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ON GAUSSIAN AND GEODESIC CURVATURE
OF RIEMANNIAN MANIFOLDS

HANSKLAUS RUMMLER

Introduction. In [1], S. S. Chern gave a very elegant and simple proof of
the Gauss-Bonnet formula for closed (i.e. compact without boundary) oriented
Riemannian manifolds of even dimension:

LQ = cx(M).

Here, ¢ is a suitable constant depending on the dimension of M and Q is an
n-form (n = dim M) which may be calculated from its curvature tensor.
W. Greub gave a coordinate-free description of this integrand @ (cf. [4]).

Chern generalized his result in [2] to smooth polyhedral regions G with
boundary 9G:

J Q-+ f II = cx(G, 3G).
e e

Here, Ilisa (n — 1)-form on the unit sphere bundle E over M and »:9G — E
is the outer unit normal field on the boundary 9G of G. Now, @ = #nKdV,,
where dV, is the oriented Riemannian volume on M and K is a smooth function
on M, which may be considered as Gaussian curvature. In the same way,
v*II = kdV,_1, where dV,_; is the induced volume on dG. The function « is
then uniquely determined and corresponds to the geodesic curvature in the
case n = 2, where dG is a curve. The aim of this article is to define the geodesic
curvature for any oriented hypersurface in an even-dimensional oriented
Riemannian manifold—without using the sphere bundle for this definition—
and to state and prove the Gauss-Bonnet formula for compact regions with
smooth boundary:

f KdV_l +n f Kan = Cn_lx(G, aG)
Xed G

Here, ¢,_1 = 2 #™/(m — 1)! is the volume of the unit (# — 1)-sphere and x
is the Euler-characteristic. The constants # and ¢,—; appear in the formula to
simplify notation in the definition of K and «.

Part 1 of this article defines K and « in terms of the Riemannian connexion
and curvature tensor. Part 2 proves the Gauss-Bonnet formula. To do so, we
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use Chern's idea to work with the unit sphere bundle. Furthermore we use
details of Greub’s proof in [4].

1. Gaussian and geodesic curvature and the Gauss-Bonnet formula.
Throughout this paragraph, M denotes an oriented Riemannian manifold of
dimension n = 2m, with 2-co- and 2-contravariant curvature tensor R, regarded
as 2-form on M with valuesin A*T"M (1T"M the tangent bundle of M). To avoid
unnecessary minus-signs, let us make the following sign-convention for R:
If M is the n-sphere of radius 7 in Euclidean (n + 1)-space, its curvature
tensor is given by

Rx; uy, uz) = —I—-rl—zul A us forx € M,uy, us € T, M.

(This corresponds to the form — A in [4]!) R induces an n-form R™ on M, with
values in the line bundle A*T"M: define for uy, ..., u, € T, M

R™"(x; 01, ..., Uy) : = ylm—‘ Z;n R (X Ugyy Ugy) A oo A Ry Ugy_yy Uoy)-
Here, S, is the symmetric group of permutations of # objects, and e, is the sign
of ¢ € S,.

The oriented Riemannian volume on M is a map dV, = ¢*:A"T'M — R,
linear on each fibre. It is determined by the property (¢*,es A ... A e,) =1
for any positively oriented orthonormal basis ey, . . ., e, of T, M.

Definition. Let e, . .., e, be an orthonormal basis of 7°,M, and denote by
ei*,...,e* the dual basis. Then the Gaussian curvature of M at x is defined by

1
Kx):= Fori e* N ... ANe* R (er, ..., en)).
(The choice of the constant factor is not the usual one; it is, however, useful in
our context.)

Now fix an orthonormal basis e, ..., ¢, of 7,M, and select 2p pairwise
different indices ji, . .., jop(1 < p S m). €5, ..., €5, span a 2p-dimensional
subspace of 7°,M, and for a sufficiently small neighbourhood U of 0 in that
subspace, exp,(U) is a 2p-dimensional submanifold of an open neighbourhood
of x in M. We denote it by M, ... j, or M, if J denotes the 2p-tuple J =
(J1, - - - J2p) and call it the submanifold spanned by e, . . ., e;,,. M ; shall be
endowed with the induced Riemannian metric. In particular, it has a well-
defined Gaussian curvature at x.

LeMmMA. The Gaussian curvature of M ; at x s

1
KJ(x) = ?E <eh* Ao A epr*Y Rp(ehr e yeizp)>'
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Proof. Denote the curvature tensor of M ; by R. A*?T,M ; may be regarded
as a one-dimensional subspace of AT, M, and if p«: A?T, M — A?T, M,
denotes the map induced by the orthogonal projection T,.M — T,M ;, one
checks that

Rp(ejl, “eey ej2p) = p*Rp<6jl, “ ey ejzp).

(To do so, one needs the fact that M ; is geodesic at «, i.e. it contains the geo-
desics passing through «x in directions e;,, . .., €;,.) Now the lemma follows,
because (7,M ;)* can be regarded as a subspace of (I, M)*, e;*, ..., e;*
being the dual basis to e, . . ., €j,.

Before defining the geodesic curvature, we introduce some notational con-
ventions: For p, » € N, p < r, denote by A (;) the set of ordered p-tuples

(T, .., ) with 1 £4;, < ... <4, Zr, and for I € A(;) let J(I) be the
complementary (r — p)-tuple in
AGL): T = (Un .o hdrp), 1 S0 <0 <Jjrp =7,
{1/.1, e ey ’ip,jl, “ e yjr—p} = {1, e ey 7’}.
If p = r, J(I) is not defined since 4 (;) = B! For I € A(;) and real numbers
)\il,...,xipset)\[: = )\i1-~-)\ip°

Next consider an oriented hypersurface NV of M. N has an upper unit normal
field ». For x € N, define L,:T,N — T,N by L.(#): = Dw, where D is the
Levi-Civita connexion on M. L, is the so-called Weingarten map, which is
self-adjoint with respect to the induced metric on N (see [6]). Therefore there
exists an orthonormal basis ey, . .., e,_1 of TN, consisting of eigenvectors of
L. Denote the respective eigenvalues by Ay, ..., N1

Definition. With the foregoing notations, the geodesic curvature of N at x
is defined by

W =2 (") S aKwe,

k=0 n—1
Tea (, 0

(Note thatfork =0, = (1,...,n — 1) and that J(J) is not defined. So the
term for B = 0 is simply A ... N—1!)

This definition reduces to the usual one in the case # = 2, where N is an
oriented curve on a surface. More generally, the eigenvalues \; can be inter-
preted as geodesic curvatures of certain curves on surfaces: Take a smooth
curve v in N, passing through x in direction e;, and attach to its points the
geodesics passing through it in direction ». This yields a surface M, , whose
tangent space at x is spanned by »(x) and e;. Endow M, , with the induced
Riemannian metric and orient it by requiring (v(x), ;) to represent the orienta-
tion at x. Then, if v is oriented by its tangent vector e; at x, \; is the geodesic
curvature of v at x, regarded as curve on the surface M,,. We leave the
verification to the reader.
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Now, let G be a compact domain in M, with smooth boundary 4G, and denote
by v the outwards pointing unit normal field on dG. (Recall that M is oriented!)
It can be extended to a vector field # on G with a single singularity. The index
of this singularity does not depend on the particular extension, but only on v,
and hence on G. We define the Euler-characteristic of (G, dG) by

x (G, 0G): = index ().

In this definition, » can be replaced by any tangent field on dG without zeroes.
Such tangent fields exist, because dG has odd dimension.

TreorEM (Gauss-Bonnet formula). Let M be an oriented Riemannian mani-
fold of even dimension n = 2m, and G a compact domain in M with smooth
boundary 9G, oriented by the outwards pointing normal field. Then

f KaGdI/Yn—l —I_ n f KdIrn = Cn—lX(Gy aG)'
4G G

Here, dV, and dV,_; denote the oriented Riemannian volume on M and 4G,
respectively, and ¢,_1 = 2 7#"/(m — 1)! is the volume of the unit (# — 1)-
sphere.

2. The proof of the Gauss-Bonnet formula. Denote by (£, p, M) the
unit sphere bundle over M, whose fibre at x is the unit sphere S, in the tangent
space 1 ,31.

Forv € E, the Levi-Civita connexion D on M defines a decomposition of the
tangent space

T.E=HE®DVE

into horizontal and vertical part. The horizontal part, H,E, is isomorphic to
TywM, the isomorphism being given by the derivative of p at v, p«: T ,E —
TpyM. We therefore regard p« as the projection of 7',E onto its horizontal
part and write H: = ps. The vertical part can be identified with the subspace
vl of T,y M, and we denote by V:T,E — T,y M the corresponding projection
map.

If v: U — E is a differentiable section (U an open subset of M), for its deriva-
tive v+:TU — TE and its covariant derivative Dv:T'U — T'M the following
relations hold:

1) Vowvs = Dv, Howv = id.

On the fibre product TE X zTE we define the alternating bilinear bundle
map (‘‘Alternating bilinear’’ means alternating and R-bilinear on each fibre.)

W.:=V AN ViTEXgTE — A*TM
over p:EHM, i.e., W('wl, ‘ZU2) = 2V(‘ZU1) A V('ZU2) S Asz(,)M for v € E,
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wiy, we € T,E. In the same way,
RoH:=Ro(HXH):TEX yTE — N*TM

is an alternating bilinear bundle map over p:E — M.
Following the main ideas of [4], we construct for X € R the alternating
(m — 1)-linear bundle map

=VAQVA+RoH)" " 2TEXg... XgTE— A"'TM.

Here, the “exterior power’ is defined as

m—1 ______]-
(AW 4+ RoH)™™: = o =T

and the binomial formula holds:

(AW 4+ RoH)A ... AN AW+ RoH),

m—1

AW +RoH)"™ = > MNW*A (RoH)" .

k=0

(See [4].)

For fixedv € E, o (v): = (¢*,v A ®)) is a well-defined alternating (n — 1)-
form on T,E, i.e. ¢y is an (» — 1)-form on the manifold E, depending on the
parameter A\. With the inclusion map J:E — T°M, we can write

o = (5, J N\ ®).
From (1) we obtain for any local differentiable section v in E the relation
2) v*(en) = (¥, 9 A Dv A (\Dv A Dy + R)™1).
Greub proved in [4] the formula
d{e¢*,v A Dv A (\Dv A Dv + R)"™")

m—1
3) = % BEEDL e 9k 4 1) 00 A R
=0

— (Dv)™ A R™H),

(Note our sign-convention for R!) Since (2) and (3) hold for any local differ-
entiable section v in E, (3) determines dey uniquely:

—1
4) der = Z Qk—frvllx (e*, 2(k + D)V A (RoH)™*
k=0

— V* A (RoH)" ™).
Comparing the coefficients of N\* in ¢, and de, leads to the definition
(5) eri= (" J AN VHELA (RoH)" %), 0Z2k=m—1,
and the relation

6)  dep = (%, 2(k + 1) V2ED A (Ro H)"17F — V% A (R o H)™F).
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Now set
m—1 1
(M) e:= k;) PTG

Let us integrate ¢ over a fibre in the bundle (E, p, M): The integrals of the
terms containing R o H vanish, because H(1',(S;)) = 0 for x € M, v € S,.
So we obtain

(8) J Y = f Pm—1 = f <6*, J A Vn_1> = J dV_l = Cp—1.
SI SI Sx S.’E
From (5) and (6) we find that

_ _______1___ * m\ __ ______1___ %/ % Pm
d‘P_?m—l(m__ 1)'<6 y(ROH) >"2m—1(m___1)|p (6 aR >,
and our definition of the Gaussian curvature turns this into

9) de = —np*(KdV,).

If N is any oriented hypersurface in M with upper normal field v, the (n — 1)-
form »*¢ on N can be written as

(10) v = knd V-,

where iy is a well-defined smooth function on N.

Now it is easy to prove the theorem with ks instead of xse: Extend the
outwards pointing normal field » on dG to a unit vector field :G — xy — E
with a singularity of index x: = x(G, dG) at x, € G. »(G) is an n-dimensional
submanifold of £ with boundary 97(G) = »(dG) — xS,. Hence, by Stokes’
Theorem, and (8), (9), (10),

[ Kavi= [ ae= | oox [ o= [ v
¢ &) (36 Sz ag

— Cp—1X.

Our proof will be completed, if we can show iy = ky, for any oriented hyper-
surface IV in M with upper normal field ». Fix a point x € N and set ey: = »(x),
and let ey, ..., ¢,-1 be any positively oriented orthonormal basis of 7°,N.
Then, by definition,
iv(x) = v*oler, ..., €n1)
11 =1
(1) ]; FR Vom_1x(e1, .., €na1).

To express v*¢p,_1-x(e1, . . . , €n—1), let us write

* ] . * * * . :
€,r =€, u..,-=€ANey N...Ne; for I = (11,...,1,),

https://doi.org/10.4153/CJM-1974-060-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-060-x

RIEMANNIAN MANIFOLDS 635

and similarly
RS = Rl;l-n.izk = R¥(ejy .-y ep),
Lx,I = Lx,il...ir = Lx(eil) /\ o . /\ Lx(eir)v

where L,:T,N — TN is the Weingarten map as defined above. Recall also
the definition of the index set 4 (;) for 0 < p =< r and the map

J:AG)—A4 (rlp)-
Thus we have

V*¢m—1—k(elv ] en—l)

..... in—

1 *
= (2k)'(n _ 1 _ 2k)! o Z ) <eO,i1...1Zn_1y €o /\ Lx,il...in_1_2k

AR hinr)

* * %
Z L o, 1,0(nr €0 A Ls 1 A Ricp)-
164 (, ")
Now take as ey, . . ., €, the eigenvectors of L,, with respective eigenvalues
A, + .., M—1- Then we obtain

*
V*€0m~1—k(el: ceey en—l) = E . )\I<eJ( ) R’.;( 1)>
Iea (n—n;—ﬂc)

= 2kk! Z )\ IKJ( I (x),
rea ("

according to the lemma. Inserting this in (11) shows iy = ky. In particular,
kx 1s a smooth function, which is not immediately clear from its definition.
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