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ON GAUSSIAN AND GEODESIC CURVATURE 
OF RIEMANNIAN MANIFOLDS 

HANSKLAUS RUMMLER 

Introduction. In [1], S. S. Chern gave a very elegant and simple proof of 
the Gauss-Bonnet formula for closed (i.e. compact without boundary) oriented 
Riemannian manifolds of even dimension: 

12 = cx(M). 

Here, c is a suitable constant depending on the dimension of M and 12 is an 
n-îorm (n = dim M) which may be calculated from its curvature tensor. 
W. Greub gave a coordinate-free description of this integrand 12 (cf. [4]). 

Chern generalized his result in [2] to smooth polyhedral regions G with 
boundary dG: 

( 12 + f n = cx(G, dG). 
J G J v(dG) 

Here, II is a (n — l)-form on the unit sphere bundle E over M and v'.dG —» E 
is the outer unit normal field on the boundary dG of G. Now, 12 = nKdVn, 
where d Vn is the oriented Riemannian volume on M and K is a smooth function 
on M, which may be considered as Gaussian curvature. In the same way, 
v*U = ndVn-i, where dVn-i is the induced volume on dG. The function K is 
then uniquely determined and corresponds to the geodesic curvature in the 
case n = 2, where dG is a curve. The aim of this article is to define the geodesic 
curvature for any oriented hypersurface in an even-dimensional oriented 
Riemannian manifold—without using the sphere bundle for this definition— 
and to state and prove the Gauss-Bonnet formula for compact regions with 
smooth boundary: 

J KdVn-.i + n I KdVn = cn-ix(Gf dG). 
dG *>G 

Here, cn_i = 2 wm/(m — 1)1 is the volume of the unit (n — l)-sphere and x 
is the Euler-characteristic. The constants n and cn-i appear in the formula to 
simplify notation in the definition of K and K. 

Part 1 of this article defines K and K in terms of the Riemannian connexion 
and curvature tensor. Part 2 proves the Gauss-Bonnet formula. To do so, we 
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use Chern's idea to work with the unit sphere bundle. Furthermore we use 
details of Greub's proof in [4]. 

1. Gaussian and geodesic curvature and the Gauss-Bonnet formula. 
Throughout this paragraph, M denotes an oriented Riemannian manifold of 
dimension n = 2m, with 2-co- and 2-contravariant curvature tensor R, regarded 
as 2-form on M with values in A2TM {TM the tangent bundle of M). To avoid 
unnecessary minus-signs, let us make the following sign-convention for R: 
If M is the n-sphere of radius r in Euclidean (n + 1)-space, its curvature 
tensor is given by 

R(x;ui1u2) = + i ^ i A u2 lorx 6 M,ui,ti2 G TXM. 
r 

(This corresponds to the form —A in [4]!) R induces an n-îorm Rm on M, with 
values in the line bundle AnTM: define for Ui, . . . , un £ TXM 

Rm(x; «i, . . . , un) : = ^— X) ^R(x\ uffl, uff2) A . . . A R(x; uVn_„ uVn). 
* ml aesn 

Here, Sn is the symmetric group of permutations of n objects, and ea is the sign 
of a £ Sn. 

The oriented Riemannian volume on M is a map dVn = e*: AnTM —> R, 
linear on each fibre. I t is determined by the property (e*, e\ A . . . A en) = 1 
for any positively oriented orthonormal basis eu . . . , en of TXM. 

Definition. Let ely . . . , en be an orthonormal basis of TXM, and denote by 
e\*, . . . , en* the dual basis. Then the Gaussian curvature of M at x is defined by 

KW : = *fei (e* A • • • A e*, Rm(ei en)). 

(The choice of the constant factor is not the usual one; it is, however, useful in 
our context.) 

Now fix an orthonormal basis eu . . . , en of TXM, and select 2p pair wise 
different indices j i , . . . , J2P(l ^ p Û m). ejly . . . , ej2p span a 2^-dimensional 
subspace of TXM, and for a sufficiently small neighbourhood U of 0 in that 
subspace, expx(U) is a 2^-dimensional submanifold of an open neighbourhood 
of x in M. We denote it by Mjx . . . j2P or M j , if J denotes the 2^-tuple / = 
(ju • • • jjzp) a n d c a ^ lt the submanifold spanned by ejlf . . . , ej2p. M j shall be 
endowed with the induced Riemannian metric. In particular, it has a well-
defined Gaussian curvature at x. 

LEMMA. The Gaussian curvature of M j at x is 

Kj(x) = ^ - y (ejx* A . . . A ejip*, Rv{ejly . . . , ej2p)). 
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Proof. Denote the curvature tensor of Mj by R. A2pTxMj may be regarded 
as a one-dimensional subspace of A2PTXM, and if p*: A2PTXM —> A2pTxMj 
denotes the map induced by the orthogonal projection TXM —» TXMJ} one 
checks that 

Rp(ejly . . . , ej2p) = p*Rp(en, . . . , ej2p). 

(To do so, one needs the fact that M j is geodesic at x, i.e. it contains the geo­
desies passing through x in directions eJlt . . . , ej2p.) Now the lemma follows, 
because (TxMj)* can be regarded as a subspace of (TXM)*, en*, . . . , ej2p* 
being the dual basis to ejly . . . , ej2p. 

Before defining the geodesic curvature, we introduce some notational con­
ventions: For p, r £ N, p :g r, denote by A (£) the set of ordered ^-tuples 
(ii, . . . , ip) with 1 S ii < . . • < iP S r, and for I £ A Q let / ( / ) be the 
complementary (r — £)-tuple in 

A (rlp): J = 0'i, . . . ,jr-p), 1 ^ i l < • • • < Jr-p ^ r, 
{ii, . . . , v i i , . . . ,ir-p} = {1, . . . , r}. 

U p = r, J (I) is not defined since A(r
r) = 0! For / G A Q and real numbers 

Ain • • • » A*p se^ A/- — An • • • ̂ v 
Next consider an oriented hypersurface N oî M. N has an upper unit normal 

field v. For x £ N, define LX:TXN —> jyV by Lx(u): = ZV, where D is the 
Levi-Civita connexion on M. Lx is the so-called Weingarten map, which is 
self-adjoint with respect to the induced metric on N (see [6]). Therefore there 
exists an orthonormal basis e\, . . . , en-i of TXN, consisting of eigenvectors of 
Lx. Denote the respective eigenvalues by Xi, . . . , Xn_i. 

Definition. With the foregoing notations, the geodesic curvature of N at x 
is defined by 

*N(X) ' = H \ h ) H XjKJ(I)(x). 
}c=0 \ & / TCA / n-1 \ 

(Note that for k = 0 , 1 = (1, . . . , n — 1) and that / ( / ) is not defined. So the 
term for k = 0 is simply Xi . . . Xn_i!) 

This definition reduces to the usual one in the case n = 2, where N is an 
oriented curve on a surface. More generally, the eigenvalues X* can be inter­
preted as geodesic curvatures of certain curves on surfaces: Take a smooth 
curve 7 in iV, passing through x in direction et, and attach to its points the 
geodesies passing through it in direction v. This yields a surface MVt7 whose 
tangent space at x is spanned by v(x) and et. Endow MVj7 with the induced 
Riemannian metric and orient it by requiring (v(x), et) to represent the orienta­
tion at x. Then, if y is oriented by its tangent vector et at x> \ t is the geodesic 
curvature of y at x, regarded as curve on the surface MVt7. We leave the 
verification to the reader. 
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Now, let G be a compact domain in M, with smooth boundary dG, and denote 
by v the outwards pointing uni t normal field on dG. (Recall t h a t M is oriented !) 
I t can be extended to a vector field v on G with a single singularity. T h e index 
of this singularity does not depend on the part icular extension, bu t only on v, 
and hence on G. We define the Euler-characterist ic of (G, dG) by 

x(G, dG): = index (?). 

In this definition, v can be replaced by any tangent field on dG wi thout zeroes. 
Such tangent fields exist, because dG has odd dimension. 

T H E O R E M (Gauss-Bonnet formula) . Let M be an oriented Riemannian mani­
fold of even dimension n = 2m, and G a compact domain in M with smooth 
boundary dG, oriented by the outwards pointing normal field. Then 

J KdodVn-i + n J KdVn = cn-ix(G, dG). 
dG v G 

Here, dVn and dVn-i denote the oriented Riemannian volume on M and dG, 
respectively, and cw_i = 2 irm/(m — 1)! is the volume of the uni t (n ~ 1)-
sphere. 

2. T h e proof of t h e G a u s s - B o n n e t f o r m u l a . Denote by ( £ , p, M) the 
uni t sphere bundle over M, whose fibre a t x is the uni t sphere Sx in the tangent 
space TXM. 

For v G E, the Levi-Civita connexion D on M defines a decomposition of the 
tangent space 

TVE = HVE © VVE 

into horizontal and vertical par t . T h e horizontal par t , HVE, is isomorphic to 
Tp(v)M, the isomorphism being given by the der ivat ive of p a t v, p*:TvE —» 
TP(V)M. We therefore regard p* as the projection of TVE onto its horizontal 
pa r t and write H: = p*. T h e vertical pa r t can be identified with the subspace 
vL of TP(V)M, and we denote by V: TVE —> Tv^v)M the corresponding projection 
map . 

If v : U —* E is a differentiable section ( U an open subset of M), for its deriva­
tive v*:TU —» TE and its covariant derivat ive Dv'.TU —> TM the following 
relations hold: 

(1) Vov* = Dv, Hov* = id. 

On the fibre product TE X ETE we define the a l ternat ing bilinear bundle 
m a p ("Alternat ing bilinear" means a l ternat ing and R-bilinear on each fibre.) 

W:= VA V:TEXETE-^A2TM 

over p:E-+M, i.e., W(wu w2) = 2V(wi) A V(w2) G A2Tp(v)M for v G E, 
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Wi, W2 G TVE. In the same way, 

RoH: = Ro (HXPH):TEXETE->A2TM 

is an alternating bilinear bundle map over p:E —> M. 
Following the main ideas of [4], we construct for X G R the alternating 

(n — 1)-linear bundle map 

$x : = F A (\W + RoH)m-1 : TE X B • • . X ETE -> JsTxTM. 

Here, the "exterior power" is defined as 

(XW+RoH)™-1: = ]_ (XW + RoH) A . . . A (XW + RoH), 

and the binomial formula holds: 

m— 1 

(\W + RoH)m~1= Z X*^*A {RoH)m~l-\ 

(See [4].) 
For fixed v £ E, <p\(v) : = (e*, » A $x) is a well-defined alternating (w — 1)-

form on TVE, i.e. <p\ is an (w — l)-form on the manifold E, depending on the 
parameter X. With the inclusion map J:E —> TMy we can write 

<px = (é*,J A *x). 

From (1) we obtain for any local differentiate section v in E the relation 

(2) v*(<px) = <e*, v A Dv A (\Dv A Dv + i?)™"1). 

Greub proved in [4] the formula 

d(e*, v A Dv A (\Dv A Dv + R)m~l) 

(3) = g (2k + 1)! ^ 2{k + 1 } (z>v)2(^i) A ^ - i - * 

- (Z^)2* A Rm~k). 

(Note our sign-convention for Rl) Since (2) and (3) hold for any local differ­
en t i a t e section v in £ , (3) determines dcp\ uniquely: 

(4) (fa = Z - - 4 r - - XV, 2(* + 1)F2(*+1) A (RoH)1^1^ 

- F2* A (RoH)1"-*). 

Comparing the coefficients of \k in <p\ and d^x leads to the definition 

(5) ^ : = (e*f J A V2^1 A (Ro H)m-l-k), 0 ^ k ^ m - 1, 

and the relation 

(6) d*>* = (e*, 2(ife + 1) ^2(*+1) A (i? o i?)™"1-* - F2fc A (R o # )" -*) . 
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Now set 

(7 ) <p: = 
ra—1 -j 

~ / J 7)^7 i / m — 1 \ tPm—l—k' 
fc=0 ^ # ^ A; J 

Let us integrate ^ over a fibre in the bundle (E, £, I f ) : T h e integrals of the 
terms containing RoH vanish, because H(TV(SX)) = 0 for x G M, Î; G S^. 
So we obtain 

(8) ( f= f ¥W-i = f (e*, J A F""1) = f d 7 _ i = C L 
•/Sa; J Sx J SX J SX 

From (5) and (6) we find t h a t 

and our definition of the Gaussian curva tu re tu rns this into 

(9) d<p = -np*(KdVn). 

If TV is any oriented hypersurface in M with upper normal field v, the {n — In­
form v*<p on iV can be wri t ten as 

(10) v*<p = RNdVn-U 

where KN is a well-defined smooth function on N. 
Now it is easy to prove the theorem with KQG instead of KdG'> Ex tend the 

ou twards pointing normal field v on dG to a uni t vector field v\G — x0 —> E 
with a singularity of index %: = x(£> dG) a t x0 £ G. î (G) is an ^-dimensional 
submanifold of E with boundary dv(G) = v(dG) — xSxo> Hence, by Stokes ' 
Theorem, and (8), (9), (10), 

—n I KdVn = I dç> = I <P — x \ ^ = I feGdrn_i 
• / G « / ? ( G ) Jp(dG) *J SXQ *JdG 

— Cn-iX. 

Our proof will be completed, if we can show KN = KN, for any oriented hyper­
surface N in M with upper normal field v. Fix a point x £ N and set e0*. = v(x)y 

and let #i, . . . , en-i be any positively oriented or thonormal basis of TXN. 
Then , by definition, 

KN(X) = v*<p(ei, . . . , en-i) 

( H ) _ V 1 1 * / N 
— 2~i 0*1,1/TO-IT ? ^ m - l - H ^ l , • • • i £rc-lJ-

fc=o z #!^ ^ ; 

T o express v*<pm-i-k(ei, . . . , ew_i), let us write 
el, 1 = e*0ttl...ir: = el A e\ A . . . A e*r for I = (iu . . . , i r ) , 
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and similarly 

•L'x, i — -Lx,ii...ir
 = ^x\en) A . . . A Lx(eir), 

where LX:TXN —» TXN is the Weingarten map as defined above. Recall also 
the definition of the index set A Q for 0 ^ p ̂  r and the map 

J • A (p) >A (r—p)* 

Thus we have 

v*<pmr.i^k(eu • • • , *V-i) 

1 
2-J \eo,ii...in-u eo A LXtil...i 

A Rin-2k.-.in-l) 

(2k)l(n - 1 - 2k)\ <l i.^ in_1 ^ u ' i l - ^ - 1 ^ u / x ^.*i...*.-i-.* 

= Z ) (eo,i,j(D,e0 A LX)I A Rni)). 

Now take as ei, . . . , e„_i the eigenvectors of Lx, with respective eigenvalues 
Xi, . . . , X„_i. Then we obtain 

y*vjm_i_ t(gi e„_i) = X ^i(ej(i),Rj(.i)) 

according to the lemma. Inserting this in (11) shows kN = KN. In particular, 
KN is a smooth function, which is not immediately clear from its definition. 
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