossing-free, counter-
clockwise, and there are no other strands shielding it from the rightmost edge
of the picture;

o each e is either on a bubble or on an inward-pointing boundary segment;

o whenever a e and a o appear on a segment that is both inward and outward-
pointing, the o appears ahead of the e in the direction of the orientation.

For example, in (1.1) the diagram on the right is normally ordered and the one
on the left is not. We say that two normally ordered dotted oriented Brauer—Clifford
diagrams with bubbles are equivalent if their underlying oriented Brauer diagrams
with bubbles are equivalent and their corresponding strands have the same number
of o’s and e’s. We can now state our main result.

Theorem 3.9 Foranya,b € (1, ), the superspace Hom 4 o5 (a, b) has basis given by
equivalence classes of normally ordered dotted oriented Brauer-Clifford diagrams with
bubbles of type a — b.

3.4 Consequences of Theorem 3.9 for OBC

For this subsection we assume Theorem 3.9. Let OB(0) denote the quotient of OB
obtained by requiring (3.16). Then the Hom-spaces in OB (0) have a basis given by
equivalence classes of oriented Brauer diagrams without bubbles. Moreover, there are
obvious monoidal superfunctors

(3.18) 0B(0) - OBE - AOBC.

We saw in Section 3.2 that the Hom-spaces in OBC are spanned by normally ordered
oriented Brauer-Clifford diagrams. It follows from Theorem 3.9 that the image of
the equivalence classes of normally ordered oriented Brauer-Clifford diagrams under
(3.18) are linearly independent in AOBC, whence they are linearly independent in
OBC. Theorem 3.4 follows. Moreover, it follows that the monoidal superfunctors in
(3.18) are both faithful.

3.5 Normally Ordered Diagrams Span

In Section 3.2 we showed that normally ordered oriented Brauer-Clifford diagrams
span the Hom-spaces in OBC. The goal of this subsection is to show that normally
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ordered dotted oriented Brauer-Clifford diagrams with bubbles span the Hom-spaces
in AOBC. We start with an analogue of Proposition 3.3 for AOBC. In the proof, we
will make use of Proposition 3.3 without reference.

Proposition 3.10 The following relations hold in AOBC:

o - -y
(3.20) U:U

Z)

M
o WNTHE NI H
om WX KLY
w AR EEE

oo el ey KR e

Proof The proofof (3.19) is similar to that of (3.9). In (3.21), (3.22), (3.23), and (3.24)
the right equality is obtained from the left by composing on top and bottom with
B, 2% > and < respectively. The left side of (3.21) is one of the defining relations
of AOBC. The left side of (3.22) is verified below:

Ik

aryt U UL\ UL
M Ann
Proofs for the left equalities in (3.23) and (3.24) are similar. Finally, we verify the right
side of (3.20) below:

1-R-R295]
mN N
(3.19) % (3.23) 8+ O B Q ((33,56)) 8(3.:4) Q
N

The left side of (3.20) is similar. [ |

Note that (3.9)-(3.10) and (3.19)-(3.20) allow us to draw o’s and e’s on local ex-
trema of strands in dotted oriented Brauer-Clifford diagrams with bubbles without
ambiguity. We will do so whenever convenient.
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We have a downward analogue of the left relation in (3.17):

- PR

Before proving that normally ordered dotted oriented Brauer-Clifford diagrams
with bubbles span arbitrary Hom-spaces in AOBC, we first consider diagrams of type
1 — 1. In this case we must show the superalgebra End 4o 5¢(1) is generated by

A1, Az, As, . .., where
O

First, note the defining relations of AOBC (and the similar relations on non-upward
pointed strands implied by these) along with Propositions 3.3 and 3.10 can be used
to express any dotted oriented Brauer-Clifford diagram with bubbles of type 1 — 1
in terms of crossing-free un-nested bubbles. These relations allow one to pull apart
nested bubbles, pass o's through crossings, cups, and caps as needed, and o's through
crossings at the cost of additional diagrams with fewer o’s. Repeated moves of this sort
can be used to rewrite any diagram of type 1 — 1 into the claimed form. For example,

Moreover, we can express any clockwise bubble in terms of counterclockwise ones
using computations similar to the following:

O - 8 623 \/ _ O . Q 510 -0
Remark 3.11 (Compare with [BCNR, Remark 1.3]) Set A_; := 1, A’} := -1, and

Al = kO
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for all integers k > 0. The computation above shows A_jA] + AjA’; = 0. A similar
computation can be used to show
>, Dainahjy =0

0<i<kH

whenever k is a nonnegative odd integer.

Now, using (3.6), (3.15), (3.17), and (3.25) we can reduce the number of o’s on any
bubble to zero or one. Finally, the following proposition shows that the only nonzero
counterclockwise bubbles with at most one oare Ay, A3, As, ..., whence they generate
Endﬂoge (]1)

Proposition 3.12  The following relations hold in AOBC for any nonnegative integer

k:
Gk:O, sz =0.

Proof The left relation when k = 0 follows from the right side of (3.6). If k > 0, the
left relation follows from the calculation below since chark # 2:

3.19 3.25 3.20
O Py 220y o PO

The right relation follows from the calculation below:

O (3.6) @ (3.9) @ (2'1) G
2k = = = - 2k
2k 2k
(3.10) (3.17) (3.6)
) ) @ 2k i _(_I)Zk @ 2k i ) O 2k . .

The following lemma implies that normally ordered oriented Brauer-Clifford dia-
grams with bubbles span the Hom-spaces of AOBC.

Lemma 3.13 Foranya,b e (1,]), the superspace Hom 4 9 5c(a, b) < is equal to the
k-span of all equivalence classes of normally ordered dotted oriented Brauer-Clifford
diagrams with bubbles of type a — b with at most k 5.

Proof Let d denote a dotted oriented Brauer-Clifford diagram with bubbles with
deg(d) < k. Let d’ denote the diagram obtained from d as follows. First, remove
pairs of o's appearing on the same strand until each strand has at most one o. Next,
freely slide each bubble to the right side of the picture and redraw them so that they
are crossing-free and counterclockwise, without changing the number of o’s and o’s
appearing on each bubble. Finally, on every non-bubble strand, freely slide all o’s
(resp. os) until they lie on an outward-pointing (resp. inward-pointing) segment. For
example, if d is the diagram on the left side of (1.1), then d’ is the diagram on the
right. It follows from Proposition 3.12 that d’ is either zero or normally ordered with
deg(d") = deg(d). Moreover, by Propositions 3.3 and 3.10 along with (3.6), (3.15),
and (3.25), we have d = +d’ + d”” where d” is a linear combination of dotted oriented
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Brauer-Clifford diagrams with bubbles each of which having fewer than deg(d) e*s.
The result now follows by inducting on deg(d). ]

4 Connection to Representations of Lie Superalgebras of Type Q

We next explain how the supercategories OBC and AOBC are connected with the
representations of the Lie superalgebras of type Q. In what follows, we assume that
/—1is an element of k. This is only for convenience. In particular, the arguments in
Section 6.2 imply the basis theorems hold in general.

4.1 The Lie Superalgebra q

Fix a k-superspace V = V5 @ V; with dimy (V) = dimy (V;) = n. Fix a homogeneous
basis vi,...,Vp, Vp,..., vy with |v;] = 0 and |v;| = 1fori = 1,...,n. We write I for
the index set {1,...,n,1,...,7} and I, for the index set {1,...,n}. We adopt the
convention that i = i forall i € I. Let c: V — V be the odd linear map given by
c(vi) = (—1)'”"'\/—_11/; foralliel

The vector space of all linear endomorphisms of V, gl(V), is naturally Z,-graded
as in Section 2.1. Furthermore, gl(V) is a Lie superalgebra under the graded com-
mutator bracket; this, by definition, is given by [x,y] = xy — (-1)*I"lyx for all
homogeneous x, y € gl(V). For i, j € I, we write e; ; € gl(V) for the linear map
ei,j(vk) = 8j kvi. These are the matrix units and they form a homogeneous basis for
g[(V) with |ei,j| = ‘V,’| + |V]|

By definition, q( V') is the Lie subsuperalgebra of gl( V') given by

q(V) ={xegl(V)|[x,c]=0}.

e ot 0 ._ __ 1 .
Then q( V') has a homogenous basis given by e; ;= eijte;; ande; ;:=e

5T e for
1<1i,j< n. Set

E{?’j =eij - eps and ’éij e e

for 1 < i, j < n. These are homogeneous elements of gl(V) and, together with our
basis for q( V), provide a homogeneous basis for gI( V). Note that [e} ;| = |e; ;| = & for
all1<i,j<nandeeZ,.

Let U(q) denote the universal enveloping superalgebra of the Lie superalgebra q =
q(V). The superalgebra U(q) has a homogeneous PBW basis given by all ordered
monomials in the elements (ef)j "(withl<i,j<mandr>1life= Oorr=0,1if
e=1).Set U(h), U(n),and U(n"), respectively, to be the subsuperalgebras generated
by

{efili=l....neeZy}, {ef;|1<i<j<meeZy}, {ej;|1<j<i<n,eeZy}.

The PBW basis implies that there is a triangular decomposition U(q) = U(n") ®
U(h) ® U(n).

A U(q)-supermodule is a k-superspace M = My® M7 with an action by U(q) that
respects the Z,-grading in that U(q) M, S M, for all ¢, ¢’ € Z,. In particular, the
superspace V defined above is naturally a U(q)-supermodule. A supermodule ho-
momorphism is a k-linear map f: M — N that satisfies f(am) = (=1)/l*laf(m) for
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all homogeneous a € U(q) and m € M. Note that homomorphisms are not assumed
to preserve parity. However, Hom-spaces are naturally Z,-graded as in Section 2.1.
Let U(q) -smod denote the supercategory of all U(q)-supermodules. We will write
Homy 4y (M, M") = Homy(q) -smod(M, M").

The k-superalgebra U(q) is a Hopf superalgebra. In particular, given U(q)-super-
modules M and M’, the action of a homogeneous x € q € U(q) on M ® M’ is given
by x.(me m') = (x.m) @ m" + (-1)¥I"lm ® (x.m") for homogeneous m € M and
m' € M’'. The unit object is given by viewing k as a superspace concentrated in parity
0 and with trivial U(q) action. The symmetric braiding is given by the graded flip
map. Thus, U(q) -smod is a symmetric braided monoidal supercategory.

The antipode o: U(q) — U(q) is given by g(x) = —x for x € q. Using the
antipode, each finite-dimensional U(q)-supermodule M has a dual given by M* =
Homy (M, k) with the evaluation and coevaluation maps given by the same formu-
las as for superspaces (see Section 2.1). In particular, V is finite-dimensional and so
admits a dual, V*.

4.2 Mixed Schur-Weyl-Sergeev Duality

As Theorem 3.4 and Corollary 3.5 will be used to prove the following results, let us
point out that this section is not used in the proof of Theorems 3.9 and 3.4 and Corol-
lary 3.5.

There is a monoidal superfunctor

®: OBC — U(q) -smod

mapping the objects 1, | to the superspaces V, V*, respectively, and defined on mor-

phisms by
o():1— VeV, 1— Y vi®v],
iel
D) VeV —1, fove f(v),
o(): VeV -—VeV, uev— (~)MMy @y,
o(8):V—V, v — c(v).

Indeed, a direct check confirms that @ respects the defining relations of OBC. Given
a e (1, 1), wewrite V2 := ®(a). For example, V' = V@ V* @ V.

Theorem 4.1 If the characteristic of the ground field k is zero, then @ is full.
Proof We are required to show that
(4.1) ®: Hompse(a,b) — Homy(q)(V?, V°)

is surjective for all a,b € (f,]). Suppose a (resp. b) consists of r; (resp. )
s and ry (resp. r3) |’s. Acting by the central element Y7, e} ;, one sees that
Homy(q)(V?, V) = 0 unless ry + 5 = 1] + 15
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In the nontrivial case, set r = r; + r}, = 1] + r, and consider the following:
(4.2)
Hompse(a, b) Homosge(L?1",1112) ——— Endose(1")

J J d

Homy(q)(V?,V?) —— HomU(q)(VV”",vT“VZ) s Endy(q)(V®).

The horizontal maps are all isomorphisms of superspaces. Indeed, the left horizontal
maps are given by the symmetric braidings on OBC and U(q) -smod. The right hor-
izontal maps are the k-linear isomorphisms that hold in any monoidal supercategory
with duals. In particular, the top right horizontal map is the k-linear isomorphism

given on diagrams by

? — ?

with inverse mapping

? ~ ?

RN

Since the monoidal superfunctor @ respects the symmetric braidings and duality, the
diagram given in (4.2) commutes. Thus, surjectivity of (4.1) follows from the sur-
jectivity of the right vertical map in (4.2). However, composing the right vertical
map in (4.2) with the isomorphism ¢ from Corollary 3.5 gives the superalgebra map
Ser, - Endy(q) (V®") from Schur-Weyl-Sergeev duality. When k has characteristic
zero this is known to be surjective by [Ser2] (see also [CW, Section 3.4]). [ |

Remark 4.2 When k has characteristic zero, Schur-Weyl-Sergeev duality also
implies the right vertical map in (4.2) is injective whenever r < n. It follows that
(4.1) is an isomorphism whenever the average length of the words a and b is less
than or equal to n. In particular, ® prescribes an isomorphism of superalgebras
Endpse(a) 2 Endy(q)(V?) whenever the length of a is less than or equal to n. Cou-
pled with Corollary 3.6, this recovers [JK, Theorem 3.5].

Remark 4.3 If k has positive characteristic, then one can replace U(q) with the
superalgebra of distributions for the supergroup Q(n) and again have the superfunc-
tor ®. Moreover, the above argument for the fullness of @ goes through modulo the
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statement that the map Ser, - Endy(q)(V®") from Schur-Weyl-Sergeev duality is
surjective. For given 7, it can be deduced from [BK2] that this map is surjective when-
ever n > r or the characteristic of k is greater than r. As far as the authors are aware,
surjectivity is not known in general. It is reasonable to expect it to hold (and, hence,
the fullness of ®) under mild conditions on k (cf. [BD1]). Similar remarks apply to
injectivity.

4.3 The Monoidal Superfunctor ¥: AOBC - End(U(q) -smod)

Let U(gl) (resp. U(q)) denote the enveloping superalgebra of gl(V') (resp. q(V)).
Using the bases given in Section 4.1, we can naturally view U(q) as Hopf subsuperal-
gebra of U(gl).

Let Q € U(gl) ® U(q) be the Casimir element given by

(4.3) Q= > 'é(»))-®e;-))i+?,1-,j®e},i.

1<i, j<n
Given a U(gl)-supermodule W and a U(q)-supermodule M, we have an even linear
map W® M — W ® M given by

Q.(wem)= > E?’j.w ® e?,i.m + (—l)lwlé‘})j.w ® e},i.m,
1<i, j<n

for all homogeneous w € W and m € M. By restriction, W is a U(q)-supermodule
and so W ® M is a U(q)-supermodule via its coproduct. The action of Q defines
an even U(q)-supermodule homomorphism by [HKS, Theorem 7.4.1] (there it is as-
sumed that k = C but the calculations do not depend on this fact). Alternatively, one
can use the odd invariant bilinear form given by the supertrace on q to define the
so-called odd Casimir element of U(q) ® U(q), which, by standard arguments, com-
mutes with the image of the coproduct. In turn, since Q equals the product of the
odd Casimir with v/~1c ® 1, it necessarily defines a supermodule homomorphism;
see [BD2, proof of Lemma 3.1] for details.

Theorem 4.4  There is a monoidal superfunctor ¥: AOBC — End(U(q) -smod)
by mapping the objects 1, | to the endofunctors V. ® —, V* ® —, respectively, and on
morphisms by

‘P(U):Id—>V®V*®—, m'—>Zv,~®v?®m,
iel
Y(): Veve- —1d, fovemw— f(v)m,
¥Y(<):Veve-—Veve-, uevem— (-D)"Mheuem,
¥($):Ve-—Ve-, vem— Q(vem),
‘I’($):V®——>V®—, vemr— c(v) ® m.

Proof To show the existence of the superfunctor requires that we verify the defining
relations of AOBC. The first three supernatural transformations are given by maps
that are the coevaluation, evaluation, and braiding, respectively, in the supercategory
svec. From this it follows that (3.1) and (3.2) are satisfied. A direct calculation verifies
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that (3.6) is also satisfied. The relations in (3.17) follow from the verification of [HKS,
(3.1.4) and (3.1.5)], keeping in mind the authors chose to assume that Clifford elements
square to minus one and to tensor by V on the right. Our different choices impact the
signs that appear in formulas but otherwise have no effect. ]

4.4 Bubbles and Central Elements of U(q)

As is well known (e.g., [CM, Proposition 46]), the supernatural transformations from
the identity superfunctor to itself identify as a superalgebra with Z(q), the supercenter
of U(q). In particular, using the notation for supernatural transformations set in
Section 2.2, ¥(Ax)u(q): U(q) = U(q) is a supermodule homomorphism and z :=
Y(Ak)u(q)(1) lies in Z(q). In this section we compute these central elements.

To do so requires further notation. For any k > 1and & = (e, ..., &) € Z%, define
le| = €k + - -+ + €. Furthermore, define sgn(e¢) = +1 recursively by

(_1)(sk+T)|(8k-1,...,sl)\ Sgn(«?kﬂ, Loe) ifk>1,

sgn(sk,...,€1):{1 ifk=1

Theorem 4.5 Let k be a positive odd integer; then the central element of U(q) deter-
mined by the even supernatural transformation ¥ (Ay) is

2z =2 Z Sgn(g)ef:—bik e:':::zl)ik—l o ef;,is ef12)i2 efli)il'
(lk ..... il)EIO
e=(Ekseees &1)€Z,
with |e] = 0

Proof We compute:

Y(Ax)uq)(1) = (evy ®1) 0o (1® Q%) o (yy.v+ ®1) o (coevy ®1)(1).
First observe that
(4.4) (yv,v+®1)o(coevy ®1)(1) = Z(—l)lv‘lvf®vi®l = (1—62,1)( > v;®vi0®1) ,
iel igelp
where ¢;1 := ¥($9) U € Endyq) (V'@ Ve U(q)).
To continue, it is helpful introduce some notation to simplify formulas. Given
i=(ig,....i0) € IK" and e = (ex,..., 1) € Z&, for short let ef € U(q) be given by

€ €k k-1 €2 €1
e. = e. . . . DR N oL
1 Tp—1>1k  lk—2>1k—1 11,12 “1g,11

Given ¢ € ZX and i € I, we write
VM _ Vi if|£| :6,
! vy 1f|8| = i
A straightforward induction on k > 1 proves that for each fixed i, € Iy,

le]
ix

(10 Q) v} ®@v, ®1=> sgn(e)v}, @ v} ®ef,

where the sum is over all & = (eg,...,&) € Z& and i = (ig,..., 0, 40) € IK*L,
Combining this formula with (4.4) and using (1® Q) o cy; = -2 0 (1® Q) and
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(evy ®1) o ¢y = evy ®1 yields
Y(Ak)u(q) (1) = (evy ®1) o (1~ (—1)kc2,1)( ngn(s)vi*o ® vll.il ® ef)

_]o if k is even,
2T sgn(e)e; ifkisodd.

The upper sum is over all i = (i, ...,i1,i) € IK"', and & = (e, ..., &) € Z&. The
lower sum is over all i € I5*! with i = i; and all & € Z% with |¢| = 0. This proves the
stated result. ]

For each integer ¢ > 0, Sergeev defined an explicit element S; € Z(q). As we do
not need Sergeev’s elements, we do not reproduce their definition here. The interested
reader can find it in [Serl] or [BK3, Section 8]. For completeness’ sake we explain how
Sergeev’s elements relate to those described above. Recall that o: U(q) — U(q) is the
antipode of U(q) (see Section 4.1).

Proposition 4.6  For each integer t > 1, 23,1 = =20(S;).

Proof By expanding the recursive formula for S;, we see that it is a sum with co-
efficients of +1 over precisely the same set of monomials as given by the formula
for z;;-; in Theorem 4.5, except that they are in reverse order. That is, 0(S;) and
Z4-1 are sums over precisely the same set of monomials. All that remains is to ver-
ify that the sign in front of each monomial agrees. This is a straightforward check,
keeping in mind that since ¢ is a superalgebra anti-involution, if x1, ..., xx € q, then
o(x1--x5) = (=1)°xp -+ x1, where 8 = k + X<,cick [%/]|%]. Tt is also helpful in com-
paring signs to verify that a closed formula for sgn(ey, . .., &) is given by

sgn(eg, ..., e1) = (—1)5k1 ekt Fept Darcssk £rés
where p =1if k is even and p = 2 if k is odd. ]
Remark 4.7  Assume k has characteristic zero. By our basis theorem for AOBC,
the set {A;, Az, As, ...} is algebraically independent (see also Remark 5.5). Moreover,

Sergeev’s elements are known to generate Z(q) for every n > 1 by [Serl]. Therefore,
¥ defines a surjective homomorphism End o5 (1) = Endg na(u(q) -smod) (Id).

5 The Generic Verma Supermodule

We now introduce the generic Verma supermodule. This supermodule will play a
key role in proving the basis theorem for AOBC. Analogous modules exist for Lie
(super)algebras of other types. Our approach could be used to give a different proof
of the basis theorem for AOB in type A and to obtain similar results in other types
(e.g., see [BDE+]).

5.1 The Polynomial Ring

Let U(by) denote the subsuperalgebra of U(h) generated by {h; | i =1,...,n}, where
for brevity we set h; = e} ; for i = 1,..., n. We put the usual Z-grading on U(bhgz) by
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putting each h; in degree 1. Since by is an abelian Lie superalgebra concentrated in
parity zero, U(by) is nothing more than a polynomial ring on generators h,, .. ., hy.
We refine the Z-grading on U(by) by also putting a graded lexicographic order on
the monomials with the convention that h, > --- > hy; that is, hly --- hi* < ki --- h*
ifand only if either }>; r; < ¥;s;0r Y7 = > s; and if t = 1,..., n is maximal with
re # S, then ry < sy,

5.2 The Generic Verma Supermodule

Let U(b) denote the subsuperalgebra of U(q) generated by U(h) and U(n). By the
PBW theorem, we have U(b) = U(h) ® U(n) as superspaces. Since the span of the
monomials of positive degree, U(n)., is an ideal of U(b) with U(b)/U(n), = U(h),
we can and will view U(h) as a U(b)-supermodule by inflation. Define the generic
Verma supermodule to be the U(q)-supermodule

M =U(q) ®u(b) U(h) 2= U(q) ®u(e) (U(H) ®u(n,) Ulby))-
We will write 7 := 1®1®1 € M for the “highest weight vector”. While we do not need
this fact, note that if W is a U(q)-supermodule and w € W is a homogeneous weight
vector for U(by) such that e;w=0 foralll1<i < j<mandall € € Z,, then there is a
unique U(q)-supermodule homomorphism M — W such that & — w.
For brevity, set N = n(n —1)/2 and let {fi,..., fn} (resp. {f,,..., fx}) be any
basis for ns (resp. n- ) such that

{ed11<j<i<n}={fi....fu} and {el;|1<j<i<n}={fn....fx}

—b b
In particular, a PBW basis for U(n") is given by the monomials £ --- fo f," - £,
whereay,...,an € Zspand by, ..., by € {0,1}. By the PBW theorem M is a free right
U (bg)-supermodule on basis

—b by~ —Ca
(5.1) fopay Y ek -k @l
where each ay € Zso and by, ¢x € {0,1}. In particular, the superspace M inherits a

Z-grading (hence a Z-filtration) from the right action of U (hg) where for t € Z, M,
is the span of

7171 —b —C1 —Cp
for SR T @By B @ Ulhy):
for all ay € Zso and by, ¢, € {0,1}. More generally, for any a € (1, | ), the superspace

V2 ® M is a free right U(hg)-supermodule and is similarly a graded (hence filtered)
superspace.

Lemma 5.1  Suppose 1< i, j < n, and ¢ € Z. Left multiplication by e; ; prescribes a
map M — M that is

(i) homogeneous degree 0 when i > j,

(ii) filtered degree 1 when i < j.

Proof Since M is a (U(q), U(bhy))-bisupermodule with the grading coming from

the right action by U(ly), it suffices to show that the result of acting on (5.1) on the
left by ef,j is (i) in Mo when i > j, and (ii) in M¢; when i < j.
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Part (i) follows from the fact that e; ; is an element of the subsuperalgebra U(n")
whenever i > j. That is, since monomials of the form £ --- fxVf - f ¥ are a
basis for U(n") by the PBW theorem, after acting by e} ; in U(n") one can rewrite
the result as a sum of elements that lie in M.

For part (ii) one can argue by induction on

(5.2) ay+ b+ +ay+by.

Namely, act by e; ; on (5.1) and then use the commutator formulas U(q) given in
[DW, Sections 2 and 3] to rewrite the expression into a sum of terms with smaller
(5.2). The base case when this sum equals zero also follows by a calculation using the
commutator formulas of [DW]. [ |

Lemma 5.2 Foranyace (1,]), themap V@ (V*@ M) - V®(V*® M) given by
the action of Q) is filtered degree 1.

Proof This follows from the definition of the Casimir (4.3) and Lemma 5.1. [ |

Using the previous lemma we can show that the composition of ¥ followed by eval-
uation at M defines a filtered monoidal superfunctor ¥y : AOBC — fsvec. Indeed,
it is straightforward to see that Wy, (d) is filtered degree 0 whenever d is an oriented
Brauer-Clifford diagram. The fact that Wps(d) is a filtered map with filtered degree
deg(d) whenever d is a dotted oriented Brauer-Clifford diagram with bubbles follows
from Lemma 5.2.

5.3 Some ¥,; Calculations

In this subsection we prove several lemmas concerning the superfunctor ¥y, which
will be used in Section 6 to prove our basis theorem for AOBC.

Lemma 5.3 Whenever1< i < n, the degree 1 components of
‘{’M($)(v,~®ii and ‘}’M($)(v;®i?)
are v; ® uh; and —v; ® uh;, respectively.

Proof Note that e; ;i has degree 0 unless ¢ = 0 and i = j, in which case we have
e; jit = hiu = uh;. Thus, using (4.3) we see the degree 1 components of

‘I’M($) (vi®u) and ‘I’M($) (v;ou)
are as given by the lemma. ]

Lemma 5.4  The degree k component of Wy (A )(%) is 2u(hX + --- + h¥) whenever
k is odd.
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Proof Inthe following computation of ¥y, (A ) (i) we list only the top degree terms:

Ur— Y vi®V, @U+v; 0V QU (apply ¥pr ("))
1<i<n

— Z Vi®Vi®U-VI ®Vv;®U (apply‘I’M(X))
1<i<n

— > vi*®v,~®’u\hé‘—(—1)kv;®v;.®'u\hf.‘+~-- (apply ¥ar (] $ k) and

1<i<n use Lemma 5.3)
— S ThE — (-1)kTht + - (apply ¥ar (4 N))-
1<i<n
Now, assume k is odd to get War(Ax) (@) = 2a(hE +-- + hF) + ... u

Remark 5.5 Assumek has characteristic zero. By taking » sufficiently large, the pre-
vious lemma along with the fact the first n power sums in h,,, .. ., h; are algebraically
independent can be used to show A;, Aj, As, ... are algebraically independent.

The next two lemmas concern ¥y, (d) for certain diagrams of the form d: 1" —
7. It will be convenient to let xx: 1" — 1" denote the diagram obtained from the
identity diagram by placing a single e on the k-th strand from the right. We will also
let (i, j): 1" — 1" denote the crossing of the i-th and j-th strands whenever1< i, j < r.
For example, if r = 8, then

wTTTTTH T e w1111 3K

Lemma 5.6  The degree 1 component of War(xx) (v, ® -+ v1 ® W) is v, ® -+ v| ® Uhy.

Proof First, xx — (k,1)x;(k,1) is a linear combination of oriented Brauer-Clifford
diagrams whenever k > 1. Hence, since W)y is filtered and oriented Brauer-Clifford
diagrams are degree 0, the degree 1 components of Wy (x;)(v, ® -+ ® v; ® U) and
Y ((k,1)x1(k,1)) (v, ®---®v, @) are equal. Thus, it suffices to prove the case k =1,
which follows from Lemma 5.3. ]

Let us fix the following notation for the remainder of the paper. Given a dotted ori-
ented Brauer-Clifford diagram d, let undot(d) denote the oriented Brauer-Clifford
diagram obtained from d by removing all ¢’s. For example, if

Now, suppose d: 1" — 17 is a normally ordered dotted oriented Brauer-Clifford dia-
gram (as in Definition 3.8) without bubbles. We let ;. (d) denote the number of s on
the k-th strand of d, where we count strands right-to-left according to their position
on the bottom boundary of d. In particular, we have

d = undot(d) o xP" @ o... o xP(D
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Finally, given g € Endpge (1) we let v(g) € V® denote the image of v, ® -+ ® v,
under ®(g). For example, when d as in (5.3) we have

v(undot(d)) = -V-1lv; @ V3 ® vz ® V1 ® V5 ® V5.

With this notation in mind, the following result follows immediately from Lemma 5.6.

Lemma 5.7  For any normally ordered dotted oriented Brauer-Clifford diagram
d: 1" — 17 without bubbles, the top degree component of ¥y (d)(v, ® -+-v; ® U) is
v(undot(d)) ® ﬁhf’(d) -~-hf‘(d).

6 Proof of the Main Result

We can now prove the key special case of the main result. Namely, the normally
ordered dotted oriented Brauer-Clifford diagrams with bubbles provide a basis for

Endgose(1).

Theorem 6.1  Assume thatk has characteristic zero. Then the set of equivalence classes
of normally ordered dotted oriented Brauer-Clifford diagrams with bubbles of type 1" —
1" form a basis for End g0 e (17).

Proof By Lemma 3.13, the proposed basis spans End405¢e(1"). Toward showing
linear independence, note that any linear combination of normally ordered dotted
oriented Brauer-Clifford diagrams with bubbles of type 1" — 17 can be written in the
form

(6.1) > fa(AL A3, As, .. )d,
d

where the sum is over all normally ordered dotted oriented Brauer-Clifford diagrams
d: 1" — 17 (without bubbles), and where the f;’s are polynomials in countably many
variables, only finitely many of which are nonzero. Set B= {d | f; # 0}.

We will show (6.1) is nonzero whenever B # & (completing the proof of the theo-
rem) by showing its image under ¥y, is nonzero whenever # is sufficiently large. In
turn, this will follow from the fact that, when we choose # sufficiently large to ensure
the relevant power sums are algebraically independent for any d € B:

(6.2) fa(hp+ -+ h, B>+ v B30+ -+ h3,...) % 0.

Recall from Section 5.1 that we have a graded lexicographic ordering on the mono-
mials of U(b). For the rest of the proof we assume that 7 is large enough so that for
each d € B, the leading monomial of the symmetric polynomial (6.2) with respect to
this ordering does not contain any of 4, ..., h;.

Given d € B, it follows from Lemma 5.4 that the top degree component of

\IIM(fd(Al,A:),,. .o ))(V, ®- - Qv ®ﬁ)

isof the form v, ® --- @ v; ® igg(hy, ..., h1) where g4 (h,, ..., h;) is some homoge-
neous symmetric polynomial. Fix dy € B with

(6.3) degd, + deg g4, > degd + deg g, forall d € B.
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Set
By = {d € B | undot(d) = undot(dy) and degdy + deg gy, = degd + deg g, }.

It follows from (6.3) and Lemma 5.7 that the top degree component of the image of
v, ®---® vy @ uunder Yy (X4 fa(A1, As, As, ... )d) is of the form

(6.4) > v(undot(dy)) ® uiga(hn» ..., hl)hf’(d) ...hf‘(d) +w,
deBy

where w lies in the U(h)-span of the basis elements of the form v(d) ® u with
v(d) # v(undot(do)). Recall that since n was chosen sufficiently large, the elements
hy,...,h; do not appear in leading monomials of each gz(hy,...,h;). Therefore,
since a diagram d € By is completely determined by 1(d), ..., ,(d), it follows that
the leading monomials of g;(hy, ..., hl)hg'(d) ---hf‘(d) for d € By are pairwise dis-
tinct. Thus, (6.4) is nonzero, which implies (6.1) is nonzero, as desired. [ |

6.1 Proof of Theorem 3.9

It is straightforward to see that the validity of Theorem 3.9 when k has characteristic
zero is equivalent to the following lemma.

Lemma 6.2  Assume k has characteristic zero. Then for any a,b € (1,]), the su-
perspace Hom g oc(a, b)<x has basis given by equivalence classes of normally ordered
dotted oriented Brauer-Clifford diagrams with bubbles of type a — b with at most k es.

Proof It follows from Lemma 3.13 that the proposed basis spans Hom 4 9 5¢(a, b) <.
In particular, Hom 49 5¢(a, b)<k is finite-dimensional over k. Hence, it suffices to
show the proposed basis has size dimy Hom 4 93¢ (a, b)<x. Now, suppose a (resp. b)
consists of r; (resp. r7) 1’s and r;, (resp. r5) |’s. If r; + 1, # 1] + 15, then there are no
oriented Brauer—Clifford diagrams of type a — b, whence Hom 4 9 ¢ (a, b) = 0. Thus,
we can assume that r; + 5 = 1] + r, =: r. In this case we have k-linear isomorphisms

Homose(a,b)<k — Homgose(1™1™,111) o — Endgose (") <k

defined on diagrams in the same manner as the top horizontal maps in (4.2). In par-
ticular, dimy Hom 4o pe(a, b)<k = dimg End g0 (1" )<k. On the other hand, there
are precisely r strands in any dotted oriented Brauer-Clifford diagram of type a — b.
It follows that there are the same number of normally ordered dotted oriented Brauer-
Clifford diagrams with bubbles with at most k e’s of type a — b as there are of type
1" — 1". Thus, the result follows from Theorem 6.1. [ |

6.2 The Positive Characteristic Case

We now explain how to deduce Theorem 3.9 when k has positive characteristic and,
more generally, is an arbitrary graded commutative Z,-graded ring of characteris-
tic not two. We first observe that the definitions given in Section 2.2 work equally
well if k is replaced with an arbitrary graded commutative Z,-graded ring, R, and
k-superspaces are replaced with Z,-graded R-modules. We refer to these as (monoi-
dal) R-supercategories. We define AOBCp to be the monoidal R-supercategory given
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by the same generators and relations used in Definition 3.7. For example, we have the
integral form AOBCyz of the degenerate affine oriented Brauer-Clifford supercate-
gory.

With the above in mind we have the following integral version of Theorem 3.9.

Theorem 6.3 Foranya,b € (1,]), the Z-supermodule Hom 4 93¢, (a,b) is a free Z-
supermodule with basis given by equivalence classes of normally ordered dotted oriented
Brauer-Clifford diagrams with bubbles of type a — b.

Proof Since the relations for AOBC involve only integral coefficients, the arguments
given in Section 3.5 apply to AOBCz, and so the normally ordered dotted oriented
Brauer-Clifford diagrams with bubbles of type a — b span Hom 495¢,(a,b) as a
Z-supermodule. On the other hand, consider a finite sum

(6.5) > fad,
d

where the sum is over normally ordered dotted oriented Brauer-Clifford diagrams
with bubbles of type a — b and where the f;’s are integers. There is an obvious su-
perfunctor AOBCy - AOBCc that can be applied to (6.5), and linear independence
follows from Theorem 3.9. u

Let k be a graded commutative Z,-graded ring. If Cz denotes a (monoidal)
Z-supercategory, then by base change one can define a (monoidal) k-supercategory
Cz ® k. Namely, the objects of Cz ® k are the objects of Cz and the morphisms are

Homez@k(a, b) = Homez(a, b) ®7 k.

Composition, the monoidal structure, etc., are extended to Cz ® k by linearity. There
are obvious mutually inverse superfunctors that provide an isomorphism of monoidal
supercategories between AOBCz ® k and AOBCy. The previous theorem and base
change immediately implies the following result.

Corollary 6.4 Let k be an arbitrary graded commutative Z,-graded ring of charac-
teristic not two. For any a,b € (1,1), the k-supermodule Hom 4o 5¢,(a,b) is a free
k-supermodule with basis given by equivalence classes of normally ordered dotted ori-
ented Brauer-Clifford diagrams with bubbles of type a — b.

We mention one other application of our basis theorem.

Corollary 6.5 Let k be a field of characteristic not two. The subsuperalgebra of
End qose(1") consisting of linear combinations of dotted oriented Brauer-Clifford di-
agrams without bubbles is isomorphic to the degenerate affine Sergeev superalgebra?
ASerg . introduced in [Naz, Section 3].

Proof The superalgebra ASerg, has a presentation with even generators sy, ..., s,_1,
X1, ..., %y, and odd generators ¢y, . . ., ¢, subject to the relations (for all admissible i, f):

2 .
(@) s;=1,s;s;=sjs; when |i — j| > 1, s;5i18; = Si8iSisn;

2This is also known as the degenerate affine Hecke—Clifford superalgebra.
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(b) cf =1,¢icj = —cjc; when i # jj

(©) xixj = xjx;;

(d) cixi = —xici, cixj = xjc; when i # j;
(€) sixi=xin8i —1—ciCis1e

By checking relations, we see that

oo Ko i e

defines a superalgebra homomorphism v: ASerg, — Endqose(1"). Take note that
this map follows our convention of numbering strands from right-to-left. The image
of this map is the subsuperalgebra of End 4 95¢(1") spanned by the dotted oriented
Brauer—Clifford diagrams without bubbles. From Corollary 6.4 and the PBW-type
basis for ASerg, given in [Kle, Theorem 14.2.2], one can verify that this map is an
isomorphism onto its image. u

7 Cyclotomic Quotients

Fixa,b € Zsoand m; ek foreach1<i < a. Let f(t) = t* [Tic;ca (2 —m;), €= 2a+b,
and OBEC/ be as in Section 1.3.

7.1 Bases for Cyclotomic Quotients

Since OBE” is a quotient of AOBE, we can interpret any dotted oriented Brauer—
Clifford diagram with bubbles as a morphism in OB€.

Theorem 7.1 Foranya,b € (1, 1), the superspace Hom 4 o (a, b) has basis given by
equivalence classes of normally ordered dotted oriented Brauer-Clifford diagrams with
bubbles of type a — b with fewer than € &’ on each strand.

A full proof of this theorem can be found in Section 8. Note that it is easy to show
the proposed basis in Theorem 7.1 spans the appropriate Hom-space. Indeed, any dot-
ted oriented Brauer-Clifford diagram with bubbles having € s on one of its strands
can be realized as a linear combination of diagrams with fewer total o’s by using Propo-
sition 3.10 to slide those ¢ o’s to the right side of the picture, and then reducing as
prescribed by f. For example, the following holds in OB/ when f(t) = t:

X 1787 AL PSP
7.2 Connection to the Superalgebras of Gao-Rui-Song-Su

In this subsection we explain how to recover the affine and cyclotomic walled Brauer-
Clifford superalgebras from [GRSS1] from our supercategories. The discussion here
parallels the analogous one in [BCNR, Section 5.5].

First, AOBC can be viewed asak[A;, As, ... ]-linear supercategory with the action
of each Ay given by tensoring on the right: hAy := h ® Ag. Given 6y, 63, € k, we
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let AOBC(61, 9, ... ) denote the supercategory obtained by specializing each Ay,
at 8. In other words, AOBC(d1,8;,...) = AOBC ®[a,,a,,...1 k, viewing k as a
k[Ay, A3, ... ]-module with Ay,_; acting as k. It follows from Theorem 3.9 that the
superspace Hom 4 03¢ (s,,5,,...) (3> b) has basis consisting of all equivalence classes of
normally ordered dotted oriented Brauer-Clifford diagrams (without bubbles) of type
a - b. We have a similar specialization for level ¢ cyclotomic quotients. Namely, let
us write f(t) = Y%, a;t'. Now, fix 8y,..., d1¢/2) € k, and define & recursively for
k>|¢/2] by

(7.1) Sk=— > ap2j0kj.

1<j<|e/2]

Then the specialization Oﬁ@f((?l, s 0lep)) = oBe/ ®K[Ay,As,...] K- is well defined.
equivalence classes of normally ordered dotted oriented Brauer-Clifford diagrams
(without bubbles) of type a — b with fewer than ¢ s on each strand. For the remain-
der of this section we will write ABC; (61, 6,...) and BC{,,(&, .+.»08]¢/2)) for the
endomorphism algebras of the object |*1” in the supercategories AOBC(Jy, 82, ... )
and OBC/ (4, ..., 0|¢/2))> respectively.

Let BC? denote the affine walled Brauer-Clifford superalgebra defined in [GRSSL,
Definition 3.1]. This superalgebra is defined via odd generators ¢; (1 < i < r),cj
(1 < j < 5); even generators ej, x1, X1, 5; (1 < i < r),5; (1 < j < s); and even
central generators wyk41, Wi (k € Zso) subject to a long list of relations. It is an
exercise in checking those relations to see that there is a well-defined superalgebra
map BC¥f — ABC;,(81,05,...) defined by

T4 AT

“ih P
R i

J 1 7 _

e —> , Wrk 0 5
VAR

Wake1 — —Ok+1 > W1+ 52,

where &} is defined recursively by 8 — & = Yocicx/2) 0i0)_; (compare with Re-
mark 3.11). This map factors through the quotient BC, ; of BCT by the additional re-
lations woj—1 = =8k, Wak = 0, Wak—1 = &) for all k € Z., which is precisely the special-
ized superalgebra in [GRSSI, Theorem 5.15]. Using our basis theorem, one can easily
check that the spanning set for BC,  described in [GRSSI, Definition 3.15 and Corol-
lary 3.16] maps to a basis for ABC; (61, 8, ... ). Hence, B\C’m % ABC;,,(81,62,...).
Note that this also gives a different proof of the linear independence in [GRSS], The-
orem 5.15].

https://doi.org/10.4153/CJM-2018-030-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-030-8

1094 J. Brundan, J. Comes, and J. R. Kujawa

A similar discussion applies to cyclotomic quotients. Again, fix 6y, ...,d[¢2) €k,
and define 8y for k > |£/2] by (71). In [GRSSI, Definition 3.14], the cyclotomic
walled Brauer-Clifford superalgebra BCp . s is defined as the quotient of 1’3\(,,’7,5 by
the additional relations f(x;) = g(x;) = 0 where g(¢) is another monic degree
¢ polynomial satisfying certain conditions. One can check that those conditions
imply f(x;) and g(x;) are mapped to zero under the composition of the isomor-
phism BC*f — ABC;,(81,65,...) from the previous paragraph with the quotient
map ABC; (61,02,...) — BC{,,(&, ..+»0¢/2]). Hence, that composition factors
through BC,,, s to induce a surjection BCq s — BC{,,(&, .++»0¢/2]). Now, using
our basis theorem, one can check that the spanning set for BC,,, ; from [GRSS],
Definition 3.15 and Corollary 3.16] maps to a basis for BC{,,(SI, ... 0]¢j2)). Hence,

BCe,rs 2 BCL, (81, .., 81¢/2))-

8 The Cyclotomic Basis Theorem

In this section we provide a proof of Theorem 7.1. We actually consider some slightly
more general cyclotomic quotients than the ones defined so far, whose definition is
similar in spirit to Rouquier’s deformed cyclotomic quotients of quiver Hecke algeb-
ras from [Rou, §4.4]. Let K be some commutative k-algebra and consider the base-
changed K-linear monoidal supercategory AOBCk = AOBC @, K.

Fix € > 0 and monic polynomials

(8.1) f(u) =zout +zut v utt

f(u) = zhu’ + Zu" 2 + Zut* +
in K[u]. So zg = zj = 1, and all powers of u in these polynomials are even or odd
according to the parity of £. Define the power series

6(14) = 6() + 811/!_1 + 6211_2 Foeey,
& (u) =8, +Su +Shut+--

in K[[u™]] from

(82) 8(u?) = f'(w)/f (w),
(8.3) &'(u?) = =f(u)/f'(u).
Note that §y = 1, but ) = —1. Computing the coefficients of 2" in f'(u) =
f(u)d(u?) gives
(8.4) zr: 20, s =z, forr=0,...,[¢/2],

s=0

L€/2]
(8.5) Z z6,_s =0 forr> | £/2].

s=0

Let Sym be the algebra of symmetric functions over K, viewed as a purely even
superalgebra. Denote the elementary and complete symmetric functions by e, and h,
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as usual; in particular, ey = hy = 1. Working in Sym[[u"]], we set
e(u)=e+utey+uley+---,
h(u)=ho+u" hy+uhy +---,

and recall the fundamental identity e(#)h(-u) = 1. By Theorem 3.9 and Remark 3.11,
there is a well-defined superalgebra isomorphism

(8.6) B: Sym — Endqose. (1), h,—> (—l)rO 21, ey —> — 2r-1 O
So that this also makes sense in the case r = 0, it is natural to adopt the convention

that(} -1 :==1gand =1 O =-1y.

Lemma 8.1 The K-linear left tensor ideal J¢, i of AOBCxk generated by

(8.7) {£($).O ot 0| r=1,...[e2]}

is generated equivalently by

(8.8) {f’(i),2r—1O—8;11‘rzl,...,[f/zj}.
Moreover, Iz, ¢ contains O 2r-1 — 8,1y and 2r-1 O — 071y forallr > 0.

Proof This is similar to [Bru2, Lemma 1.8]. We first show by induction on r that
Jf,fr contains 2r-1 — 0,1y for all r > 0. This is immediate from the definitions for
r < |£/2], so assume that r > | £/2]. Since 2r — 1 > ¢, we get from f( ? ) € J5,f that

se{)z ZSO 2(r-s)-1 € J ¢ as well. Now the following verifies the induction step:

2/2 Le/2]

Le/2]
O 21 = §,1g (855) O 2r-1 + Z z6, 511 = Z ZSO 2(r-s)-1 =0 (mOd Jf,f’)-
s=1

Hence, recalling (8.6), we have that S(h(-u?)) = §(u*)1y (mod Iy, ). Since e(u) =
h(-u)™ and & (u) = —8(u)7", it follows that B(e(u?)) = —&"(u?*)1y (mod Ty f).
This shows that 2r-1 O — 0,1y € J ¢ for all 7 > 0. Now we can show that f’ ( i ) €

jf,f/:
Le/2] Le/2] « le/2] /2]

f’( i ) =Y z ie—n 6 > >z ie—zr = Z Zs Z iE—ZrO 2(r-s)-1
r=0 r=0 s=0

L¢/2]
= Z;) Zs e-2s =0 (mod jf,f/),

where for the last equality we have used Proposition 3.10 repeatedly to pull the £ — 2s
dots on the right curl down past the crossing, plus Proposition 3.12 to see many of
the dotted bubbles produced are zero. Now we have shown that the left tensor ideal
generated by (8.7) contains (8.8). A similar argument shows that the left tensor ideal
generated by (8.8) contains (8.7), completing the proof of the lemma. [ |
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Definition 8.2 Define the cyclotomic oriented Brauer-Clifford supercategory asso-
ciated with the polynomials f and f’ fixed above to be the K-linear supercategory

OBC// that is the quotient of AOBEy by the K-linear left tensor ideal I, from
Lemma 8.1.

Our goal is to establish a basis theorem for the morphism spaces in 0Bef . As
we will explain fully later on, the cyclotomic oriented Brauer-Clifford supercategory
OBE/ is a special case, so that Theorem 7.1 will follow from this more general result.

Continuing to work over K, recall from Corollary 6.5 that there is a K-superalgebra
homomorphism

a: ASerg, — Endqose, (1°")
sending x; to the o on the i-th strand, ¢; to the o on the i-th strand, and s; to the
crossing of the i-th and (i + 1)-th strands (numbering strands 1, ..., n from right to
left). By Theorem 3.9, the map
a® f: ASerg, ®k Sym — Endqose, (1°")
is a superalgebra isomorphism. Let Serg{: be the cyclotomic Sergeev superalgebra from
[BKI, Section 3-e], namely, the quotient of ASerg, by the two-sided ideal generated

by f(x;). Composing a with the canonical quotient map I1: End4one, (1%") —
End 5 er. (1€") gives a well-defined K-superalgebra homomorphism

y: Sergﬁ —> End 0. (1%7).
The following is the key to all our subsequent arguments.

Lemma 8.3 y is an isomorphism.

Proof Letm: ASerg, ®g Sym —» Serg£ be the K-superalgebra homomorphism that

sends a ® 1 to the canonical image of a in Serg{:, and 1® h, to (-1)"6,. Note that
ker 7 is I ® Sym + ASerg, ®], where I is the two-sided ideal of ASerg, generated by
f(x1) and ] is the two-sided ideal of Sym generated by h, — (-1)"8, for r > 1. Also let
IT: Endgose, (1®") - Endy g (1%") be the canonical quotient map as above.
By directly checking it on generators, one sees that the following diagram commutes:

ASerg, ®k Sym a%@ﬁ> Endaose, (1°")

| E

Serg’; —y) EndO(Bef,f/(T‘g’”).

It follows immediately that y is surjective. Moreover, the injectivity of y follows if we
can show that (a« ® )" (ker IT) < ker .
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By the definition of OB/ ', ker IT is the subspace of End 4 9 e, (1®") defined by
the left tensor ideal J¢ /. This means that any element of ker IT is a K-linear combi-
nation of morphisms 0: 1" — 1®" in AOBCk of the form

f=0o(A®p)oT= T

where p is one of the generating morphisms f( ? ) or B(h,) - (-1)"8, for I ¢, and
0, T, A are any other morphisms so that the compositions make sense. Thus, we must
show that the inverse image under & ® 8 of such a morphism 8 = 6 o (A ® p) o 7 lies
inkerm = I ® Sym + ASerg, ®].

If p = B(h,) - (-1)"6, for some r, then (a ® )" (0) obviously lies in ASerg, ®].
Instead, suppose that p = f ( ? ) . Using the relations established earlier in the paper
(especially Propositions 3.10 and 3.12), we “straighten” the diagram 6 leaving the p-
coupon on the right edge fixed, to rewrite it as a K-linear combination of morphisms
of the following two types:

@ |- |j|-o:|®8for0’,r’ eImaand § € Imf3;
(ID) r7[71 ® dfor A" e Im(«), 8 € Im(fB) and r > | £/2].

These morphisms arise when the p-coupon ends up on a propagating strand (type I)
or on a dotted bubble (type II) after straightening. The inverse image under « ® 8 of a
type I morphism lies in I ® Sym. The inverse image under « ® 8 of a type Il morphism
lies in ASerg, ®] because

2r—t-1 Le/2]
ﬁ_l( ‘ ) = jz(:](_l)r_szshr—s

Le/2)
.5 S (1) 2 (hyes = (-1)8,) € J. n

s=0

Now we can prove the main result of this section. Recall the definition of normally
ordered dotted oriented Brauer-Clifford diagram from Definition 3.8.

Theorem 8.4 For any a,b € ob 0Be"S, the morphism space Hom 5 o, (@, b)
is a free K-module with basis given by equivalence classes of normally ordered dotted
oriented Brauer-Clifford diagrams (without bubbles) of type a — b having fewer than £
o’s on each strand.

Proof Let us first show that the given diagrams span Hom s (a,b). In fact,
we show by induction on N that any diagram representing a morphism a — b in
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OB/ with N &s can be written as a linear combination of the ones among the
specified diagrams that have N or fewer o’s. The case N = 0 is straightforward (and
also follows from Theorem 3.4). In general, take a diagram with N > 0 e’s. Using the
relations, s and o’s can be moved past crossings or other dots (possibly introducing
a sign in the case of o’s) modulo diagrams with strictly fewer o’s. In particular, any
dotted bubble can be moved to the right-hand side of the picture modulo diagrams
with strictly fewer o's and, once on the right-hand side, it may be replaced by a scalar
using Proposition 3.12 and the last part of Lemma 8.1. To complete the proof of the
spanning part of the theorem, it remains to observe that if any strand has £ e’s, it can
be rewritten in terms of diagrams with strictly fewer o’s: for any objects a and b, the

relat10nsb®a®f( —Oandb®a®f’( : ) =0in OBCSS imply that

[HLef b P o] e

where = means “equal modulo a linear combination of diagrams with fewer than £ s

It remains to establish linear independence. Note to start with that the result is
true in the special case a = b = 1®", for in this case it follows using Lemma 8.3 and
the basis theorem for Sergﬁ established in [BKI, §3-¢]. In general, we first reduce to
the case b = 1 using K-module isomorphism

b
Hom ., o1 (3, b) SN Hom o1 (b* ® a, 1), — .
a bt a

This same reduction proves the theorem in the case a = |®" ® 1¥",b = 1, since it
follows from the special case a = b = 1®” treated already.

Now suppose that a is arbitrary and b = 1. The space Hom ., 01,7 (a, 1) is zero
unless a has n letters equal to 1 and # letters equal to | for some # > 0. Assuming that
is the case, the object a is a “shuffle” of the tensor | " ® 1®” already treated. Consider
the minimal length permutation of tensor factors taking a to |®” ® 1®". There is
corresponding isomorphism w: a - |®" ® 1®" in OB e/ obtained by composing
various rightward crossings. Hence, we get another K-module isomorphism

)”

Hom . o1, (12" ® 1°",1) — Hom 5 1.1 (2, 1), 0r— wo0.

Applying this isomorphism to the basis for Hom ;5 .7 (1" ® 1%",1) already ob-
tained at the end of the previous paragraph, we obtain a basis for Hom , 5, 0. (2, 1).
It is not quite the same as the basis of normally ordered diagrams we are after, but
from it we can slide o's and o’s along strands to obtain the desired basis (up to some
signs), modulo diagrams with strictly fewer o', just like in the opening paragraph of
this proof. This means that the transition matrix between the basis in hand and the
basis in mind is unitriangular when suitably ordered, which is all that is needed to
complete the proof. ]

Finally, we explain the connection to the cyclotomic quotients OBE’. For this, we
specialize to the case that the monic polynomial f(u) from (8.1) has its coefficients in

https://doi.org/10.4153/CJM-2018-030-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-030-8

A Basis Theorem for the Degenerate Affine Oriented Brauer-Clifford Supercategory 1099

the original ground field k. Also let

(8.9) f(u) = uf +Zu"? + - e K[u],

where K := k[z{,...,z[mJ] for indeterminates Z{’""Z[e/zj- Define §(u), 8" (u)
from (8.2) and (8.3). By the identity (8.4), the coefficients 01, ..., d|¢2| of d(u) are
related to the indeterminates z;, . . ., z[ ¢/2) by a unitriangular transition matrix. Thus,

K is also freely generated by 0y, ..., |¢/2)- In OB @/F', the scalar 8, acts in the same
way as tensoring on the right with the counterclockwise bubble with 2r — 1 ¢’s. So we
get the following corollary immediately from Theorem 8.4.

Corollary 8.5  Assume f(u) e k[u] and f'(u) € K[u] as in (8.9). For objects a, b in

0BCHf, the morphism space Hom , 5, 7.7 ( a, b) has basis as a vector space overk given
by equivalence classes of normally ordered dotted oriented Brauer-Clifford diagrams
with bubbles of type a — b having fewer than € e’s on each strand.

Continuing with f(u) € k[u], the k-linear supercategory OB/ is the quotient of
AOBC by the k-linear left tensor ideal generated by f ( $ ) . The composition of the
natural k-linear superfunctor AOBC — AOBCxk followed by the quotient functor

AOBCk — oBeHf ' factors through OBC/ to induce a k-linear superfunctor
(8.10) 0Be/ — oBe/

This is the identity on objects. On morphisms, it is noted already in Section 71 that
Hom 4 er(a, b) is spanned as a vector space over k by the equivalence classes of nor-
mally ordered dotted oriented Brauer-Clifford diagrams with bubbles of type a — b
having fewer than £ e’s on each strand; the proof is the same argument as in the first
paragraph of the proof of Theorem 8.4. The images of these spanning morphisms un-
der the superfunctor (8.10) give a basis for Hom , 5, o1, (2, b) thanks to Corollary 8.5.
Hence, they are already linearly independent in Hom 4o (a, b), and (8.10) is an iso-
morphism on morphism spaces. We have proved the following corollary.

Corollary 8.6  The k-linear superfunctor (8.10) is an isomorphism.

Corollaries 8.5 and 8.6 together imply Theorem 7.1.
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